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Abstract
The elaboration of the pancreas from epithelial buds to the intricate organ requires complex patterning
information that controls fundamental cellular processes such as differentiation and proliferation of
pancreatic progenitor cells. During pancreatic organogenesis, endocrine cells are generated from a
population of pancreatic progenitor cells. The progenitor cells during the early development
simultaneously receive multiple signals, some mitogenic and some inducing differentiation. These
extrinsic signals are interpreted through an intrinsic mechanism that either commits the progenitor
cell to the mitotic cell cycle or lead to exit from the cell cycle in order to differentiate. The endocrine
cells that differentiate from progenitor cells are postmitotic, and direct lineage tracing analyses
indicate that a population of progenitor cells persists throughout embryogenesis to allow the
differentiation of new endocrine cells. At the end of embryogenesis and early postnatal period is
characterized by high rates of beta cell proliferation leading to massive increases in beta cell mass.
The beta cell mass expansion considerably slows down in adult animals, though variations in insulin
demand due to physiological and pathological states such as pregnancy and obesity can lead to
adaptive changes in the beta cells that include hyperplasia, hypertrophy, and increased insulin
synthesis and secretion. Deciphering the mechanisms that regulate the plasticity of beta cell mass
can be important steps in developing effective strategies to treat diabetes

Introduction
The pancreas is a specialized derivative of the primitive gut endoderm with both endocrine and
exocrine function, These two functions of the pancreas are carried out by two distinct
populations of cells: the exocrine acinar cells secrete digestive enzymes through the duct
system into the gut and the endocrine islet cells secrete hormones into the bloodstream. The
hormones produced by the endocrine cells regulate nutrient metabolism: in particular, beta
cells produce insulin that is required to maintain glucose homeostasis. Diabetes results from
an inadequate mass of functional beta cells. Such inadequacy could result from loss of beta
cells due to an immune assault (Type 1) or the lack of compensation to overcome insulin
resistance (Type 2). Thus, mechanisms that regulate the number of beta cells will be key to
understanding both the pathogenesis of diabetes and for developing therapies.

Cell-cell signaling and refinement of the pancreatic field
Relatively little is known about the molecular mechanisms that underlie the early specification
of gut tube to form the pancreas bud [1–4]. The endoderm at this stage receives inductive
signals from the adjacent germ layers, the ectoderm and the mesoderm, to form the primitive
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gut tube, over the next two days. The pancreas derives from the two distinct buds, thickenings
or anlagen, on the foregut. One anlage arises dorsally in the upper, duodenal part of the foregut,
directly posterior to the developing stomach, while the other is formed ventral to the hepatic
endoderm. Proper A–P patterning of the endoderm is necessary for the pancreatic development
to proceed, as it makes available the endoderm that can competently receive the inductive
signals and has been extensively reviewed recently [5]. A number of these studies to date
suggest that signaling from the notochord and endothelium specifies the location of the
pancreatic epithelium, while the inductive signals from mesenchyme regulate the size of the
pancreatic field.

The elaboration of the pancreas from epithelial buds to the intricate organ requires complex
patterning information that coordinates fundamental cellular processes such as differentiation
and proliferation of pancreatic progenitor cells. The expansion and differentiation of progenitor
cells has been shown to involve Notch signaling, which plays a critical role in specification of
individual cell types within the pancreatic domain. Notch signaling is a key pathway in binary
cell fate decisions and does so by a process termed “lateral inhibition” [6]. Lateral inhibition
is also active in the developing pancreas and is involved in maintaining the progenitor cell
population. In context of the pancreatic development, the Notch signaling regulates the decision
as to which cells would proliferate versus which cells would differentiate. Loss of function
studies using various Notch pathway genes such as the Delta like ligand 1(Dll1), the
intracellular mediators RBP-Jk and Hes1 result in depletion of progenitors due to precocious
differentiation, Ngn3 upregulation and consequent increase in endocrine formation [7,8]. The
similarity of phenotypes of mice defective in different components of the Notch signaling
pathway emphasized that Notch signaling via Hes1 regulates self-renewal of pancreatic
progenitors in early development. Gain-of-function experiments to activate Notch in the
progenitor cells prevent endocrine differentiation, further strengthening this view [9,10]. Thus
Notch signaling blocks the differentiation of pancreatic progenitors and forces them to remain
undifferentiated.

The near complete conversion of pancreatic progenitors at E9–E10 in the Hes1 null mice, along
with the fact that Notch1, Notch2 and Hes1 are expressed in epithelia of the early pancreas,
including cells not neighboring a laterally signaling cell, suggests the possibility of existence
of Notch independent functions for Hes1 or an alternate mechanism that activates Notch/Hes1
ubiquitously in pancreatic progenitors [8]. The second hypothesis is supported by fact that
Hnf6 mutant mice express Notch and Hes1 at normal levels despite the near absence of Ngn3
and loss of endocrine cells [11]. Norgaard et al. [12] choose to refer to this mechanism as
“Suppressive maintenance”, where by Hes1 is activated by a process different that lateral
inhibition. A major difference between these two mechanisms is the ubiquitous expression of
the ligand and receptor in suppressive maintenance, unlike the typical speckled expression of
a lateral inhibitory ligand, such as Dll1 [13]. Jagged1 and Jagged2 exhibit an ubiquitous pattern
of expression[7,12,14], indicating that they might be the appropriate ligands for suppressive
maintenance pathways.

FGF10 signal from the mesenchyme, as suggested before, plays an important role in
maintaining the Pdx1+ epithelial progenitor population in the pancreas [15]. FGF10 ectopic
expression not only causes abrogation of pancreatic cell differentiation but a simultaneous
increased proliferation of pancreatic progenitors as well. These two effects of FGF10 ectopic
expression are independent of each other, as the proliferation slows down over time, while the
differentiation status is maintained. Here, the FGF10 positive pancreatic cells express
Notch1 and Notch2, the Notch-ligands Jagged-1 and Jagged-2, as well as the Notch target
Hes1, and exemplify the suppressive maintenance phenomenon. This suggests that FGF10
integrates cell proliferation and terminal differentiation, the latter operating through Notch
signaling [12].
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What, then, are the regulators of the Notch signaling? The transcription factor Sox9 has recently
been shown to be the first specific marker and maintenance factor for multipotent pancreatic
progenitors. Pancreatic Sox9 expression is limited to the dividing, Notch responsive, Pdx1
positive subset of multipotent progenitors, and is absent in differentiated cells. Targeted
disruption of Sox9 leads to severe pancreatic hypoplasia due to progenitor depletion, a
phenotype similar to Notch mutations. Sox9 is involved in the maintenance of the pancreatic
progenitor pool and does so by stimulating their proliferation and maintaining them in an
undifferentiated state [16]. The authors also demonstrate that Sox9 deficient progenitors have
reduced expression of Hes1, indicative of a regulatory effect on Notch signaling. These
findings, therefore, suggest that Sox9 potentially maintains the progenitor pool in pancreas by
regulating the Notch pathway to However, given their observations that Sox9 deficient mice
show more severe pancreatic hypoplasia compared to the Hes1 deficient mice, the authors
suggest that Sox9 might have some Notch independent effect on the maintenance of progenitor
pool. The Notch pathway has been shown to inhibit Ptf1a function and acinar differentiation
in the developing mouse pancreas [17]. Besides, Notch signaling is also essential for region-
appropriate pancreas specification in the developing foregut endoderm via regulation of
Ptf1a [18]. One of the major targets of the Notch pathways is Neurogenin 3 (Ngn3), a bHLH
transcription factor. All endocrine lineages arise from Ngn3+ progenitors [19]. Sox9 has
recently been shown to activate the expression of Ngn3 [20]. Further, Sox 9 also regulates the
expression of transcription factors Tcf2, Onecut1 and Foxa2, which are critical to the
progenitors. Foxa2 and Tcf1 in turn regulate Sox9 expression setting up a feedback loop [20].
These observations suggest that Sox9 not only maintains the transcriptional networks in the
progenitor cells but also regulates the programs by which progenitors differentiate into distinct
lineages.

Ngn3 expression predisposes the cells to endocrine fate program, as indicated by the Ngn3
transgenic mice, which express Ngn3 under the control of Pdx1 promoter. These mice show
massive conversion of pancreatic cells into glucagons positive endocrine cells [7]. Ngn3+

endocrine progenitor cells have limited mitotic potential and Ngn3 is not expressed in
differentiated endocrine cells [7,14,21–23]. Misexpression of Ngn3 induces endocrine program
in the endoderm outside the pancreas domain, in the developing chicken gut, with majority of
the cells produced being alpha cells [24]. Gradwohl et al. [21] show that absence of Ngn3 leads
to complete loss of all pancreatic cell types. Pancreatic progenitors go through different states
of competence to allow for different lineages, as demonstrated by the time dependent activation
of Ngn3 in transgenic mice [25]. Notch signaling maintains the progenitor status of the cells
by inhibiting Ngn3 expression and consequently endocrine differentiation.

Ngn3 in turn positively regulates the insulin expression enhancing bHLH transcription factor
NeuroD [26]. NeuroD forms the tissue specific part of a hetero-dimeric complex, along with
the ubiquitous E2A [27–29]. NeuroD is expressed in all differentiated and post-mitotic
pancreatic endocrine cells. NeuroD null mice generate all all islet cell types, suggesting that
its not absolutely required for endocrine differentiation. However, the islet number is greatly
reduced and beta cell undergo apoptosis, in these animals [30,31]. The expression of
NeuroD precedes that of endocrine postmitotic markers, such as Pax6 and Isl1 [14]. Thus
NeuroD may be involved in promoting cell cycle exit. All these observation, put together,
underscore the importance of cell-cell signaling in maintaining a balance between progenitor
proliferation and differentiation of endocrine cells. The role of transcription factors as intrinsic
regulators of endocrine differentiation has been extensively reviewed [32–34].
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Coordinating progenitor self-renewal with differentiation to generate proper
numbers of beta cells

Very little information exists on how patterning information imparted to progenitors is
integrated with cellular processes of differentiation and self-renewal during the process of
pancreatic organogenesis. While Notch signaling plays a crucial patterning role by selecting
progenitor cells to either differentiate or self-renew, although the intrinsic mechanism by which
Notch signaling is interpreted by the progenitor cells during this binary decision process was
unknown. The proliferation of multipotent progenitor cells must be precisely regulated as the
different endocrine and exocrine cells types emerge at different times during development. For
example, if progenitor cells exited the cell cycle too early, cell types that differentiate later in
development will be reduced in the mature organ. Thus appropriate terminal cell-cycle exit
accompanied by differentiation is important for the size and the cellular make-up of the
pancreas.

The decision for progenitors to differentiate is made at the G1 phase of the cell cycle where D-
type cyclins and cyclin-dependent kinases inhibitors (CKIs) play an important role in regulating
cell cycle exit. The CKIs regulate cell cycle progression by blocking phosphorylation of the
retinoblastoma protein. Two groups of CKIs have been described [35]. These include the Ink4
family members that specifically inhibit cyclin D-Cdk4/6 activity, and the CIP/KIP family that
includes p21, p27 and p57 which exhibit promiscuous CDK-inhibitory activity. The connection
between Notch signaling and cell cycle regulation became clear after the observation that
p57 was a target of transcriptional repression by the Notch effector, Hes1. Hes1 is a known
transcriptional repressor and has been shown to prevent differentiation by suppressing
expression of transcriptional activators of cell differentiation such as Ngn3 [36]. Thus, Hes1
activation in pancreatic progenitors can suppress the expression of both Ngn3 and p57 as well
as simultaneously prevent cell cycle exit and differentiation. The inactivation of Hes1, on the
other hand, leads to increased number of progenitors expressing p57, leading to their precocious
exit from the cell-cycle [37]. These results suggest that Notch signaling coordinates with cell
cycle exit with differentiation to regulate the size of the pancreatic progenitor pool.

Differentiation of beta cells from pancreatic progenitors accounts for the bulk of the beta cell
mass established before birth [38]. The newly differentiated cells that arise from pancreatic
progenitor are mitotically quiescent and do not proliferate until very late in embryogenesis
[39–41]. What maintains the postmitotic state of newly differentiated beta cells? Recent work
has shown that mitotically quiescent beta cells accumulate another member of CKI family,
p27. In the absence of p27, the differentiated cells are no longer quiescent and reenter the cell
cycle to proliferate. This proliferation of beta cells in p27−/− mice during embryogenesis results
in increased beta cell mass at birth when compared to wild-type littermates. Accumulation of
p27 in beta cells that differentiate during embryogenesis, prevents reentry into the cell cycle.
Thus, p27 functions to maintain the quiescent state of the newly differentiated beta cells during
embryogenesis and regulate the total number of beta cell at birth [42]. Stanger et al. [43] have
examined the effect of perturbations in progenitor pool size on the determination of final organ
size in mouse models. These authors have used cell ablation with targeted and controlled
expression of Diptheria Toxin A (DTA) and complementation of Pdx1 null embryos with wild
type embryonic stem cells, to analyze the effect of progenitor population size during early
pancreatic and liver development. Reduction of the pancreatic progenitor pool led to a smaller
pancreas indicating compensatory mechanism for organ size are limited, thus underlining the
importance of elucidating the mechanisms that regulate the numbers of pancreatic progenitors
during embryogenesis.
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Postnatal mechanism that regulate beta cell growth and development
The postnatal period in rodent life between birth and weaning is characterized by a massive
expansion in beta cell mass to align proper insulin secretion with increasing with the
physiological demands. During postnatal development, the number of endocrine cells is
governed by balancing endocrine cell growth and endocrine cell death. The increase in the
number of beta cells is a result of increased proliferation of beta cells and possible contributions
from differentiation. Early work involving the use of 3H thymidine incorporation to study cell
proliferation suggested that endocrine cells in the adult pancreas could be maintained by the
proliferation of differentiated cells [44,45]. The proliferation of differentiated beta cells can
be as high as 7% in neonatal rats [46] and mice [47]. The expansion of beta cell mass during
the neonatal period is balanced by waves of apoptosis during pancreatic remodeling [46,48].
A transient wave of beta cell apoptosis occurs at weaning, which is thought to be associated
with islet remodeling and/or changes in beta cell maturation [49,50]. The rate of beta cell mass
expansion is, therefore, governed by the relative rates of new beta cell formation and beta cell
loss. It has been proposed that the neonatal beta cell apoptosis may function as a possible trigger
for autoimmune diabetes by exposing potential autoantigens [51].

A number of observations, including prevalence of hormone-positive ductal cells as well as
the close proximity of islets to ducts, have led to the idea that some endocrine cell differentiation
occurs in the ducts. Ductal cell differentiation from putative precursor cells, sometimes referred
to as “neogenesis” [46,48], has been suggested to occur in the neonatal animals [49,52] and
there have been studies indicating that the observational incidence of ductal cell differentiation
increases in experimental models of pancreatic injury [53,54]. Melton and colleagues have
questioned the significance of ductal cell differentiation contributing to the generation of new
beta cells and shown that the majority of beta cells originate from pre-existing beta cells [55].
In contrast to studies that invoke the idea of ductal cell differentiation based on histological
observations, more recent work using detailed lineage tracing experiments provided strong
evidence that implicates beta cell proliferation to be the main source of adult beta cell mass
expansion [56]. In such a scenario, the beta cells could be a) a homogenous population, with
all beta cells contributing equally to maintenance of beta cell mass, b) a heterogeneous
population, with some highly replicative cells functioning as unipotent adult stem cells, or c)
a beta cell subpopulation could maintain the beta cell mass by reversible de-differentiating into
replicating cells [57]. More recently, there has been increasing evidence to indicate that all beta
cells contribute equally to islet growth and maintenance. [57,58] Thus, endocrine pancreas
provide unique model, where differentiated beta cells are capable of self-renewal to regulate
beta cell mass in adults.

Elucidating the role of cell cycle regulators in beta cell proliferation has lent support to the
concept that self-renewal of beta cells is the main driving force of postnatal beta cell growth.
These studies indicate that the balance between cyclin D2-Cdk4 complexes that form in
response to mitotic signals, and cyclin kinase inhibitors that block the activity of cyclinE-Cdk2
complex regulates beta cell proliferation. Cdk4 is essential for adult beta cell proliferation, as
the cdk4−/− mice develop severe diabetes due to hypoplastic islets within 10 weeks after birth
[59,60]. In contrast, transgenic mice expressing either a cdk4 allele insensitive to the Ink4 class
of cell cycle inhibitors or cdk4 mutant develop massive islet hyperplasia [59,61,62]. The D-
type cyclins levels are controlled by mitogens and upon induction, these cyclins pair with the
Cdk4/6 to drive the cell into S phase from G1 phase [63,64]. In the beta cell, cyclin D2 is
uniquely required for beta cell replication and proper expansion of beta cell mass during
postnatal development [47] and that other D-type cyclins are unable to adequately compensate
for the absence of cyclin D2 [65].
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Whether a beta cell proliferates depends on the balance between cyclin D2-Cdk4 complex that
forms in response to mitotic signals, and cyclin kinase inhibitors that block the activity of
cyclinE-Cdk2 complex. One cyclin kinase inhibitor, p27 accumulates in quiescent beta cells
and degradation of p27 was shown to be essential for beta cell proliferation. Hence, cellular
abundance of p27 protein governs the decision of a beta cell to either divide or remain quiescent
by attenuating the activity of the cyclin-cdk complexes that are the mitotic sensors for cell
cycle progression. Skp2 and Cks1 (which is also a part of the SCF complex) are also regulated
by the transcription factor FoxM1. Targeted deletion of FoxM1 in the mouse pancreas leads
to postnatal deficits in beta cell mass, progressive glucose intolerance and diabetes [66]. The
transcriptional co-activator Menin (product of Men1 locus, which is mutated in familial
multiple endocrine neoplasia type 1: MEN1; [67]) also regulates the growth of pancreatic islets
by promoting histone methylation and the expression from p27 and p18 loci encoding CKIs.
Menin directly associates with the promoter regions of these two loci and increases the
methylation of lysine-4 in histone H3, thus modulating the transcrption of these CKIs [68].

Plasticity of beta cell mass and coping with metabolic demand
The beta cell mass expansion considerably slows down in adult animals, though some
expansion continues at very slow rates through the life of the animal. While beta cell mass
expands primarily through replication during neonatal growth, the replication rate becomes
slower postnatally and in adulthood. Finegood et al. [69] have previously suggested that nearly
2% of adult beta cells undergo replication. However, long term BrdU labeling studies by Teta
et al. [70] suggest a much slower rate of beta cell replication in the adult mice and extremely
low beta cell turnover. Besides maintaining the beta cell mass under normal circumstances,
animals adapt beta cell mass to cope with changing metabolic demands for insulin. Variations
in insulin demand due to physiological and pathological states such as pregnancy and obesity
can lead to adaptive changes in the beta cells that include hyperplasia, hypertrophy, and
increased insulin synthesis and secretion [48,71–73]. Under such circumstances, blood glucose
levels are maintained by regulated increases in insulin secretion, which is accompanied by an
expansion of pancreatic beta cell mass. However, the inability of the endocrine pancreas to
adapt to the changing insulin demand can result in hyperglycemia and development of diabetes
mellitus [74–76]. In humans, this is typified by increased insulin resistance in obese type II
diabetics and by the onset of gestational diabetes during pregnancy. Thus, deciphering the
mechanisms that regulate the plasticity of beta cell mass can be important step in developing
effective strategies to treat diabetes.

A linear correlation has been shown to exist between beta-cell mass and body weight [77]. Diet
induced obesity and the consequent insulin resistance correlates with a compensatory increase
in beta cell mass. C57Bl/6 mice demonstrate a 2 fold increase in their beta cell mass after four
months of high fat diet regimen [78]. Cell cycle molecules play an important role in diet induced
adaptive expansion of beta cell mass. Increased insulin resistance due to diet-induced obesity
leads to the Skp2−/− mice becoming overtly diabetic, as beta cell growth in the absence of cell
division can not compensate for increased metabolic pressure. This suggests that regulation of
p27 turnover is needed to respond to increased metabolic demand associated with insulin
resistance (Zhong et al., unpublished).

Beta cell compensation is witnessed in naturally occurring genetic models of obesity and
insulin resistance. The db/db mice, which lack a functional leptin receptor, show a twofold
increment in beta cell mass by 8 weeks of age [79]. This timing correlates with the onset of
diabetes, and is preceded by glucose intolerance. Zucker diabetic fatty (ZDF) rats, another
model of leptin receptor deficiency, display increased beta cell mass and proliferation before
the onset of diabetes. However, increased apoptosis after the onset of diabetes results in a
decreased beta cell mass unable to compensate for increased insulin demand. This is in sharp
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contrast to the non-diabetic, Zucker fatty (ZF) rats, which are also obese but able to adequately
expand beta cell mass to respond to increased metabolic demand for insulin due to insulin
resistance [80]. Islet hyperplasia also accompanies insulin resistance in case of the
hyperglycemic obese ob/ob mice [81].

Genetic models of insulin resistance have proven to be powerful tools in understanding the
molecular mechanisms that regulate beta cell plasticity. The Insulin and Insulin like Growth
Factor (IGF) signaling pathways are critical for proper maintenance and functioning of beta
cells. Genetic studies reveal that these pathways actively mediate peripheral insulin action and
beta cell function [82–85]. Both Insulin and IGF pathways signal through Insulin Receptor
Substrate proteins (IRS), and of particular interest are IRS1/2. IRS1 plays a role in
compensatory beta cell expansion in response to insulin resistance, while IRS2 plays an
important role in beta cell growth and survival [84,86–88]. Because of the drastic differences
in phenotypes of the different IRS1/2 null mice, it has become clear that IRS1 and IRS2 have
distinct, non-redundant functions in insulin/IGF signaling. Further, it has been shown that an
upregulation of IRS2 leads to the prevention of diabetes in mice [89].

Combinations of IR/IRS models of insulin resistance with Pdx/Foxo haploinsufficient models
have elucidated the important role of Pdx1 expression and beta cell proliferation. Recent work
from Accili lab showed that Foxo1 overexpression in liver and/or beta cells restricts the
compensatory increase of beta cell mass in response to insulin resistance via restricting
proliferation in the beta cells of Insulin receptor deficient mice [90]. Similarly, it has been
shown that Pdx1 haploinsufficency can restrict the proliferation-based compensatory increase
of beta cell mass in response to insulin resistance in liver-specific insulin receptor and IR-IRS1
double haploinsufficient animals [91]. Conversely, overexpression of Pdx1 in IRS2-null
animals has been shown to prevent diabetes and allow for adaptive expansion of beta cell mass
via increased proliferation of beta cells [92]. The clear involvement of Pdx1 action in the
adaptive expansion of beta cell mass begs further investigation into how Pdx1 influences cell
cycle machinery to allow for beta cell proliferation.

Pregnancy also leads to increased metabolic demand for insulin, resulting in compensatory
increase of beta cell mass. Rats show 2–2.5 fold increase in beta cell mass during pregnancy,
attained mainly by an increased proliferation of beta cells. This increase in the beta cell mass
is a combined effect of increased beta cell proliferation and beta cell hypertrophy (an increase
in cell size) [50]. Beta cell hyperplasia and hypertrophy has also been observed in pregnant
humans [93]. After delivery, the beta cell mass returns to normal, through a decrease in beta
cell proliferation and size and an increase in apoptosis [50]. It has been shown that exposure
to prolactin and placental lactogen, both lactogenic hormones, come into play to accommodate
the increased insulin demand during pregrnancy, and do so by increasing proliferation [94–
97]. Non pregnant mice which ectopically express placental lactogen 1(PL1) in beta cells
(through Rat Insulin Promoter-RIP) exhibit hypoglycemia and hyperinsulinemia, resulting
from a doubling of beta cell mass. This expansion of beta cell mass is due to increased
proliferation as well as hypertrophy [98]. The absence of progesterone, another model of the
hormonal changes that occur during pregnancy, results in increased beta cell mass due to
increases in beta cell proliferation [99].

The regenerative capacity of beta cells
In adult life, beta cell loss and renewal are balanced to maintain homeostasis. Rapid renewing
organs such as hair follicle, blood and gut utilize dedicated stem cells to constantly renew
themselves throughout life. In contrast, organs that exhibit slow turnover such as the pancreas
and liver rely on self-renewal of beta cell and hepatocytes respectively [100]. Regeneration of
pancreatic beta-cell mass following either toxin or autoimmune-mediated destruction is
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possible in the young rodent, but the extent of the recovery decreases with age and is incomplete
in adult life. Treatment with incretins, such as glucagon-like peptide 1 and its long lasting
homolog exendin-4, results in increased beta cell proliferation. The proliferative effects of
GLP1 are dependent on PDX1 expression [101] and concurrent nuclear exclusion of Foxo1
[102]. Even though histological observations serve as evidence of ductal cell differentiation
expanding the beta cell population after injury such as partial pancreatectomy, pancreatic duct
ligation, or EGF and gastrin treatment following drug induced diabetes [103], lineage tracing
of genetically marked beta cells shows that no new beta cells are formed from non-insulin-
expressing stem cells or progenitor cells following 70% pancreatectomy [56]. The experiments
cited have been performed on young mice and some data exists to suggest that the regenerative
capacity of the endocrine pancreas declines with age. In one-month old rats, the insulin content
of the residual pancreas after 90% pancreatectomy increased 3-fold but no such increase was
observed in five and fifteen-month old rats. Consistent with increased insulin content, plasma
glucose levels of one-month old rats after 90% pancreatectomy increased for two weeks before
declining while no such decline was observed in five and fifteen-month old rats [104].

The decline in beta cell proliferation correlates with increased expression of p16 in islet cells
[105]. p16, another CyclinD-cdk4 inhibitor and a mediator of cellular senescence, is known to
accumulate in many tissue with ageing [106–108]. p16 RNA expression is enriched in the
murine pancreatic islets and shows a significant increase with ageing. Overexpression of p16
in mice results in decreased islet proliferation. The loss of p16 expression, on the other hand,
shows an increased proliferation in the old mice while not affecting the proliferation in younger
mice. Further, the p16 knockout mice are better able to survive STZ mediated islet ablation.
These findings suggest that ageing related increase in p16 expression limits the regenerative
potential of beta cells [105]. Thus, p16 is an important regulator of adult pancreatic beta cell
survival and regenerative potential.

Recently, studies have linked the expression of other key cell cycle regulators with established
roles in beta cell proliferation to key signaling pathways important to establishing and
maintaining a adaptively responsive beta cell mass. Previously, it has been reported that mice
with a conditional ablation of LRP5, a co-receptor in the Wnt signaling pathway, mouse islets
resulted in reduced beta cell function and poor glucose tolerance in adult mice that were
challenged with a high fat diet, indicating that wnt signaling may play a role in the adaptive
response of beta cells to obesity and insulin resistance [109]. Though there were no mechanistic
explanations as to how wnt signaling was involved in the adaptive response to high fat diet,
recently it has been reported that conditional expression of Axin, an inhibitor of Wnt pathway,
reduces the expression of Cyclin D2 and Pitx2, leading to reduced neonatal beta cell mass and
glucose intolerance. Conversely, Wnt3a promotes the expression of Pitx2, a direct target of
Wnt signaling, and that Pitx2 binds to the Cyclin D2 promoter, upregulates cyclin D2 mRNA
levels, and subsequently increase proliferation in MIN6 cells. To mimic these in vitro
experiments in vivo, mice were bred that conditionally expressed constitutively active beta-
catenin (the downstream effector of canonical Wnt pathway), and showed the same effects in
vivo, resulting in expansion of beta cell mass and insulin production. These studies suggest
that Wnt signaling is essential for beta cell proliferation [110]. TGF-beta is also an important
regulator of islet development. Conditional expression of Smad7, a potent inhibitor of TGF-
beta pathway in the embryonic Pdx1 positive cells leads to severe beta cell hypoplasia and
neonatal lethality. Smad7 expression in the adult Pdx1 positive cells reduces the expression of
beta cell regulatory factors such as menin and MafA. This also leads to diabetes, which can be
reversed by inducing TGF-beta signaling again [111]. Thus, there is a whole set of different
signaling pathways and molecules that can be used as potential targets to allow in vitro and in
vivo proliferation of beta cells or the islets.
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diabetes mellitus. PLoS Biol 2006;4:e39. [PubMed: 16435884]*The authors make use of
conditional overexpression of Smad7 in Pdx1 positive cells to show that TGF-beta signaling is
really critical for the function of mature beta cells.
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Figure 1.
The decision to proliferate or differentiate. Pdx1+ progenitor cells face a binary decision to
either self-renew to expand the progenitor pool, or to undergo cell cycle arrest and begin the
differentiation process. Progenitor cells that receive the Notch signal pathway via downstream
effector Hes1 represses not only genes specific to differentiation but also the cell cycle arrest
mediator, p57, thereby allowing the progenitor cells to continue to self-renew. Cells that do
not receive the Notch signal upregulate p57 and exit the cell cycle to allow the differentiation
process. The quiescent state of differentiated cell type is maintained by accumulation of cell
cycle inhibitor p27.
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Figure 2.
The proliferative capacity of beta cells changes during the progression from embryogenesis
through adulthood. During early embryogenesis, beta cell umbers are established by direct
differentiation from Pdx1+ progenitor cells. In late gestation through the neonatal stages of
life, the beta cell population is expanded through high rates of proliferation in existing beta
cells. In adulthood, low levels of beta cell replication maintain a constant set of beta cells ready
to provide insulin to meet metabolic demand.
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Figure 3.
The inability of beta cell mass to adaptively expand in order to compensate for increased insulin
demand leads to diabetes. When either pregnancy- or obesity–related insulin resistance creates
an increase in metabolic demand for insulin, healthy beta cells are able to expand in number
and size to compensate for increased metabolic need for insulin, thereby maintaining glucose
homeostasis. When beta cells to expand and adapt to changing metabolic demand, the reduced
insulin secretion results in hyperglycemia.
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