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Abstract

The influenza viruses contain a segmented, single-stranded RNA genome of negative polarity. Each RNA segment is
encapsidated by the nucleoprotein and the polymerase complex into ribonucleoprotein particles (RNPs), which are
responsible for virus transcription and replication. Despite their importance, information about the structure of these RNPs
is scarce. We have determined the three-dimensional structure of a biologically active recombinant RNP by cryo-electron
microscopy. The structure shows a nonameric nucleoprotein ring (at 12 Å resolution) with two monomers connected to the
polymerase complex (at 18 Å resolution). Docking the atomic structures of the nucleoprotein and polymerase domains, as
well as mutational analyses, has allowed us to define the interactions between the functional elements of the RNP and to
propose the location of the viral RNA. Our results provide the first model for a functional negative-stranded RNA virus
ribonucleoprotein complex. The structure reported here will serve as a framework to generate a quasi-atomic model of the
molecular machine responsible for viral RNA synthesis and to test new models for virus RNA replication and transcription.
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Introduction

The influenza A viruses belong to the family Orthomyxoviridae and

are genetically and antigenically heterogeneous. They are respon-

sible for annual epidemics of respiratory disease and represent an

important public-health problem [1]. All viral subtypes can be

found in their natural reservoir, that comprises several wild avian

aquatic and terrestrial species. From this reservoir, influenza viruses

can occasionally infect mammalian species, including man, by

either gene reassortment with already established mammalian

viruses or by direct adaptation [2], and thus produce a pandemic.

Since 1997, transmissions of avian H5N1 influenza viruses to

humans have originated hundreds of highly pathogenic infections

and generated fears for a new pandemic of unprecedented impact

[2,3]. The recent transmission of swine H1N1 influenza viruses to

humans could represent the first time that a new pandemic can be

followed on line (http://www.who.int/csr/disease/swineflu/en/

index.html). The genome of the influenza A viruses comprise eight

single-stranded RNA molecules of negative polarity with partially

complementary ends that form a closed structure. The native

ribonucleoprotein (RNP) particles are formed by the association of

these single-stranded RNAs to multiple monomers of nucleoprotein

(NP) and a single copy of the polymerase, a heterotrimer composed

by the PB1, PB2 and PA subunits [4,5]. Such RNPs are

independent molecular machines responsible for transcription and

replication of each virus gene. When analysed structurally by

electron microscopy, virion RNPs appear as flexible, supercoiled

structures [6,7]. The helical organization of the RNPs is determined

by the structure of the NP, as complexes of NP and unrelated RNA

also adopt helical structures [8], and purified NP can form RNP-like

helical particles in the absence of RNA [9]. The polymerase

complex binds the vRNA promoter, that is formed by the partially

complementary 59- and 39-terminal sequences [10–12], and

determines the superhelical arrangement of natural virus RNPs

[13]. Although the RNPs are the essential elements for virus

replication and gene expression, their structural analysis has been

hampered by their heterogeneity and flexibility. However, in vivo

replication of recombinant model-RNPs indicated that helical-,

elliptic- or circular-shaped structures could be generated with RNA

templates of diminishing lengths [14]. The clone 23 model-RNP,

which represents the smallest efficient replicon, was circular in

shape and showed sufficient structural rigidity to be analysed by

electron microscopy and image processing after negative staining

[15]. Here we report the purification of recombinant clone 23 RNPs

to near homogeneity and their structural analysis by cryo-electron

microscopy (cryo-EM). It is important to stress that the RNPs

analysed were the final products of in vivo replication, as no RNP

accumulation was observed when NP or polymerase negative

mutants were used for in vivo reconstitution. The final structure

shows a resolution of 12 Å for the NP and 18 Å for the polymerase

complex and represents the first structure of a functional influenza

virus RNP and indeed of the RNP from any negative-stranded

RNA virus.
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Results

Generation and purification of a model recombinant RNP
Previously, we used recombinant RNPs purified by successive

glycerol gradient centrifugation steps to analyse their structure by

electron microscopy of negative-stained samples [15]. To improve

the purity and yield of the RNP preparations, we used a PB2

subunit containing a His-tag at the C-terminus, a modification that

did not alter the in vivo replication activity of the RNPs, as

described previously [16]. The purification protocol involved an

optimised Ni-NTA-agarose affinity step, a gel-filtration chroma-

tography and a final concentration on a Ni-NTA-agarose resin.

Such procedure allowed the routine preparation of essentially

homogeneous and biologically active RNPs with a concentration

appropriate for structural analysis (Fig. 1A–E). Most of the cellular

contaminants could be removed in the first Ni-NTA column, while

active RNPs were concentrated (Fig. 1A, B). The remaining

contaminants were eliminated by gel filtration (Fig. 1E), a step in

which the signals for the polymerase and NP co-migrated with the

in vitro transcriptional activity (Fig. 1C, D). The purified RNPs

(Fig. 1E, frame) were concentrated by binding to and elution from

Ni-NTA-agarose (data not shown) and used for cryo-EM.

Cryo-electron microscopy structure of a model
recombinant RNP

To generate an initial model for reconstruction, a purified RNP

sample was stained with uranyl-acetate and imaged at 20u tilt in a

FEI Tecnai G2 field emission gun microscope. A total of 2035

particle images were employed to generate a three-dimensional

reconstruction using the SPIDER algorithms [17]. To generate a

three-dimensional reconstruction of frozen-hydrated RNPs, sam-

ples of purified RNPs (Fig. 1E, frame) were fast-frozen on holey-

grids and imaged in the same microscope. A total of 9571

individual particle images were selected from the micrographs

after CTF correction and used for refinement (see Fig. S1 for a

gallery of single particle images). Two independent refinement

processes were carried out, with and without imposing 9-fold

symmetry. The three-dimensional reconstruction obtained by

Figure 1. Generation and purification of a model recombinant
RNP. (A) Recombinant RNPs containing a 248 nt long genomic RNA
were generated and amplified in vivo as indicated under Materials and
Methods. The RNPs containing a His-tagged PB2 protein (RNPs) were
purified by chromatography on Ni-NTA-agarose and the eluted
fractions were analysed by Western-blot using anti-PA and anti-NP
antibodies. As control, untagged RNPs were generated and purified in
parallel (CTRL). (B) The eluted fractions shown in (A) were assayed by in
vitro transcription. (C–E) The eluted RNPs were separated on a
Sephacryl S300 column and the fractions were analysed again by
Western-blot (C) and in vitro transcription as above (D), as well as by
silver-staining (E). The position of molecular weight markers (MW) is
indicated to the left. The stars indicate the position of the polymerase
subunits (POL) and the nucleoprotein (NP). The frame indicates the
fractions chosen for electron microscopy analyses.
doi:10.1371/journal.ppat.1000491.g001

Author Summary

The influenza viruses cause annual epidemics of respira-
tory disease and occasional pandemics that constitute a
major public-health issue. The recent spillover of avian
H5N1 and H1N1 swine influenza viruses to humans poses a
serious threat of a new pandemic. These viruses contain a
segmented RNA genome, which forms independent
ribonucleoprotein particles including the polymerase
complex and multiple copies of the nucleoprotein. Each
of these ribonucleoprotein particles are replicated and
express the encoding virus genes independently in the
virus-infected cells. To better understand how these
processes take place we have determined the three-
dimensional structure of a model ribonucleoprotein
particle that only contains 248 nucleotides of virus RNA
but is biologically active in vitro and in vivo. The structure
shows a circular appearance and includes 9 nucleoprotein
monomers, two of which are associated to the polymerase
complex. Docking of the available atomic structures of the
nucleoprotein and domains of the polymerase complex
has permitted us to propose a quasi-atomic model for this
ribonucleoprotein particle and some of the predictions of
the model have been confirmed experimentally by site-
directed mutagenesis and phenotype analysis in vitro and
in vivo.

Cryo-EM Structure for an Influenza Virus RNP
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imposing 9-fold symmetry lacked information about the polymer-

ase complex but could achieve better resolution for the NP ring.

On the contrary, refinement without imposing symmetry allowed

reconstruction of the complete RNP particle but the resolution

obtained was significantly lower (Fig. S2).

The final structure is shown in Fig. 2 and Video S1, and

represents a composite map formed by the 7 NP monomers not

contacting the polymerase, that are derived from the structure

refined with symmetry, while the polymerase complex, as well as

the 2 adjacent NP monomers are derived from the volume refined

without symmetry. Therefore, the resolutions for either section of

the model are different: 12 Å for the NP ring and 18 Å for the

polymerase complex (Fig. S3). Each NP monomer consists of two

domains, an upper head domain and a centred body, which

contains a small mass protruding at the bottom. When represented

at the calculated threshold no massive contacts among the NP

monomers were apparent, suggesting that the interaction sites are

flexible or random coil chains. The polymerase complex is in

contact with two of the NP monomers, which lack apparent

interaction with each other (Fig. 2).

Docking defined subunit domains in the structure of the
polymerase complex

The structure of the polymerase complex resembles that

previously obtained by negative-staining [16,18], but has higher

resolution. A comparison between both structures allowed the

localisation of specific subunit domains, as defined earlier by

binding of monoclonal antibodies or tagging (Fig. 3A) and suggest

that the main NP-polymerase interactions are mediated by the

PB1 and PB2 subunits. These interactions are quite different in

intensity, the former being stronger than the latter (Fig. 2, Fig. S2

and Video S1). Docking the recently reported atomic structure of

the PA(C)-PB1(N) dimer [19,20] was consistent with its predicted

localisation (Fig. 3B) [16] and would suggests that the PB1 and PA

subunits account for the upper, bulkier section of the complex

while PB2 would be localised at the bottom region.

Docking the NP atomic structure in the NP ring
We also carried out a docking of the atomic structure of the NP

in the cryo-EM reconstruction. The handedness of the cryo-EM

map was determined on the basis of the correlation coefficient of

the NP atomic structure docked into the symmetrised volume. The

fitting assays were carried out with both handednesses, using either

volumetric or laplacian criteria. The maximum correlation

coefficients were 0.854 and 0.341 for volumetric and laplacian

tests, respectively. These values were 2 to 30% better for the

selected as compared to the alternative handedness. In addition,

another important consideration indicates that the selected

handedness is correct. In the atomic structure of the influenza

NP (pdb accession number 2IQH) there are some portions of the

molecule that are not defined. The connections between the loop

402–428 (which is involved in NP-NP interaction; see below) and

the body of the molecule could not be determined (sequence

A428-S438). The distance between these two amino acids in the

selected fitting was around 25 Å, compatible with a 10 amino

acids distance, whereas in the fitting performed in the structure

with the opposite handedness, these two amino acids were 41 Å

apart.

The result of the docking is shown in Fig. 4A and confirms the

quality of the structural model obtained. A good fit is observed

between the two domains described in the atomic structure and

the volume of the NP monomer. However, additional masses are

observed at the top and at the bottom of each NP monomer. It

could be argued that such additional masses arise as a consequence

of using an initial negative-stain model that was derived by

conical-tilting. However, we used the same image data set to carry

out a control refinement, using as initial model a 9-mer-ring

structure generated with the atomic model of the NP filtered to a

resolution of 30 Å, and the final model obtained was indistin-

guishable from that shown in Fig. 2 (data not shown).

Furthermore, the angular coverage of the images (Fig. S4) was

sufficient to exclude the missing cone as an explanation for this

extra volume. Thus, we feel that the additional masses detected in

the cryo-EM model of the NP monomers are bona fide.

We propose that the extra mass at the top of the NP monomer

corresponds to the protein sequences not solved in the crystal

structure [21] while that at the bottom may contain genomic

RNA. In fact, when decreasing threshold values were used to

represent the RNP volume, the additional mass at the bottom of

the NP was persistent, suggesting a high mass density (data not

Figure 2. Three-dimensional model of a recombinant virus mini-RNP. The final volume is a chimera containing the polymerase and two
adjacent NP monomers derived from a non-symmetrical volume and the rest of the NP ring derived from the symmetrical volume (see Fig. S2). (A)
Perspective view of the composite three-dimensional structure for the recombinant RNP. (B) Side views.
doi:10.1371/journal.ppat.1000491.g002

Cryo-EM Structure for an Influenza Virus RNP
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shown). To test the potential RNA-dependence of the RNP

structure, these were purified by affinity chromatography on Ni-

NTA-agarose, extensively treated with T1 and pancreatic RNAses

and analysed by gel filtration. The results are shown in Fig. 5A and

clearly indicate that the interaction between the polymerase

complex and the NP ring is highly RNA-dependent, as both

substructures could be separated after RNAse treatment. On the

other hand, the size of the template RNA before and after

digestion with RNAse was analysed and a resistant band of around

18 nt was apparent (Fig. 5B). Since an average content of 24 nt

per NP monomer has been determined [14], this result would

suggest that most of the template RNA is uniformly distributed

along the RNP structure and protected by association to the NP.

Docking of the atomic structure of the NP monomers into the

cryo-EM structure also allowed us to predict their interaction

interfaces. It was earlier proposed that interaction of the loop 420

(positions 402–428) with a neighbouring NP monomer would

account for NP polymerisation [21], but this was suggested on the

basis of the formation of a crystallographic trimer and no

functional data was reported. The interaction among NP

monomers is conserved in the NP docking presented here, with

the only need to alter the angle between NP monomers from about

120u in the crystal to 40u in the RNP volume (Fig. 4A). This

interaction interface would be more realistic, as no NP trimeric

structure has been described in natural virus RNPs, and would

imply a small change in the arrangement of the connections

between the loop and the body of the NP (positions 428–438 and

396–402). These connections are in any case highly flexible and

were not resolved in the atomic structure of the trimer [21].

Although such a flexible connection is not detectable in the cryo-

EM map at the threshold shown in Fig. 4A (s= 2.5), it is clearly

visible when the volume is represented at s= 1.5 (Fig. 4B, blue

arrow).

Functional relevance of the predicted NP-NP contact
sites

It is not clear whether the contacts between the NP monomers

observed in the atomic structure of the trimer would be strictly

conserved in the functional RNP nonameric structure. Hence we

mutated several of the positions in the loop, affecting either

conserved or non-conserved amino acids (Fig. S5), and tested the

biological activity of the RNP. The replication of a viral RNP does

not lead to a naked progeny RNA but rather a progeny RNP

structure and it is generally accepted that encapsidation of the

newly synthesised RNA by the polymerase complex and NP

monomers is coupled to RNA replication. Hence, if the mutations

were to affect the NP-NP interaction, a deficiency in RNP

replication would be expected. Thus we reconstituted in vivo mini-

RNPs by transfection of plasmids encoding the polymerase

subunits (of which PB2 as a His-tagged protein), a clone 23

template RNA and either wt or mutant NP, and purified them by

Ni-NTA-agarose chromatography. The accumulation of progeny

RNPs was determined by Western-blot using anti-NP antibodies

and represents the in vivo replication phenotype. Mutants R416A

and F412A were strongly affected in replication, whereas mutants

S413T, F420A, K422A and S423A behaved as wt (Fig. 6A, B and

Fig. S5). These results confirm the relevance of the interaction

between R416 in the loop and E339 in the connecting NP [21]

and suggest that residue F420 in the loop does not play an

important role in the interaction. On the other hand, the

phenotype of mutant F412A indicates that it is important for

viral RNA replication. To further analyse the phenotype of the NP

mutants generated, the amount of purified mutant RNPs

recovered by replication in vivo was determined by measuring

their in vitro transcription activity. The results of a typical

experiment are presented in Fig. 7A and average of two

Figure 3. Docking the atomic structure of PA-PB1 complex into the RNP structure. (A) The insert shows the three-dimensional model for
the virus polymerase complex present in the RNP as reported by Area et al. [16]. The handedness of the structure has been reversed as compared to
the one published, as indicated by the docking of the atomic structure of the NP (see Supporting online material). The location of specific domains in
the PB1 (green), PB2 (red) and PA (violet) subunits are indicated. A front-view of the polymerase present in the RNP cryo-EM structure is presented,
with the locations of the polymerase domains as inferred from the negative-stained model. (B) The same front-view of the polymerase is presented
with the docking of the PA(C)-PB1(N) dimer. The N-terminal PB1 peptide is indicated with an arrow and highlighted in green.
doi:10.1371/journal.ppat.1000491.g003

Cryo-EM Structure for an Influenza Virus RNP
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independent experiments is shown in Fig. 7B. These results are

consistent with the deficiency in the replication activity observed

for mutants R416A and F412A.

The replication-defective phenotype observed for these

mutants could be the consequence of a defect in their

homopolymerisation capacity. To analyse this possibility mutant

or wt NP were expressed by transfection in COS1 cells and total

extracts were analysed by gel-filtration after extensive RNAse

treatment. Under these conditions, wt NP formed large

complexes compatible with NP polymers. On the contrary,

mutant R416A, that was shown as negative in NP-NP

association [21], behaved as monomer (Fig. 8). The phenotype

of the other mutants correlated with their replicative activity in

vivo. Thus, mutant F420A behaved as wt while mutant F412A

showed an intermediate phenotype.

Discussion

In this report we have presented the three-dimensional structure

of an active influenza virus RNP, as determined by cryo-EM. In

fact, this represents the first structure of a biologically active RNP

from any negative-stranded RNA virus. Two technical develop-

ments have allowed this breakthrough: (i) the generation of

recombinant RNPs that are efficient replicons and have sufficient

structural rigidity [14] and (ii) the optimisation in the purification

protocols of RNPs amplified in vivo. As compared to full-length

virion RNPs, the structure reported here would represent a

minimal RNP in which the helical section has been deleted and

only the promoter region bound to the polymerase complex and

the terminal loop remains. The structure obtained for the

polymerase complex present in the RNP is compatible with those

reported earlier by negative-staining [16,18] and represents the

most accurate model for a complex polymerase of a negative-

stranded RNA virus thus far reported. The correlation with the

sites previously mapped [16] and the docking of the atomic

structure of specific domains permitted the rough localisation of

the polymerase subunits (Fig. 3). Unfortunately, the other

polymerase domains whose atomic structure is known [22–24]

are not large and conspicuous enough to allow unambiguous

docking in the cryo-EM structure.

The interaction among NP monomers was analysed by docking

of the atomic structure into the NP ring. The model obtained is

compatible with the interaction mode proposed earlier [21] and

further indicated that additional side-by-side interactions are now

possible due to the tighter packing of the monomers (see Fig. 4A,

black arrow). The relevance of the 420–428 loop in the NP-NP

Figure 4. Docking the atomic structure of NP monomers into the RNP model. (A) The atomic structure of NP [21] is represented within the
volume of the NP monomers derived from a reconstruction obtained imposing 9-fold symmetry. Upper and side views are presented. One of the
monomeric atomic structures is highlighted in blue to reveal the localisation of the connecting loop within the neighbouring monomer. The black
arrow points to the potential RNA connection among NP monomers. (B) Close-up view of three NP monomers represented at s= 1.5. Upper and
perspective views are shown. The blue arrow points to the connection between the NP monomers at the top of the molecules. The presumptive
connection of the NP head and the loop inserted in the neighbouring monomer is indicated by a dotted line.
doi:10.1371/journal.ppat.1000491.g004
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interaction was verified functionally: The contacts of amino acid

R416 and F412 are essential for replication, while amino acid

K422 does not appear to be important, in spite of being conserved

among type A and B viruses (Fig. S5). Previous biochemical studies

had shown that residue R416 is involved in NP-NP interaction

[25] and that both F412 and R416 were important for RNA

binding [26]. In view of the results presented here it is possible that

the RNA-binding defect detected might be secondary to the

homopolymerisation failure. In addition, the residue at position

412 appears to be important for the template activity of the RNP,

since mutation F412A specially affected the in vitro transcription

of mutant RNPs (compare Figs. 5 and 6).

Contrary to the N-RNA complexes in the Mononegavirales

[27,28], that contain 9 nucleotides associated to each N

molecule, we have estimated an average of 24 nucleotides per

NP monomer in influenza RNPs [14]. The structure of the RNP

presented here is compatible with the RNA-binding site being

located at the groove between the head and body domains in

the NP, as previously suggested [21,29]. Indeed, a connecting

mass is apparent in the appropriate position (see Fig. 3A, black

arrow) that could represent the template RNA in addition to

protein contacts. However, most of the RNA sequence present

in the RNP is resistant to extensive RNAse treatment and the

main protected fragment is around 18 nt long (Fig. 5). This

Figure 5. Probing the RNP structure by RNAse treatment. Recombinant RNPs were generated and amplified in vivo as described in Fig. 1.
After purification by affinity chromatography on Ni-NTA-agarose, the RNPs were treated with a mixture of pancreatic RNAse (1.2 mg/ml) and T1
RNAse (30 u/ml) for 30 min at room temperature. As a control, the purified RNPs were similarly incubated in the absence of any RNAse. (A) The RNPs
were filtered on a Sephacryl S300 column as indicated in Fig. 1 and each fraction was analysed by Western-blot using antibodies specific for NP or PA.
The position of NP and PA is indicated to the right. (B) The RNA present in the RNAse-treated or mock-treated RNPs was extracted, terminally labelled
with c-32P-ATP and analysed on a 12% polyacrylamide-urea denaturing gel. Labelled oligonucleotides of 42 and 18 nt in length were run in parallel
(M). The mobility of molecular weight markers is indicated to the right.
doi:10.1371/journal.ppat.1000491.g005
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would suggest that the template RNA is distributed uniformly

along the RNP structure, i.e. variations of the average value of

24 nt per NP monomer are small. Furthermore, the size of the

protected fragment (18 nt) is similar to the average assignment

of RNA per NP, suggesting that the template RNA associates to

several regions of the NP and could contribute to the extra mass

observed at the bottom of each NP monomer. In addition, the

N-terminal region of NP, which has been implicated in binding

to RNA by biochemical assays [30] and is not represented in the

atomic structure of the protein [21,29], could also contribute to

this extra mass.

In summary, we have reported the first structure of a

biologically active influenza RNP. This three-dimensional struc-

ture reveals the NP-NP interaction domain and will serve as a

framework to generate a quasi-atomic model of the molecular

machine responsible for viral RNA synthesis.

Materials and Methods

Biological materials
The origin of plasmids pGPB1, pGPB2His, pGPA, pGNP(po-

lyA) and pT7DNSRT clone 23, containing sequences derived from

the A/Victoria/3/75 influenza virus strain, has been described

[14,16,31]. The vaccinia recombinant virus expressing T7 RNA

polymerase (vTF7-3) [32] was provided by B. Moss. The origin of

antibodies specific for PB1, PB2 and PA has been described

[14,33,34]. Antibodies specific for NP were generated by

immunisation of rabbits with purified His-NP. The NP mutants

were generated by site-directed mutagenesis on pGNP(polyA)

plasmid using the Stratagene Quickchange kit and specific

oligonucleotides (sequences available upon request) and their

genotype was verified by sequencing.

Amplification and purification of recombinant RNPs
Recombinant RNPs containing the DNS clone 23 genomic

RNA (248 nt) were generated and amplified in vivo by

transfection of plasmids pGPB1, pGPB2His, pGPA, pGNP(polyA)

and pT7DNSRT clone 23 into vaccinia vTF7-3-infected COS1

cells as described previously [16]. For RNP purification, the

clarified cell extracts were incubated overnight at 4uC with Ni-

NTA-agarose resin in a buffer containing 50 mM Tris-HCl-

100 mM KCl-5 mM MgCl2-0.5% Igepal-20 mM imidazol-1 u/

ml RNAsin-EDTA-free protease inhibitors cocktail, pH 8. The

resin was washed with 80 volumes of 50 mM Tris-HCl-100 mM

KCl-5 mM MgCl2-0.5% Igepal-20 mM imidazol, pH 8 and 20

volumes of the same buffer containing 50 mM imidazol. Finally,

the RNPs were eluted with 50 mM Tris-HCl-100 mM KCl-5 mM

MgCl2-0.5% Igepal-150 mM imidazol, pH 8. The eluted RNPs

were filtered on a Sephacryl S300 column equilibrated with

50 mM Tris-HCl-100 mM KCl-5 mM MgCl2-0.5% Igepal-

20 mM imidazol, pH 8 and the peak RNP fractions were further

bound to Ni-NTA-agarose in 50 mM Tris-HCl-100 mM KCl-

Figure 6. Phenotype of RNPs with NP mutations in the NP-NP interaction site. Recombinant RNPs were generated and amplified in vivo
using either wt of mutant NP as indicated. After purification of progeny RNPs by pull-down with Ni-NTA-agarose, their accumulation was determined
by Western-blot with anti-NP antibodies. (A) Results of a representative experiment, including the analysis of total cell extracts (Input) and the
purified RNPs (RNPs). (B) Average and range of two experiments.
doi:10.1371/journal.ppat.1000491.g006
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5 mM MgCl2-0.5% Igepal-20 mM imidazol-1 u/ml RNAsin-

EDTA-free protease inhibitors cocktail, pH 8, washed once with

50 mM Tris-HCl-100 mM KCl-5 mM MgCl2-0.5% Igepal-

20 mM imidazol, pH 8 and eluted with 50 mM Tris-HCl-

100 mM KCl-5 mM MgCl2-0.3% CHAPS-150 mM imidazol,

pH 8.

Biochemical techniques
Western-blotting was performed as described [14]. Protein

silver-staining was carried out as indicated before [35]. To

determine the transcription activity of purified RNPs, samples

were incubated in a buffer containing 50 mM Tris-HCl-2 mM

MgCl2-100 mM KCl-1 mM DTT-10 mg/ml actinomycin D-1 u/

ml RNAsin-1 mM ATP-1 mM CTP-1 mM UTP-10 mM a-P32-

GTP (20 mCi/mmol)-100 mM ApG for 60 min at 30uC. The RNA

synthesised was TCA precipitated, filtered through a nylon filter in

a dot-blot apparatus and quantified in a phosphorimager.

To test the in vivo RNP replication, cultures of COS1 cells were

infected with vaccinia vTF7-3 and transfected with plasmids

pGPB1, pGPB2His, pGPA, pGNP(polyA) (or mutants thereof) and

pT7DNSRT clone 23. Total cell extracts were used for

purification by affinity chromatography on Ni-NTA-agarose as

indicated above and the accumulation of progeny RNPs was

determined by Western-blot with anti-NP-specific antibodies and

by measuring their in vitro transcription activity.

To determine the NP aggregation state, cultures of COS1 cells

were infected with vaccinia vTF7-3 and transfected with plasmid

pGNP(polyA) (or mutants thereof). Total cell extracts were

prepared, treated with 50 mg/ml of RNAse A for 2 hours at

room temperature and analysed by filtration over a Sephacryl

S300 column calibrated with ferritin (440 kDa) and BSA (67 kDa).

Figure 7. Replication in vivo of RNPs containing wt or mutant NP. The assay for in vivo replication was performed as described in Materials
and Methods and the legend to Figure 6. The concentration of RNPs after purification by affinity chromatography was determined by in vitro
transcription. (A) Results of a representative experiment, including the analysis of total cell extracts (Input) and the purified RNPs (RNPs). (B) Average
and range of two experiments.
doi:10.1371/journal.ppat.1000491.g007

Figure 8. Homopolymerisation of wt or mutant NP. The
aggregation state of wt or mutant NPs was determined by gel filtration.
Cultures of COS1 cells were transfected with plasmids expressing either
wt of mutant NP, as indicated, and total cell extracts were treated with
RNAse and filtered on a Sephacryl S300 column. The eluted fractions
were analysed by Western-blot with anti-NP antibodies. The position of
ferritin (440 kDa) and bovine serum albumin (BSA; 67 kDa) is shown on
the top of the Figure.
doi:10.1371/journal.ppat.1000491.g008
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Electron microscopy and image processing
For electron microscopy of negatively stained samples 4 ml

aliquots of purified RNPs were applied to glow-discharged carbon

grids for 1 min and then stained for 1 min with 2% uranyl acetate.

Low-dose images were taken on a 200 kV FEI Tecnai G2 Field

emission gun electron cryomicroscope operated at a nominal

magnification of 50 k at 20u tilt. A total of 2035 individual RNP

images were extracted and processed to generate an initial model

using the SPIDER software [17].

For cryoelectron microscopy, 5 ml aliquots of purified RNPs

were applied to glow-discharged Quantifoil holey grids for 2 min,

blotted and frozen rapidly in liquid ethane at 2180uC. Images

were taken with the same conditions as in the negative stain

experiments but without tilting. The selected micrographs were

scanned on a Zeiss scanner (Photoscan TD, Z/I Imaging

Corporation) with a final pixel size corresponding to 2.8 Å.

Contrast transfer function (CTF) of micrographs was estimated

using ctffind software [36] and corrected using Bsoft [37]. A total

of 9571 images were subjected to two independent refinements

with and without imposing 9-fold symmetry using SPIDER

software [17]. After reaching the convergence of these refine-

ments, the reconstructions yielded resolutions of 18 and 12 Å for

non-symmetrized and symmetrized structures, respectively (FSC

0.3 criterion). The final tilt range assigned in the refinement for the

whole set of individual images was checked (Fig. S5) and showed

an angular distribution where the effect of missing cone in the

reconstruction could be considered as negligible.

The absolute handedness of the volumes was determined using

the atomic structure of NP protein [21], and turned out to be the

opposite to that previously published [15,16]. Docking experi-

ments were carried out using SITUS software [38]. Finally, and to

verify the positions of the extra mass and the quality of the three-

dimensional reconstruction, an additional refinement was carried

out using as initial model the structure of the 9 NP-mer ring

resulting from the docking experiments, filtered at 35 Å. This

refinement yielded a reconstruction similar to the final structure

presented here, showing that the additional masses detected in the

cryo-EM structure protruding from the NP monomers are bona

fide. Volume handling was carried out using XMIPP software [39]

and general visualization was performed using Chimera [40] and

Amira (http://amira.zib.de). The cryo-EM map has been

deposited in the Electron Microscopy Data Bank (accession code

EMD-1603) and the fitted atomic structure in the Protein Data

Dank (accession code 2wfs).

Supporting Information

Figure S1 Gallery of images. (A) Examples of images derived

from negative-stained samples used to generate the initial model

for reconstruction. (B) Images derived from frozen samples. The

corresponding projections of the final volume are presented to the

left to help in the identification.

Found at: doi:10.1371/journal.ppat.1000491.s001 (2.60 MB TIF)

Figure S2 Three-dimensional models generated by refinement

with and without imposed 9-fold symmetry. (A) Volumes obtained

after refinement without imposed symmetry. (B) Volumes obtained

after refinement with imposed 9-fold symmetry. Images at the top

show upper views while images at the bottom are lower views of

the structures.

Found at: doi:10.1371/journal.ppat.1000491.s002 (3.90 MB TIF)

Figure S3 Determination of resolution. The Fourier shell

correlation is presented as a function of the normalised frequency

for the reconstruction imposing 9-fold symmetry (blue) or without

imposing any symmetry (red). The inverse of the corresponding

resolution is indicated below each frequency value. The green line

denotes the FSC = 0.3 cut-off.

Found at: doi:10.1371/journal.ppat.1000491.s003 (0.51 MB TIF)

Figure S4 Assignment of tilt in three-dimensional reconstruc-

tion. The distribution of final tilt assigned to the complete set of

images after refinement is presented.

Found at: doi:10.1371/journal.ppat.1000491.s004 (0.63 MB TIF)

Figure S5 Mutations to analyse the NP-NP interaction site. (A)

The atomic structure of influenza NP is shown in an orientation

appropriate to see the protruding loop present around position 420

in the sequence. The relevant amino acids in the loop are

highlighted. (B) The mutations introduced in the loop are

indicated, including those involving non-conservative changes in

conserved positions (in red) and conservative changes in non-

conserved positions (in black). (C) Alignment of the relevant

sequence for influenza viruses of the A, B and C types indicating

the same mutations indicated in panel B.

Found at: doi:10.1371/journal.ppat.1000491.s005 (1.60 MB TIF)

Video S1 Movie of the RNP structure.

Found at: doi:10.1371/journal.ppat.1000491.s006 (8.08 MB

MOV)
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10. González S, Ortı́n J (1999) Characterization of the influenza virus PB1 protein

binding to vRNA: Two separate regions of the protein contribute to the

interaction domain. J Virol 73: 631–637.

11. Lee MT, Klumpp K, Digard P, Tiley L (2003) Activation of influenza virus

RNA polymerase by the 59 and 39 terminal duplex of genomic RNA. Nucleic

Acids Res 31: 1624–1632.

Cryo-EM Structure for an Influenza Virus RNP

PLoS Pathogens | www.plospathogens.org 9 June 2009 | Volume 5 | Issue 6 | e1000491



12. Tiley LS, Hagen M, Mathews JT, Krystal M (1994) Sequence-specific binding of

the influenza virus RNA polymerase to sequences located at the 59-end of the
viral RNAs. J Virol 68: 5108–5116.

13. Klumpp K, Ruigrok RW, Baudin F (1997) Roles of the influenza virus

polymerase and nucleoprotein in forming a functional RNP structure. Embo J
16: 1248–1257.

14. Ortega J, Martı́n-Benito J, Zürcher T, Valpuesta JM, Carrascosa JL, et al. (2000)
Ultrastructural and functional analyses of of recombinant influenza virus

ribonucleoproteins suggest dimerization of nucleoprotein during virus amplifi-

cation. J Virol 74: 156–163.
15. Martı́n-Benito J, Area E, Ortega J, Llorca O, Valpuesta JM, et al. (2001) Three

dimensional reconstruction of a recombinant influenza virus ribonucleoprotein
particle. EMBO Reports 2: 313–317.

16. Area E, Martı́n-Benito J, Gastaminza P, Torreira E, Valpuesta JM, et al. (2004)
Three-dimensional structure of the influenza virus RNA polymerase: localization

of subunit domains. Proc Natl Acad Sci USA 101: 308–313.

17. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, et al. (1996) Spider and web:
processing and visualization of images in 3D electron microscopy and related

fields. J Struct Biol 116: 190–199.
18. Torreira E, Schoehn G, Fernández Y, Jorba N, Ruigrok RW, et al. (2007)

Three-dimensional model for the isolated influenza virus polymerase heterotri-

mer. Nucleic Acids Res 35: 3774–3783.
19. He X, Zhou J, Bartlam M, Zhang R, Ma J, et al. (2008) Crystal structure of the

polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature
454: 1123–1126.

20. Obayashi E, Yoshida H, Kawai F, Shibayama N, Kawaguchi A, et al. (2008)
The structural basis for an essential subunit interaction in influenza virus RNA

polymerase. Nature 454: 1127–1131.

21. Ye Q, Krug RM, Tao YJ (2006) The mechanism by which influenza A virus
nucleoprotein forms oligomers and binds RNA. Nature 444: 1078–1082.

22. Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, et al. (2008)
The structural basis for cap-binding by influenza virus polymerase subunit PB2.

Nat Struct Mol Biol 15: 500–506.

23. Tarendeau F, Boudet J, Guilligay D, Mas PJ, Bougault CM, et al. (2007)
Structure and nuclear import function of the C-terminal domain of influenza

virus polymerase PB2 subunit. Nat Struct Mol Biol 14: 229–233.
24. Tarendeau F, Crepin T, Guilligay D, Ruigrok RW, Cusack S, et al. (2008) Host

determinant residue lysine 627 lies on the surface of a discrete, folded domain of
influenza virus polymerase PB2 subunit. PLoS Pathog 4: e1000136.

doi:10.1371/journal.ppat.1000136.

25. Elton D, Medcalf E, Bishop K, Digard P (1999) Oligomerization of the influenza
virus nucleoprotein: identification of positive and negative sequence elements.

Virology 260: 190–200.

26. Elton D, Medcalf L, Bishop K, Harrison D, Digard P (1999) Identification of

amino acid residues of influenza virus nucleoprotein essential for RNA binding.

J Virol 73: 7357–7367.

27. Albertini AA, Wernimont AK, Muziol T, Ravelli RB, Clapier CR, et al. (2006)

Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313:

360–363.

28. Green TJ, Zhang X, Wertz GW, Luo M (2006) Structure of the vesicular

stomatitis virus nucleoprotein-RNA complex. Science 313: 357–360.

29. Ng AK, Zhang H, Tan K, Li Z, Liu JH, et al. (2008) Structure of the influenza

virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization,

and vaccine design. Faseb J 22: 3638–3647.

30. Albo C, Valencia A, Portela A (1995) Identification of an RNA binding region

within the N-terminal third of the influenza A virus NP polypeptide. J Virol 69:

3799–3806.

31. Perales B, Ortı́n J (1997) The influenza A virus PB2 polymerase subunit is

required for the replication of viral RNA. J Virol 71: 1381–1385.

32. Fuerst TR, Earl PL, Moss B (1987) Use of a hybrid vaccinia virus-T7 RNA

polymerase system for expression of target genes. Mol Cell Biol 7: 2538–2544.

33. Bárcena J, Ochoa M, de la Luna S, Melero JA, Nieto A, et al. (1994)

Monoclonal antibodies against influenza virus PB2 and NP polypeptides

interfere with the initiation step of viral mRNA synthesis in vitro. J Virol 68:

6900–6909.
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