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Tetraspanins are multiple membrane-spanning proteins that likely function as the organizers of
membrane microdomains. Tetraspanins associate with other membrane-bound molecules such as
cell-adhesion proteins, growth factor receptors, and Ig superfamily members and regulate key cellular
processes such as adhesion, migration, and fusion. Tetraspanins are widely expressed in vascular and
haematopoietic cells and are involved in both physiological and pathological processes related to angio-
genesis, vascular injury, thrombosis, and haemostasis. A wide body of evidence suggests that tetra-
spanins directly regulate the development and functions of the vascular system and the pathogenesis
of vascular diseases. This article reviews current understanding of the roles of tetraspanins in
vascular functions.
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1. Introduction

Tetraspanins comprise a group of integral membrane pro-
teins that contain four conserved hydrophobic transmem-
brane domains (TM1-TM4), intracellular N- and C-termini,
and small (EC1) and large (EC2) extracellular domains.1–5

A schematic representation of tetraspanin structure is
shown in Figure 1. The EC2 domain of most tetraspanins fea-
tures four–six cysteine residues, glycosylation sites, and a
highly conserved ‘CCG’ motif. The ‘CCG’ motif and con-
served strong polar residues in the TM domains are con-
sidered to be the signature structural elements for all
tetraspanins. The EC2 region, together with transmembrane
regions, confers structural and functional specificities to
tetraspanins and is also important in mediating tetraspanin
interactions with other membrane-bound proteins such as
integrins1–5 and Ig superfamily proteins.6 Tetraspanin-
containing multimolecular complexes are designated as
‘tetraspanin web’ or ‘tetraspanin enriched microdomains’
(TEM) as the isolation of a given tetraspanin typically
yields a range of other tetraspanins and associated
transmembrane proteins.2,7,8 However, with the exception
of CD151-integrin a3 binding, most tetraspanin-
transmembrane protein interactions are probably not
based on the direct amino-acid-residue–amino-acid-residue
interactions at the EC regions because these interactions

are relatively weak and readily disrupted under the so
called ‘high stringency’ detergent conditions used for cell
lysate preparation (e.g. 1% Triton X-100).

As the organizers of membrane microdomains, tetraspanins
regulate vital cellular events such as adhesion, spreading,
migration, and fusion (Figure 2). The biochemical character-
istics of tetraspanin microdomains and the regulatory roles of
tetraspanins in phenomena such as malignancy, immune cell
regulation, and viral infections have been thoroughly
reviewed in several articles.9,10–13 Recent studies underline
that tetraspanins actively traffic between plasma membrane
and intracellular vesicular compartments. The trafficking of
tetraspanins is accompanied by the vesicular release and traf-
ficking of other membrane proteins.14,15 Another emerging
theme is that tetraspanins appear to regulate pericellular
proteolysis near the plasma membrane leading to the
altered cell motility and adhesiveness.16–19 Although the bio-
chemical and biophysical nature of tetraspanin activities
remains unknown, existing evidence has expanded the func-
tion of tetraspanins as molecular ‘facilitators’ or ‘organizers’
at the plasma membrane to both intracellular vesicles and
the extracellular micro-environment.

Tetraspanins exhibit diverse tissue distribution patterns.
For example, CD9, CD63, and CD151 are widely expressed
in a variety of tissue including vascular and haematopoietic
cells, whereas others such as TSSC6 are expressed only in
the haematopoietic cells. For the 33 identified human tetra-
spanins, the expression and function of most newly ident-
ified tetraspanins in the vascular system remain to be
elucidated. Because vascular events such as neointimal† These authors made equal contribution to this article.
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formation, angiogenesis, and thrombosis are tightly regu-
lated by cell adhesion proteins, e.g., integrins, and tetra-
spanins are key players in adhesion and migration,

tetraspanins may regulate important pathophysiological
phenomena of the vascular system. Indeed, the roles of tet-
raspanins in thrombosis, vascular morphogenesis, and vascu-
lar remodelling are beginning to be increasingly understood.
Considering the rapidly growing interest in vascular tetra-
spanin functions, we discuss the biology of various vascular
tetraspanins and their functional role in regulating patho-
physiological processes related to the cardiovascular
system in this review, which is distinct from earlier
reviews focusing on other functional aspects of tetraspanins
such as malignancy, immune response, and viral infection.

2. Specific roles of tetraspanins in vascular
functions

2.1 CD9

Human CD9 (Tspan29) was first detected by its reactivity
with the monoclonal antibody (mAb) BA-1 raised against a
leukaemia cell line NALM-6.20 Using specific DNA probes,
the gene encoding CD9 was localized to the short arm of
chromosome 12.21 The primary structure of CD9 was eluci-
dated in 1991 when CD9 cDNA was isolated from a megakar-
yocytic library. The CD9 gene consists of eight coding regions
(exons) that span about a 20 kb region of genome. Transcrip-
tion of the CD9 gene generates a 1.4 kb mRNA that encodes
a protein of 228 amino acids with an apparent molecular
weight of a 24 kDa on SDS–PAGE.22 This report also con-
firmed that the mature protein contained four hydrophobic
sequences representative of four transmembrane spanning
domains. CD9 expression has been demonstrated on
several cells such as macrophages, eosinophils, basophils,
fibroblasts, epithelial cells, neuronal cells, oocytes, and

Figure 2 Schematic drawing showing cellular functions of tetraspanins. Tetraspanins associate with integrins, Ig superfamily proteins, and other transmembrane
proteins. Additionally, tetraspanins are in molecular complex with cytoplasmic proteins, such as syntenin-1 (s) and signalling molecules. Tetraspanin containing
complexes are designated as ‘tetraspanin web’ or ‘tetraspanin enriched microdmians’ (TEM). In addition to serving as organizers at the plasma membrane, tetra-
spanins are also enriched in the intracellular vesicles. Trafficking of tetraspanins between various cellular compartments tightly regulates exocytosis and traffick-
ing of their associated partners. Tetraspanins in conjunction with other membrane proteins regulate cell–extracellular matrix adhesion, cell–cell interactions,
cell migration, and modulate intracellular signaling events. Tetraspanins regulate phenomena such as vascular injury response, angiogenesis, heterotypic cell
contacts, and tumour invasion and metastasis.

Figure 1 Schematic drawing of the structure of tetraspanins. Tetraspanins
are composed of four transmembrane, an intracellular N- and C-termini,
and two extracellular (one shorter, EC1, and one longer, EC2) domains. The
conserved motifs or residues featured by tetraspanins are denoted. Most tet-
raspanins contain four or six cysteine residues in EC2, and two of those are in
a highly conserved ‘CCG’ motif. Most of tetraspanins have glycosylation sites
in EC2 as indicated as the squares, while CD9 is glycosylated in EC1. In each
tetraspanin, there are several cysteine residues proximal to the interface of
the inner leaflet and cytosol, which are the sites for palmitoylation and
characteristic strong polar residues in the transmembrane domains. Tetraspa-
nins also contains ‘YXXF’ sorting motif in the C-terminal cytoplasmic domain.
C, Cysteine; E, Glutamic acid; G, Glycine; Q, Glutamine; N, Aspargine;
S, Serine; Y, Tyrosine; X, any aminoacid; F, Hydrophobic aminoacid.
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various tumours and tumour cell lines.23 CD9 regulates
phenomena such as cell morphology, migration, prolifer-
ation, cell fusion, and tumour cell metastasis.2,24 CD9 is
the first tetraspanin for which knock out (KO) mice were
generated, and oocytes derived from CD9 KO mice have
drastically reduced fertility rates.25 In various cell
systems, CD9 exists in molecular complexes with b1 and
b3 integrins,26,27 Ig superfamily proteins,6 membrane-
anchored heparin-binding epidermal growth factor (HB-EGF)-
like growth factor,28 and other tetraspanins.2

Smooth muscle cells (SMC) constitute a major component
of muscular arteries. Endothelial damage in the vessel wall
elicits phenotypic changes in the SMC leading to the for-
mation of neointimal layer. Neointimal hyperplasia directly
contributes to the pathogenesis of restenosis after angio-
plasty and predisposes vessels to occlusion by platelet-rich
thrombi.29 Therefore, membrane proteins regulating SMC
phenotypes can profoundly influence the progression of
atherothrombosis culminating in vessel occlusion. CD9 is
expressed in cultured SMC as well as in the SMC of the
vessel wall following vascular injury.30,31 Specific effects of
tetraspanin CD9 in the regulation of SMC phenotypes and
in neointima formation following vascular injury have been
studied using various model systems.30–33 Earlier reports
clearly established an association between CD9 and b1
integrins in SMC and suggested that CD9 levels are upregu-
lated in SMC undergoing switch from the synthetic to prolif-
erative phenotype. In addition, a peri-vascular electrical
injury to the femoral artery suggested that the extent of
neointima formation was not significantly altered in CD9
KO mice when compared with that of the wild-type con-
trols.32 More recently, antibody perturbation and adenoviral
CD9 gene delivery studies in a carotid ligation injury model
conclusively established a connection between CD9 and
neointimal hyperplasia.30 In vitro experimental results
using human coronary artery SMC indicated that CD9 is
important in regulating both proliferative and migratory
phenotypes of SMC.30 CD9 in SMC associates with various
b1 integrins including the fibronectin receptor a5b1.30,31

Since vascular injury is associated with tissue remodelling
involving extracellular matrix (ECM) reorganization, we
predict that CD9 and its associated integrins play a critical
role in the overall healing response of the injured vessel.

CD9 in other model systems associates with certain growth
factors belonging to epidermal growth factor (EGF) family.
In this regard, CD9 specifically associates with the mem-
brane anchored HB-EGF-like growth factor receptors and
regulates its juxtacrine growth factor activity.28 Such find-
ings warrant future investigations to study the relative
importance of other CD9 associated proteins in the vascular
injury response. When exogenously expressed, CD9 signifi-
cantly upregulates PI-3K/Akt signalling pathway in SMC as
well as in other model systems.23,30 As PI-3K/Akt plays an
important pivotal role in the modulation of SMC cell
migration and proliferation,34,35 it can be speculated that
augmentation of PI3-K/Akt activity by CD9 may play a criti-
cal role in CD9-induced SMC phenotypic changes. Future
studies are required to delineate upstream molecular signal-
ling mechanisms that lead PI-3K/Akt enhanced activation by
CD9 and to define the downstream events that affect SMC
phenotypes upon PI-3K activation.

Within the vascular tissue CD9 expression is not limited
to the SMC of the medial layer. As studies have shown

endothelial cells (ECs) derived from various tissue sources
express CD9. For example, EC derived from bovine
retina,36 human umbilical vein,37,38 saphenous vein
grafts,39 and lymphatic vessels40 all express significant
amounts of CD9. CD9 in EC is attributed to be important in
several cellular events. Using anti-CD9 mAbs, Klein-Soyer
et al.39 showed a regulatory role for CD9 in EC migration.
In cultured human umbilicial vein cells (HUVEC), CD9 is pre-
dominately localized to EC junctions.41 Furthermore,
anti-CD9 mAbs inhibited transwell haptotactic migration of
EC to fibronectin as well as EC migration into wound areas
in an in vitro scratch assay. However, in contrast with
SMC, the effects of anti-CD9 mAbs appeared to be limited
to the regulation of EC migration as EC proliferation was
unaltered upon anti-CD9 mAb treatment.39 However,
anti-CD9 mAb treated HUVEC were reported to have a
diminished platelet-induced proliferative response.42

In addition to EC migration, CD9 is implicated to modulate
leucocyte transendothelial migration.38 Both neutralizing
anti-CD9 antibody and recombinant CD9 protein correspond-
ing to the EC2 domain inhibited leucocyte migration.38

During the process of leucocyte transendothelial cell
migration, CD9 redistributed and clustered near the
regions of EC contacts with leukocytes. Thus, by differen-
tially clustering with the adhesion molecules such as inter-
cellular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1), CD9 enriched microdomains
in the plasma membrane of EC may take part in regulating
the endothelial barrier function.

In addition, the regulatory role of CD9 in mediating cell–
cell interactions is not limited to homotypic aggregation
events as evidence suggests that CD9 indeed can regulate
heterotypic cell contacts. For example, very early obser-
vations suggested that CD9 mAbs can enhance neutrophil
adhesion to the endothelium.43 Furthermore, anti-CD9
mAbs inhibited transendothelial migration of melanoma
cells suggesting that CD9 modulates tumor cell–EC inter-
actions.44 More recent evidence indicates that in activated
EC, CD9 containing tetraspanin microdomains take part in
the formation of specialized structures designated as endo-
thelial adhesion platforms (EAP) that are biochemically dis-
tinct from lipid rafts.45 Ligation of CD9 with antibodies
resulted in tetraspanin clustering and recruitment of
ICAM-1 and VCAM-1 to the docking structures providing the
first direct evidence for the role of tetraspanins in heteroty-
pic cellular interactions.45

As CD9 is abundantly expressed in platelets as well as in
the endothelium, it remains to be determined whether
similar heterotypic cell contact regulatory mechanisms are
operational in platelet interactions with the vascular endo-
thelium. A putative role for CD9 in the regulation of EC
matrix metalloproteinase (MMP) activity has been investi-
gated.19 In mouse lung endothelial cells (MLEC), a specific
knockdown of CD9 does not appear to interfere with the
MMP-2 activity, whereas CD151 knockdown in these cells sig-
nificantly enhances MMP2 activity and its collagenolytic
activity. Thus, it appears that tetraspanins differentially
regulate EC functions and this feature may be due to the
ability of tetraspanins to reorganize membrane protein com-
plexes. Other than SMC and EC, the involvement of CD9 in
cardiac myocyte growth and heart muscle hypertrophy has
also been reported.46 Adenoviral-mediated exogenous CD9
expression in mouse cardiac myocytes inhibited cardiac
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muscle hypertrophy and reduced mortality following myo-
cardial infarction.46

2.2 CD63
CD63 or Tspan30 is primarily an intracellular tetraspanin and
is mainly localized to late endosomal and lysosomal compart-
ments. In the vascular system, CD63 is relatively well studied
in platelets and EC. In EC, CD63 was identified as a com-
ponent of Weibel-Palade bodies,47,48 which store and
secrete von Willebrand factor (vWF). Together with
P-selectin, CD63 is one of the few proteins known to reside
in the membrane of Weibel-Palade bodies.48–50 Although it
is not well understood how CD63 is targeted to Weibel-Palade
bodies, vWF clearly plays a role in CD63 trafficking into these
structures.51,52 CD63 and P-selectin are initially recruited to
the vWF storage granules that further develop into Weibel-
Palade bodies, suggesting that the luminal vWF contains a
sorting signal that targets CD63 and P-selectin.47 During the
exocytosis of vWF, the surface expressions of CD63 and P-
selectin in EC are transiently enhanced due to the fusion
between the Weibel-Palade body membrane and the
plasma membrane,47 which likely contributes to the leuco-
cyte attachment to the endothelium.

Several lines of evidence suggest that CD63 is functionally
involved in vascular cell adhesion. First, CD63 antibodies
inhibit monocyte and neutrophil adhesion to serum-coated
substratum and EC layer, respectively.53,54 Second, CD63
physically associates with several integrins such as a3b1,
a6b1, and aLb2,55,56 which are found in the vascular
system. Third, a CD63 mAb induces integrin aLb2-dependent
neutrophil adhesion to HUVEC, and integrin aLb2 is upregu-
lated in CD63-activated neutrophils so that these neutro-
phils become competent to bind HUVEC.56 Moreover, CD63
likely regulates cell migration based on the observations of
altered cell motility upon CD63 antibody treatment and
CD63 overexpression.57,58

Mechanistically, CD63 appears to regulate exocytosis at
the cellular level. For example, the Weibel-Palade bodies
in EC undergo exocytosis upon inflammatory stimulation
while an antibody to CD63 inhibits IgE-mediated release of
histamine in basophils.59 Although the activities of protein
phosphatases (such as receptor-linked tyrosine phosphatase
a), protein kinases (such as Src),56,60–62 and lipid kinases
(such as type II PI-4kinase) were detected in CD63 immuno-
precipitates, little knowledge has been gained in under-
standing the CD63-mediated signalling pathways. Recently,
CD63 was found to bind syntenin-1, a PDZ domain-containing
adapter protein.63 CD63 C-terminal cytoplasmic domains
and syntenin-1 PDZ domains are needed for the interaction
while the C-terminus of syntenin-1 stabilizes the inter-
action.63 Syntenin-1 retards CD63 internalization and the
deletion of the N-terminal 100 residues of syntenin-1 com-
pletely blocks CD63 internalization.63 In addition, CD63
associates with membrane-type 1 MMP (MT1-MMP) to facili-
tate its lysosomal degradation,64 functions as a cellular
receptor of tissue inhibitor of metalloproteinase-1
(TIMP-1),65 and interacts with H, K-ATPase b-subunit to
enhance its internalization.66

2.3 CD151
CD151 or Tspan24, originally identified as platelet-EC tetra-
span antigen 3 (PETA-3), is widely expressed in ECs, SMCs,
and epithelial cells, and in haematopoietic cells such as

platelets and megakaryocytes.67–69 CD151 shows stable and
stoichiometric association with laminin-binding integrins
a3b1, a6b1, a6b4, and a7b1 in a number of cell systems
and functions together with the integrins in a variety of cel-
lular processes.70–72 Much of the knowledge on biological
properties of CD151 and its associated integrins is gained
in the areas of cell motility,73–75 cell–cell adhesion,76–78

cell–ECM adhesion75,79 and tumour metastasis.74,80 In the
vessel wall, CD151 is expressed in the SMC-enriched
medial layer, fibroblast-enriched adventitial layer, and
endothelium. Although the expression of CD151 in athero-
sclerotic arteries appears to be increased when compared
with the normal arteries,81 precise regulatory role of
CD151 in SMC functions has so far not been investigated.

In cultured HUVEC, intracellular CD151 accounts for up to
66% of the total CD151 and is mostly localized to the endo-
somal/lysosomal vesicles. The cell surface CD151 in ECs is
localized at cell–cell junctions,41 a pattern also seen with
tetraspanins CD9 and CD81, which are the primary tetraspa-
nins associating with CD151.41,82 Remarkably, the tetraspa-
nin web formed by CD9, CD81, and CD151 on EC are
critical for proper adhesive function of ICAM-1 and
VCAM-1, and appropriate distribution of CD151 in the webs
on EC is required for lymphocyte transendothelial migration
and can strengthen the firm adhesion of lymphocytes during
extravasation.38 In addition, CD151 has been implicated to
regulate several essential functions of EC including
migration, invasion, and spreading.41,82,83

Accumulating evidence reveals that CD151 is an important
regulator of vasculogenesis and angiogenesis. First, CD151
regulates EC cable formation in in vitro Matrigel assays.82–84

Second, CD151 expression via viral vectors substantially
increases microvessel density in the rat ventricular myocar-
dium undergoing ischaemic infarction.85 Last, CD151 KO
results in mice defective in pathological angiogenesis as evi-
denced by in vivo Matrigel plug assays, corneal micropocket
and tumour implantation assays, and ex vivo aortic ring
assays.83 Despite these striking vascular abnormalities, the
physiological vascular morphogenic process appears to be
unaffected in CD151 KO mice.83

Mechanistically, studies in epithelial cells indicate that
CD151 associates with a3b1 integrin and regulates cell–cell
contact through organizing junctional complexes containing
cadherin, b-catenin, PKC, and PTPm.76,77 Also, CD151, like
its partner integrina6b4, is a constitutive component of hemi-
desmosomes,78 a major cell–matrix adhesion machinery in
epidermis. At the molecular level, CD151 promotes cell
adhesion strengthening mediated by integrin a6b1 and
potentiates the ligand-binding activity of integrin a3b1 by
stabilizing the activated conformation of this integrin.79,86

Intracellularly, CD151 expression leads to the PKC- and
Cdc42-dependent actin cytoskeletal reorganization, a
process critical for both adhesion and migration.76,77 In EC,
both overexpression and knockout studies indicate that
CD151 can upregulate eNOS, Akt, and Rac activities, which
are apparently needed for endothelial cell–cell adhesion and
angiogenesis.83,85 Endothelial CD151 also promotes the col-
lagenolytic activity and TEM association of MT1-MMP, an ECM
remodelling enzyme involved in angiogenesis.41 However,
the precise mechanisms of CD151 controlling EC adhesion,
migration, and angiogenesis remain largely unknown.

Within haematopoietic cells, CD151 expression is mostly
restricted to platelets, megakaryocytes, erythrocytes, and
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activated T lymphocytes.69,87,88 A C-terminal deletion
mutation of human CD151 presents with severe defects of
erythropoiesis,89 suggesting the connection between CD151
and the proper functioning of haematopoietic cells.
However, CD151-null mice are normal in the development
of haematopoietic cells and proliferation of T lympho-
cytes,90–92 CD151 appears to modulate cell adhesion in hae-
matopoietic cells such as the homotypic cell–cell adhesion
of erythroleukaemia and megakaryoblastic cells.87,91 In
human T lymphocytes, CD151 expression is transactivated
by Tax in response to human T cell leukaemia virus type 1
(HTLV-1) infection where CD151 promotes a5b1 integrin-
dependent adhesion to fibronectin in HTLV-1-positive T
cells.93,94 In addition, CD151 may also play a role in human
immunodeficiency virus type 1 (HIV-1) entry into macro-
phages. Recombinant soluble forms of the EC2 domains of
CD151 as well as tetraspanins CD9, CD63, and CD81 are
capable of inhibiting HIV-1 virion uptake perhaps by altering
the organization of CD4-HIV complexes within tetraspanin
web that are required for membrane fusion events.95

3. Function of tetraspanins in haemostasis
and thrombosis

3.1 CD9

Platelets express at least five different tetraspanin
members, CD9, CD151, CD63, TSSC6,11 and Tspan9,96 of
which CD9 has the highest surface expression. At 50 000–
80 000 copies per platelet, CD9 is approximately equimolar
with that of fibrinogen receptor integrin GPIIb/IIIa.97 CD9
in platelets is in a molecular complex with the GPIIb/IIIa
and other platelet membrane glycoproteins CD36,98

GPIb/V/IX complex, the integrin-associated protein (IAP),26

and with CD63.99 CD9 interactions with GPIIb/IIIa are dis-
rupted by strong non-ionic detergents such as Triton-X100,
and with the detergents such as digitonin that disrupt
tetraspanin–tetraspanin interactions.

All described anti-human CD9 monoclonal antibodies
(mAbs) bind in the EC2 region of CD9 and induce platelet
aggregation via FcgRII-mediated crosslinking mechanism.
Antibody ligation to CD9 results in activation of G proteins
leading to phosphoinositide hydrolysis and inhibition of
adenylate cyclase. These events mediated by phospholipase
C, required neither secreted ADP nor thromboxane gener-
ation.100 Due to the propensity of CD9 mAbs to actuate
FcgRII-dependent mechanisms, employing intact anti-CD9
IgG in functional assays has made understanding the specific
contribution of CD9 in platelets a challenge.101,102 Soluble
F(ab’)2 fragments to CD9 derived from intact mAbs do not
elicit such pro-aggreagtory response.103 However, immobi-
lized F(ab’)2 are capable of inducing dense granule release
and platelet aggregation, suggesting that immobilization
or direct clustering of CD9 contributes to initiation of a
platelet signal.104

Recent studies performed using monovalent Fab frag-
ments of CD9 mAbs reveal that engagement of CD9 with
Fab promotes aggregate stability and enhanced fibrinogen
binding to GPIIb/IIIa under threshold concentrations of ago-
nists.105 Similarly, recombinant protein corresponding to the
CD9 EC2 domain inhibits low-dose agonist induced platelet
aggregation (J. Kotha et al., unpublished observations).
Scanning electron microscopy with immunogold labelling

with CD9 mAb suggest that CD9 is enriched at the regions
of platelet–platelet contacts and is localized with the
GPIIb/IIIa in the alpha granules and pseudopodial process
of activated platelets.106 Confocal laser scanning
microscopy studies on platelets at various stages of spread-
ing reveal that in addition to high-density localization of CD9
to platelet–platelet contact sites, filopodial extensions show
markedly enhanced CD9 staining.105

Significance of CD9 in platelet function and haemostasis
has also been studied using CD9 KO mice model. Despite
being the most abundant tetraspanin on platelets, CD9
deficiency does not appear to alter agonist-induced platelet
aggregation or expression of the platelet activation marker,
P-selectin (F. Lanza, personal communication). Tail bleeding
assays suggest that CD9 KO mice have a decreased bleeding
tendency that is in total contrast with that of other tetra-
spanin KO models (CD151 and TSSC6). However, CD9 KO
platelets display an increased aIIbb3 activation without
changes in total levels of platelet aIIbb3. These results
point to CD9 as a repressor of integrin aIIbb3 activation in
platelets (F. Lanza, personal communication). The exact
role of CD9 in platelet function and haemostasis remains
elusive, and it is yet to be determined whether CD9 Fabs
or other agents that functionally perturb CD9 carry a
potential therapeutic value in regulating thrombosis and
haemostasis.

3.2 CD63

CD63 is a tetraspanin expressed abundantly in the platelets.
In contrast with CD9, CD63 is mostly localized to the dense
granules and lysosomes of resting platelets and redistributes
to platelet surface only upon platelet activation. Thus,
CD63, along with P-selectin, is routinely used as a surface
marker for platelet activation. CD63 is also expressed in
several megakaryocytic cell lines.107 As a constitutively
expressed protein in the platelet granules, CD63 was found
to be associated with the platelet storage pool deficiency
disorders such as the Hermansky–Pudlak Syndrome.108

Biochemical studies show that the surface translocated
CD63 preferentially complexes with the CD9- and GPIIb/IIIa-
containing multimeric complexes.109 A direct role for CD63
in the platelet granule release and in altering GPIIb/IIIa-
fibrinogen interactions remain to be determined. Immuno-
electron microscopy studies demonstrate that CD63 and
type II PI-4 kinase colocalize at both internal membranes of
resting platelets and filopodia of thrombin-activated
platelets.110

Antibody perturbation of platelets with anti-CD63 mAbs
exhibits incomplete spreading on fibrinogen and impairs
tyrosine phosphorylation of focal adhesion kinase (FAK).99

CD63 also modulates platelet spreading on the fibrinogen-
immobilized substratum in an integrin GPIIb/IIIa-dependent
manner.99 Despite these characteristics, perturbation of
CD63 function in platelets via mAbs does not alter platelet
adhesion and activation per se. Recent evidence from
CD63-null mice indicated CD63 is not required for platelet
development, activation, and adhesion to collagen under
shear flow and thrombus formation both in vitro and
in vivo. However, when compared with the wild-type,
CD63-deficient platelets consistently displayed slightly but
statistically insignificantly stronger responses in standard
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aggregation assay and reduced reversibility of aggregation
at the low and intermediate concentrations of agonist.111

3.3 CD151

CD151 is expressed in human as well as murine platelets. Like
CD9, CD151 also complexes with GPIIb/IIIa.91 However,
unlike CD9-GPIIb/IIIa complexes, CD151-GPIIb/IIIa inter-
actions are retained under stringent detergent conditions
such as 1% Triton X-100.91 Similar to CD9, certain mAbs
against human CD151 induce platelet aggregation via FcRgII-
mediated cross-linking mechanism.112 Despite having no
changes in GPIIb/IIIa expression, platelets from CD151 KO
mice have impaired GPIIb/IIIa outside-in signalling and
exhibit diminished spreading on fibrinogen and reduced for-
mation of filopodia.91 Other haemostatic anomalies in CD151
KO mice include delayed clot retraction and reduced
agonist-induced platelet aggregation response to collagen,
ADP, and PAR-4 agonist peptide.91 However, platelet
adhesion to immobilized fibrinogen and the alpha and
dense granules secretion by platelets appear to be unaf-
fected by CD151 deficiency.91

3.4 TSSC6 and Tspan9

TSSC6 or Tspan32 was shown to be expressed in murine
platelets. Platelets derived from the TSSC6 KO mice
exhibit unstable haemostasis (including increased tail bleed-
ing time, blood lost, rebleeding, and emboli), delayed clot
retraction, reduced spreading on fibrinogen, and reduced
aggregation to low dosages of PAR-4 agonist peptide and col-
lagen.113 Whether or not TSSC6 is expressed in human plate-
lets and has a functional role in human thrombosis and
haemostasis is yet to be determined. Tspan9 is a recently
identified platelet tetraspanin that selectively complexes
with the platelet collagen receptor, GPVI, and a6b1 but
not with adhesion receptors GPIb and GPIIb-IIIa.100 The
role of Tspan9 has not been determined.

4. Concluding remarks

Evolutionarily, tetraspanin expression is primarily restricted
to multicellular organisms,114,115 suggesting that their pri-
mordial function is in modulating intercellular interactions.
Functional association of tetraspanins with cell motility is
evident even in organisms such as fungi where a tetraspanin
homolog directs the formation of cellular protrusive struc-
ture that is important for fungal cell invasive activity.116 In
vascular tissue and platelets, tetraspanins clearly regulate
cell migration and intercellular interactions (Table 1).
Thus, a common theme for tetraspanin function in vascular
tissue appears to be the modulation of the adhesive and
migratory properties of cells. Another characteristic
feature for vascular tetraspanins is their localization in cel-
lular vesicles, suggesting that they regulate vesicle traffick-
ing and release events. For example, all four tetraspanins
discussed are either largely or partially localized in intra-
cellular granules or vesicles of platelets. Their translocation
to the cell surface upon activation correlates with the plate-
let aggregation. In addition, the vesicular trafficking of
CD151 regulates cell migration while EC movement is
likely involved in CD151-mediated neovascularization.15,83

Earlier studies have highlighted the importance of tetra-
spanins in the regulation of various vascular events.
Several critical questions emerge from the earlier obser-
vations. For example, how do tetraspanins coordinate
cell–matrix and cell–cell adhesions in vascular events?
How do tetraspanins coordinate motogenic and mitogenic
activities during vascular morphogenesis, remodelling, and
vascular injury response? What are the precise roles that
vascular tetraspanins play in vesicle trafficking and
release? How are the tetraspanins in vesicular compartments
connected to cell adhesion and migration? How important
are the intricate interactions within tetraspanin webs for
fine-tuning specific phenotypes of platelets, SMC, and EC?
Could tetraspanins serve as prognostic indicators for
vascular disease or as targets for drug therapy?

Table 1 The distribution, partners, and functions of vascular tetraspanins

Tetraspanin Cell type Protein interactions Specific functions

CD9 Smooth muscle cells a5b1 Migration, proliferation, signalling
a2b1
a3b1

Endothelial cells ICAM-1 Transendothelial migration of leucocytes
VCAM-1
a3b1

Platelets GPIIb/IIIa Aggregation, signalling
GPIb/V/IX

CD151 Smooth muscle cells Not done Not done
Endothelial cells Tetraspanins such as CD9 and CD81 Cell–ECM adhesion

Integrins such as a3b1, a6b1, and a5b1 Cell–cell adhesion
IgSF proteins such as ICAM-1 and VCAM-1 Cell migration
MT1-MMP Angiogenesis

Platelets GPIIb/IIIa Aggregation, spreading, adhesion to fibrinogen
Tetraspanins such as CD9

CD63 Smooth muscle cells Not done Not done
Endothelial cells vWF Vesicle trafficking
Platelets GPIIb/IIIa Spreading, signalling

Type II PI-4K
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To answer these outstanding questions, the challenges lie
in unraveling the functional associations of the tetraspanin
web, elucidating the specific signalling pathways that regu-
late cell phenotypes, and understanding the trafficking
mechanism of tetraspanins in vascular cells. Another key
issue to be addressed is the interpretation of the functional
data obtained from tetraspanin KO models as other tetra-
spanins can provide functional compensation.117 Whether
or not such mutual functional compensatory phenomena
contribute significantly to the overall cell phenotypes
observed in these models must be determined before a
specific function can be assigned to a tetraspanin.

Based on the fundamental nature of these outstanding
questions and key issues, we believe that the future progress
largely depends on the integrated approaches that combine
biophysical and high resolution imaging, signalling and
genetic, or in vitro and in vivo studies. Also, because of
the functional versatility of tetraspanins, their specific
effector functions may be unique to the vascular system.
Future directions will entail the extensive use of vascular
models to determine the exact mechanism of vascular tetra-
spanin function. Furthermore, given the importance of VSMC
in the pathogenesis of multiple vascular diseases, functional
analysis of tetraspanins in this understudied cell system is
predicted to be fruitful. Moreover, besides the tetraspanin
members discussed in this review, the expression character-
istics and functional roles of many novel and less studied
human tetraspanins in vascular system are largely unclear
and will become a major exploring area in the coming
years. Finally, translational research linking tetraspanins to
vascular pathology will provide useful insights into the dis-
covery of preventive measures, diagnostic markers, and
therapeutic agents for vascular diseases.
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