
BioMed CentralBMC Evolutionary Biology

ss
Open AcceResearch article
Efficient context-dependent model building based on clustering 
posterior distributions for non-coding sequences
Guy Baele1,2,3, Yves Van de Peer*2,3 and Stijn Vansteelandt1

Address: 1Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281 S9, B-9000, Ghent, Belgium, 2Department 
of Plant Systems Biology, VIB, B-9052, Ghent, Belgium and 3Bioinformatics and Evolutionary Genomics, Department of Molecular Genetics, 
Ghent University, B-9052, Ghent, Belgium

Email: Guy Baele - guy.baele@psb.vib-ugent.be; Yves Van de Peer* - yves.vandepeer@psb.vib-ugent.be; 
Stijn Vansteelandt - stijn.vansteelandt@ugent.be

* Corresponding author    

Abstract
Background: Many recent studies that relax the assumption of independent evolution of sites
have done so at the expense of a drastic increase in the number of substitution parameters. While
additional parameters cannot be avoided to model context-dependent evolution, a large increase
in model dimensionality is only justified when accompanied with careful model-building strategies
that guard against overfitting. An increased dimensionality leads to increases in numerical
computations of the models, increased convergence times in Bayesian Markov chain Monte Carlo
algorithms and even more tedious Bayes Factor calculations.

Results: We have developed two model-search algorithms which reduce the number of Bayes
Factor calculations by clustering posterior densities to decide on the equality of substitution
behavior in different contexts. The selected model's fit is evaluated using a Bayes Factor, which we
calculate via model-switch thermodynamic integration. To reduce computation time and to
increase the precision of this integration, we propose to split the calculations over different
computers and to appropriately calibrate the individual runs. Using the proposed strategies, we
find, in a dataset of primate Ancestral Repeats, that careful modeling of context-dependent
evolution may increase model fit considerably and that the combination of a context-dependent
model with the assumption of varying rates across sites offers even larger improvements in terms
of model fit. Using a smaller nuclear SSU rRNA dataset, we show that context-dependence may
only become detectable upon applying model-building strategies.

Conclusion: While context-dependent evolutionary models can increase the model fit over
traditional independent evolutionary models, such complex models will often contain too many
parameters. Justification for the added parameters is thus required so that only those parameters
that model evolutionary processes previously unaccounted for are added to the evolutionary
model. To obtain an optimal balance between the number of parameters in a context-dependent
model and the performance in terms of model fit, we have designed two parameter-reduction
strategies and we have shown that model fit can be greatly improved by reducing the number of
parameters in a context-dependent evolutionary model.
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Background
The past decades have seen the rise of increasingly com-
plex models to describe evolution, both in coding and in
non-coding datasets, using a range of different inferential
methods of varying complexity. More accurate mathemat-
ical models of molecular sequence evolution continue to
be developed for good reasons. First, the additional com-
plexity of such models can lead to the identification of
important evolutionary processes that would be missed
with simpler models. Such discoveries may increase our
understanding of molecular evolution. Second, using
more accurate models may help to infer biological factors,
such as phylogenetic topologies and branch lengths, more
reliably. This may arise from the improved ability of those
complex models to account for factors that simpler mod-
els neglect and whose influence on observed data might
otherwise be misinterpreted [1].

Currently, the importance of modeling varying rates
across sites in recovering the correct tree topology is well-
known (see e.g. [2]). Acknowledging that the evolutionary
rate at different sites might differ may, however, not be
sufficient. Takezaki and Gojobori [3] used concatenated
sequences of all protein-coding genes in mitochondria to
recover the phylogeny of 28 vertebrate species. When the
tree was rooted by lampreys or lampreys and sea urchins,
the root of the vertebrate tree was incorrectly placed in the
maximum-likelihood tree even when accounting for vary-
ing rates across sites. The authors suggest the importance
of using the appropriate model for probabilities of substi-
tution among different amino acids or nucleotides, as well
as the assumption of varying rates across sites. Several
other studies confirm the importance of using appropriate
evolutionary models (see e.g. [4,5]).

In this article, we focus specifically on relaxing the
assumption of site-independent evolution, motivated by
the fact that a number of empirical studies have found this
assumption to be overly restrictive (e.g. [6-11]). Also the
detection of the CpG-methylation-deamination process
in mammalian data has given rise to many context-
dependent studies (for an overview of such so-called CpG-
related studies, studies using codon-based models, as well
as the empirical studies mentioned, see [12]). In our pre-
vious work [12], we have introduced a context-dependent
approach using data augmentation which builds upon
standard evolutionary models, but incorporates site
dependencies across the entire tree by letting the evolu-
tionary parameters in these models depend upon the
ancestral states at the two immediate flanking sites.
Indeed, once that ancestral sequences have been esti-
mated, the evolution of a given site across a branch is
allowed to depend upon the identities of its immediate
flanking bases at the start (i.e. the ancestor) of that
branch. The use of existing evolutionary models avoids

the need for introducing new and high-dimensional evo-
lutionary models for site-dependent evolution, such as
those proposed by Siepel and Haussler [13] and Hwang
and Green [14]. Indeed, using a general time-reversible
(GTR) model, which contains six evolutionary parameters
on top of the four base frequencies used in the model, for
each of the 16 neighboring base compositions results in a
total of 96 parameters (although the GTR model is often
regarded to have five free parameters, which results in 80
parameters instead of 96). This number of parameters
does not include the set of four stationary equilibrium fre-
quencies, which is assumed to be context-independent.
Using a Markov chain Monte Carlo approach with data
augmentation, one may then infer the evolutionary
parameters under the resulting model for a large genomic
dataset under a fixed tree topology. Previous analyses [12]
based on this model have revealed large variations in sub-
stitution behavior dependent upon the neighbouring base
composition.

The increase in dimensionality of such context-dependent
models warrants model reduction strategies [15] based on
merging similar evolutionary contexts. One approach is to
evaluate Bayes Factors [16] to compare models with and
without merged contexts. Here, the Bayes Factor is a ratio
of two marginal likelihoods (i.e. two normalizing con-
stants of the form p(Yobs|M), with Yobs the observed data
and M an evolutionary model under evaluation) obtained
under the two models, M0 and M1, to be compared
[16,17]:

Bayes Factors greater (smaller) than 1 suggest evidence in
favor of M1 (M0). In this paper, we will use log Bayes Fac-
tors, which are typically divided into 4 categories depend-
ing on their value: from 0 to 1, indicating nothing worth
reporting; from 1 to 3, indicating positive evidence of one
model over the other; from 3 to 5, indicating strong evi-
dence of one model over the other; and larger than 5, indi-
cating significant (or very strong) evidence of one model
over the other [16].

We have chosen to calculate Bayes Factors using thermo-
dynamic integration [18], since the harmonic mean esti-
mator of the marginal likelihood systematically favors
parameter-rich models. Thermodynamic integration is a
generalization of the bridge sampling approach and is
therefore often referred to as 'path-sampling' (see e.g. [19-
21]). Lartillot and Phillipe [18] present two methods to
calculate the Bayes Factor between two models. Using
their so-called annealing or melting approach one model
at a time is evaluated, resulting in a marginal likelihood
for each model. The ratio of these individual marginal
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likelihoods then yields a Bayes Factor. When this
approach yields marginal likelihoods with large error esti-
mates, the resulting log Bayes Factor can be inaccurate.
This can be avoided by using model-switch thermody-
namic integration, which directly calculates the log Bayes
Factor (Lartillot and Philippe, 2006). By construction, this
approach results in lower error estimates for the Bayes Fac-
tor and allows one to make use of the additivity property
of the logarithmic function to calculate Bayes Factors [22].

Unfortunately, building models based on Bayes Factor-
based model comparisons is not feasible because calculat-
ing Bayes Factors requires vast amounts of computation
time. In view of this, we reduce the number of model eval-
uations by proposing two schemes for clustering posterior
density estimates from different evolutionary contexts
(and thus for merging these contexts). To evaluate the fit
of the resulting model, a Bayes Factor must be calculated.
We propose 2 adaptations of the thermodynamic integra-
tion method proposed by Lartillot and Philippe [18] to
make this practically feasible. First, we show how the
Bayes Factor calculation can be performed in parallel
independent runs on different nodes in a cluster system,
thus greatly reducing the time needed to obtain results.
Second, we show that these independent runs can be
adjusted depending on the part of the integrand that is
being integrated to allow for more intensive calculations
in hard-to-evaluate parts of the integrand in the model-
switch integration procedure, resulting in more accurate
(log) Bayes Factor estimates.

Methods
Data
We analyze two datasets which we have discussed in ear-
lier work [12]. The first dataset consists of 10 sequences
from vertebrate species, each consisting of 114,726 sites,
and is analyzed using the following rooted tree topology
(((((Human, Chimpanzee), Gorilla), Orang-utan),
((Baboon, Macaque), Vervet)), ((Marmoset, Dusky Titi),
Squirrel Monkey)). We refer to this dataset as the 'Ances-
tral Repeats' dataset. The second dataset consists of 20
small subunit (SSU) rRNA genes (nuclear), consists of
1,619 sites for each sequence and is analyzed using the
50% majority rule posterior consensus tree obtained
under the general time-reversible model. This dataset con-
tains the following sequences: Cyanophora paradoxa, Neph-
roselmis olivacea, Chlamydomonas moewusii, Volvox carteri,
Paulschulzia pseudovolvox, Coleochaete orbicularis 2651,
Coleochaete solute 32d1, Coleochaete irregularis 3d2, Coleo-
chaete sieminskiana 10d1, Zygnema peliosporum, Mougeotia
sp 758, Gonatozygon monotaenium 1253, Onychonema sp
832, Cosmocladium perissum 2447, Lychnothamnus barbatus
159, Nitellopsis obtusa F131B, Chara connivens F140, Lam-
prothamnium macropogon X695, Arabidopsis thaliana and

Taxus mairei. We refer to this dataset as the 'Nuclear SSU
rRNA' dataset.

Evolutionary models
We have used the general time-reversible model (GTR;
[23]) to study site interdependencies, with the following
substitution probabilities:

with  = {A, C, G, T} the set of base frequencies and
rAC, rAG, rAT, rCG, rCT and rGT the evolutionary substi-
tution parameters. As in our previous work (Baele et al.,
2008), let  = {2A G rAG, 2A  C rAC, 2A T rAT, 2G C
rCG, 2G T rGT, 2C T rCT} be the terms of the scaling
formula that binds the parameters of the model and T be
the set of branch lengths with tb (tb  0) one arbitrary
branch length and  a hyperparameter in the prior for tb in
T. As in Baele et al. (2008), the following prior distribu-
tions q(·) were chosen for our analysis, with (.) the
Gamma function:

 ~ Dirichlet (1,1,1,1), q () =  (4) on

,

 ~ Dirichlet (1,1,1,1,1,1), q () =  (6) on

,

tb| ~ Exponential (),  for each tb in

T

and

 ~ Inv-gamma (2.1, 1.1), ,

 > 0.

Branch lengths are assumed i.i.d. given . When the
model allows for the presence of multiple contexts of evo-
lution, each context is assumed to have its own prior,
independently of other contexts.

As there are 16 possible neighboring base combinations,
we use a distinct GTR model per neighboring base compo-
sition, thus increasing the number of evolutionary con-
texts from 1 to16 for a full context-dependent model
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(Baele et al., 2008). The goal of this article is to reduce the
dimension of such a model in an accurate and computa-
tionally efficient manner, by sharing parameters between
contexts, which will improve the fit to the data. Note that
the independent GTR model will be used as the reference
model (i.e. the model to which all other models will be
compared) throughout the remainder of this paper.

Thermodynamic integration – split calculation
The split-calculation approach discussed in this section
can be skipped by the less technically-minded people.

Different context-dependent models can be compared in
terms of model fit with the independent GTR model by
calculating the appropriate (log) Bayes Factors. One may
use model-switch thermodynamic integration for this
purpose [18]. This is a computationally intensive
approach which yields reliable estimates for the (log)
ratio of the marginal likelihoods corresponding to two
models. Below, we explain how one can use a split calcu-
lation approach to make this integration procedure com-
putationally more tractable.

Suppose our goal is to calculate the Bayes Factor corre-
sponding to models M0 and M1 defined on the same
parameter space . The true data densities (conditional
on the parameter ) are denoted by

for the models Mi, i = 0, 1, where qi() denotes the joint
density of the observed data and the parameter , and

is a normalizing constant. The latter encodes the marginal
data density, which is needed in the calculation of the
(log) Bayes Factor. The key idea behind model-switch
integration is to translate the problem of integration w.r.t.
 into the relatively simpler problem of averaging over .
For this purpose, a continuous and differentiable path (q
())01 (with corresponding p () and Z ()) is chosen
in the space of unnormalized densities, joining q0() and
q1(), which thus goes directly from model M0 to model
M1. When  tends to 0 (resp. 1), p () converges point-
wise to p0 () (resp. p1 ()), and Z () to Z0() (resp.
Z1()). The log Bayes Factor of model M1 versus M0 can
now be calculated as the log-ratio [18]

where E [...] denotes the expectation with respect to 
under the density p (), and with U() the potential

This expectation E [U()]may be approximated with a
sample average once a sample of random draws from p
() is obtained using MCMC. The integration problem is
now simplified to the problem of integrating w.r.t. a scalar
parameter , which is relatively easily handled by numer-
ical approximation using the composite trapezoidal rule.

These calculations can be partitioned over a number of
computers upon rewriting the integral in expression (3) as

with 0 = 0 <1, < ... <n < 1 = n+1 dividing the interval
[0,1] into n subintervals with the number of MCMC-
updates of  in each subinterval resp. equal to chosen val-
ues K0, K1,..., Kn. For each value of , the Markov chain is
updated during a number of Q iterations (during which 
is held constant), after which  is increased (or
decreased). As in the work of Lartillot and Philippe [18],
each of these integrals can be calculated using the com-
posite trapezoidal rule to obtain the so-called quasistatic
estimator

for the mth subinterval, with m = m+1 -m, (i), i = p...r

(with ) the saved parameter draws. A

possible approach to calculate the quasistatic estimator is
thus to save the set of parameter values in the iteration
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before  is increased (or decreased), this way obtaining a

set of parameter values i for each value of  during the

transition of  from m to m+1. Calculating this quasi-

static estimator for each subintegral and adding yields the
following expression for the quasistatic estimator of

:

The obtained estimates of the log Bayes Factor are subject
to a discretization error (due to numerical integration)
and sampling variance (due to the limited number of
MCMC-draws used in the calculation of the expected
potential). Below we report on how to quantify these
errors under the split calculation algorithm proposed

above. The discretization error of  is char-

acterized by its worst-case upper (resp. lower) error which,

because E [U()] is monotone in , is given by the area

between the piecewise continuous function joining the

measured values of E [U()] and the upper (resp. lower)

step function built from them [18]. Both areas (i.e.
between both upper and lower step functions and the
continuous function) are equal to:

By splitting the calculation over different subintervals, we
obtain a sum of discretization errors, one for each integral,
which is given by

The sampling variance can be estimated by summing the
variances over the parallel chains

assuming independence between the successive draws
from the chain. The total error on the log Bayes Factor
equals  = d + 1.645 s, with s the square root of the
sampling variance [18]. In general, a sufficiently long
burn-in is necessary to obtain reliable estimates and low
error margins.

Data augmentation
Because of the computational complexity, Baele et al. [12]
use data augmentation for estimating the parameters of a
context-dependent model, whereby ancestral data are
repeatedly imputed. Indeed, the computational complex-
ity of using context-dependent models does not allow for
easy calculation of the observed data likelihood and
requires the use of a full (or complete) data likelihood to
make inference possible. As a result, each missing ancestor
in the tree needs to be provided with an estimated ances-
tral nucleotide in each iteration. This has implications for
the model-switch thermodynamic integration scheme,
which was developed for settings where inference is based
on the observed data likelihood [18]. In our approach, i.e.
data augmentation with model-switch thermodynamic
integration, the ancestral data can be shared between both
models (i.e. the imputations take identical values under
both models) and in that case must be part of the
unknown parameter . In particular, each ancestral "aug-
mented" site is imputed with a draw from a multinomial
distribution from the probability density p () since the
expectation E [U()] will be approximated with a sample
average of random draws from p () [18]. In our
approach, this probability density for the ancestral site i
has the following form (with Ymis, i representing the state
of the ancestor that is being augmented at site i, Ymis,-i rep-
resenting the set of states for all remaining ancestors, ri the
evolutionary rate at site i and  the current position along
the path between the two posterior distributions)
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Upon noting that p () = q ()/q (), expression (11)
yields

In our approach, we choose q (Ymis, {ri}, Yobs|M0, M1) =
(LX|M0)1-(LX|M1), implying that each ancestral "aug-
mented" site is imputed with a draw from a multinomial
distribution with probability

where LX|Mi is the complete data likelihood under model
Mi when X  {A, C, G, T} is the value augmented for the
considered ancestral site. This result in a probability for
each nucleotide to be inferred at a given site, with the four
probabilities summing to one. The ancestral sequences are
then updated sequentially, i.e. one site at a time, from top
to bottom in the considered tree and from the first site
moving along the sequence up to the last site, each ances-
tral site is updated during each update cycle.

When  equals 0 (1), the ancestral sequences are random
draws from the posterior distribution of Ymis under M0
(M1). At certain ancestral positions, this may result in
imputed values with small likelihoods under M1 (M0),
which in turn leads to larger differences between the log
likelihoods of the two models. Because of this, the contri-
butions of the model-switch integration scheme to the log
Bayes Factor are most tedious to calculate when  is close
to 0 and 1, which is why we use smaller update steps for 
in those situations. In the case of an observed data likeli-
hood, which involves summing over all missing ancestral
nucleotides, this situation does not occur.

Evolutionary rate augmentation
To accommodate varying rates across sites (or among-site
rate variation), we use a similar data augmentation

approach as before, which now additionally imputes evo-
lutionary rates in order to avoid summing the likelihood
over all the possible rate classes. Given a discrete approxi-
mation to the gamma distribution with n rate classes
(where n = 1 encodes the assumption of equal rates), the
rate ri at each site i for model M1 is updated by drawing
from a multinomial distribution with probability

where ri represents the rate of site i, which is being aug-

mented, r-i represents the set of rates for all remaining

sites,  represents the current position along the path

between the two posterior distributions, and  is

the complete data likelihood under the rates-across-sites

model M1 when X  {r1,..., rn} is the value imputed for the

considered missing rate. Note that, when comparing
model M1 with a model which assumes equal rates, only

the rate parameters indexing M1 need to be updated with

a new set of rates at each model-switch iteration in the cal-
culation of a Bayes Factor.

Context reduction
Our context-dependent model consists of 16 possibly dif-
ferent GTR models, one for each neighbouring base com-
position (a.k.a. 'evolutionary context'). In practice, it is
likely that the evolutionary processes are similar in a
number of neighboring base compositions, or that the
data are insufficiently informative to distinguish these.
This suggests reducing the model's dimensionality by
merging contexts, which may subsequently lead to evolu-
tionary models with reduced parameter uncertainty which
fit the data better than the independent model. Unfortu-
nately, the time-consuming calculation of Bayes Factors
makes exhaustive model search using Bayes Factors cur-
rently prohibiting. In view of this, we have sampled 1,000
values of each of the 96 parameters in our full context-
dependent model from the Markov chain every 50th itera-
tion after an initial burn-in of 50,000 iterations. On the
basis of the 1,000 values for each of the six parameters per
context, the first two principal components are calculated
and displayed in a scatterplot, thus resulting in 16 six-
dimensional clusters each consisting of one context.

The location of certain contexts in such a scatterplot may
indicate strong differences between some contexts, but
not between others, and may thus be informative of con-

p Y M M r Y Y

p Ymis ri Yobs M M

p

mis i i obs mis i



, ,, , , ,

, , ,

0 1

0 1

{ }( )
=

{ }( )
−

 Ymis ri Yobs M M
Ymis i A C G T

, , ,
, , , ,

.

{ }( )
∈{ }

∑ 0 1

p Y M M r Y Y

q Ymis ri Yobs M M

q

mis i i obs mis i



, ,, , , ,

, , ,

0 1

0 1

{ }( )
=

{ }( )
−

 Ymis ri Yobs M M
Ymis i A C G T

, , ,
, , , ,

.

{ }( )
∈{ }

∑ 0 1

Y M M r Y Y

LX M LX M

mis i i obs mis i, ,, , , , ,~P Y Xmis,i = { }( )

=
( ) − (

−0 1

0
1

1



 ))
( ) − ( )

∈{ }
∑

∈{ }



 
LY M LY M

Y A C G T

X A C G T

0
1

1
, , ,

, , , ,with

r M Y Y r

LX M

Lr M Lrn M

i obs mis i~P r X

~

i =( )
( ) −

( ) −
+ +( ) −

−1

1
1

1 1
1

1
1

, , ,






 ,

, , ,with X r rn∈{ }1 

L Mri 1
Page 6 of 23
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:87 http://www.biomedcentral.com/1471-2148/9/87
texts that can meaningfully be merged. However, this is
not always the case partly because information is inevita-
bly lost by considering only two principal components.
Using a scatterplot matrix of the first three principal com-
ponents might add information, but would still require
arbitrary decisions from the researcher on the clustering of
different contexts. In this section, we therefore propose
two algorithmic, automated methods for clustering con-
texts by progressive agglomeration. Each decision taken
by these algorithms is then confirmed by calculating the
corresponding log Bayes Factor.

A likelihood-based reduction approach
The parameters in each of the 16 neighboring base com-
positions can be described by a six-dimensional mean
with corresponding variance-covariance matrix. Assuming
a multivariate normal posterior density within each con-
text (which is asymptotically valid), a likelihood function
of all sampled parameter values can thus be calculated.
This initial likelihood is the starting point for our first
reduction approach, which uses the following iteration
scheme:

1. Reduce the number of contexts with 1 by merging 2
contexts. Calculate the likelihood of the correspond-
ing model. Repeat this for all pairs of contexts.

2. Select the highest likelihood obtained in the previ-
ous step, merge the two corresponding clusters and
recalculate the empirical mean and variance-covari-
ance matrix of the parameters corresponding to the
merged clusters. To make the calculations more feasi-
ble, we do not enforce to run a Markov chain for each
newly obtained model to infer new estimates of the
posterior means and variance-covariance matrices.

3. Iterate steps 1 and 2 until only one cluster remains.

Through the remainder of this work, we define a cluster as
the merge of two or more evolutionary contexts. As the
merging of clusters progresses, the likelihood will gradu-
ally decrease in value. This is expected as the parameter
estimates can be better approximated by context-specific
means and variance-covariance matrices instead of clus-
ter-specific means and variance-covariance matrices. Since
the likelihood only decreases (and additionally depends
on the chosen number of samples in an arbitrary fashion),
it cannot be used to determine the optimal number of
clusters/contexts. In terms of the (log) Bayes Factor, it is
typically expected that the model fit will first gradually
increase, reach an optimum, and then decrease. In each
step of the algorithm, we therefore calculate the Bayes Fac-
tor corresponding to the selected model. In principle, the
algorithm can be stopped when the Bayes Factors decrease
convincingly with additional context reductions.

In each step of the above algorithm, the number of param-
eters in the model decreases with 6. Since each step selects
the clustering which minimizes the decrease in log likeli-
hood, this approach is likely to detect a model with near-
optimal (log) Bayes Factor.

A graph-based reduction approach
While the parameter-reduction approach of the previous
section has a statistical basis, it is likely to yield models
with suboptimal fit. Indeed, the likelihood-based
approach systematically favors merging two separate con-
texts over merging a context with already merged contexts
(to build clusters with three or more contexts). Consider a
scenario of two proposed clusters, one already containing
two contexts and being expanded with a third context,
and one containing a single context and being merged
with another context. These two clusters will each have
one mean and one variance-covariance matrix to repre-
sent the parameter estimates. However, the three-context
cluster is not represented so easily with this reduced
parameterization due to the increased variance of the
three-contexts cluster. Such an increase in variance leads
to a drastic decrease of the likelihood which implies that
merging small clusters will tend to be preferred over
expanding existing clusters.

This artifact may be resolved by re-running a Markov
chain after each merge using the newly obtained model,
which will allow to re-estimate the posterior variance-cov-
ariance matrices needed to predict the next merge opera-
tion. However, this requires additional computational
efforts, making it much less suited for reducing the model
complexity. We thus propose the following graph-based
approach, which avoids the need for re-estimating the
posterior variance of each cluster by using the loglikeli-
hood difference between the 16-context model and each
15-context model as costs in a graph-based algorithm. It
requires one Markov chain run to predict all necessary
clustering steps, to determine a possibly more optimal
solution:

1. Calculate the likelihoods of all possible pair wise
context reductions (120 in total), starting from the ini-
tial clustering of each context separately (which
yielded the initial likelihood).

2. Use the difference between the newly obtained like-
lihoods and the initial likelihood as edge costs in a
fully connected undirected graph of 16 nodes. Similar
contexts will be connected by low-cost edges while dis-
similar contexts will be connected by high-cost edges.
The cost function then consists of the sum of each edge
that participates in a cluster (i.e. one edge for a cluster
of two contexts, three edges for a cluster of three con-
texts, six edges for a cluster of four contexts ...).
Page 7 of 23
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3. Sort the 120 likelihood differences, smallest differ-
ences first (each difference corresponds with a merge
of two clusters).

4. Using the sorted list, merge the clusters following
the order proposed by the list. If the proposed merge
is between two contexts which both have not yet par-
ticipated in a merge operation, proceed with merging
them and color the two nodes and the connecting
edge in the graph. If at least one of the contexts is
already colored in the graph, proceed with the merg-
ing of the clusters if the resulting fully interconnected
network in the graph (i.e. between the contexts to be
merged) yields the lowest value for the cost function
of the possible networks of similar structure (i.e. the
fully connected networks with an equal amount of
nodes) that have not yet been colored (see the Results
section for a practical example). If there is a lower-cost
alternative, do not merge the clusters and proceed
with the following entry from the list, until only one
cluster remains. The objective of this graph-based
approach is thus not simply to minimize the cost func-
tion, but to minimize the cost function conditional on
the proposed new clustering. This means that when a
proposed merge is accepted, it was the cheapest merge
possible between competing networks of similar struc-
ture.

This graph-based reduction approach has the advantage
that it does not need additional Markov chains to be run.
Given the costs of the various reductions and their order
to be evaluated in, determined in the first two steps, the
algorithm attempts to cluster those contexts closest to one
another, with the enforced constraints that only compet-
ing clusters of the same composition are compared. This
should result in larger clusters and thus possibly in larger
improvements of the model fit.

Results and discussion
The Ancestral Repeats dataset
Approaches Compared
To compare our Bayes Factor calculation approach with
the original approach of Lartillot and Philippe [18], we
have initially opted for a constant increment for  and an
equal number of Q updates for all the parameters and
ancestral sites to estimate the log Bayes Factor and its error
for the large Ancestral Repeats dataset. The results are
shown in Table 1 and in Figure 1. Thermodynamic inte-
gration requires a drastic increase in CPU time compared
to a plain posterior sampling under the more demanding
of the two models that are being compared [18]. This
requires running a chain for several days, up to several
weeks for more complex models (where mixing can be
more challenging). A single-run log Bayes Factor calcula-
tion with low accuracy (i.e. only Q = 200 updates for each

value of , with step size 0.001) of the full 16-contexts
model (GTR16C) against the independent GTR model
takes 42 days for one direction (i.e. either annealing or
melting) on a single computer, given the large number of
sites. More accurate settings for the model-switch integra-
tion will further increase calculation time and are in fact
necessary as the log Bayes Factor estimates in both direc-
tions, i.e. 592.7 and 693.6, are still far apart. In contrast,
our proposed approach yields very similar results in terms
of the log Bayes Factor estimates in both directions as can
be seen in Table 1. The calculation time for our approach
is reduced to 6 days on 10 cluster nodes and further reduc-
tions are possible since we opted for a lengthy burn-in
sequence of 10,000 iterations. Its only disadvantage lies in
slightly broader confidence intervals for the log Bayes Fac-
tor, which is an expected consequence of using several
independent chains.

As can be seen from Table 1, running 200 full chain
updates at each value of  works well only in the integra-
tion interval [0.1;0.9]. Indeed, the quasistatic estimates in
both directions produce very similar results when  is in
the interval [0.1;0.9]. However, as a result of the ancestral
data augmentation, the same settings for  should not be
applied when one of the models converges to its prior, i.e.
in the integration intervals [0.0;0.1] and [0.9;1.0] for , as
the ancestral sites imputed in those intervals converge
towards essentially arbitrary data for one of the models
and yield very small values for the log likelihood. This
makes it more difficult and time-consuming to yield sim-
ilar and reliable estimates for both directions of the
model-switch integration scheme. We have therefore
opted to split our calculations into 20 sections, each with
the same amount of chain updates (Q = 200), but using a
larger number of updates for  as the chain progresses
closer to one of the prior distributions. A referee remarked
that Lepage et al. [24] have used a sigmoidal schedule for
 to circumvent this problem.

The results for each of the subintervals and in each direc-
tion are reported in Tables 2 and 3. The log Bayes Factor
estimates in both directions are now 630.7 (95% CI:
[623.2; 638.2]) and 653.7 (95% CI: [645.5; 661.9]).
Given the magnitude of the increase in terms of model fit,
we have refrained from increasing the converging times in
order to obtain more similar confidence intervals and we
have taken the average of both estimates to be the result-
ing log Bayes Factor. Further, the width of the confidence
intervals has decreased from 35 to 15 log units, suggesting
that this approach also reduces the variance(s) of the log
Bayes Factor estimates.

Varying rates across sites and CpG effects
To determine the impact of assuming varying rates across
sites on the model fit, we calculated the log Bayes Factor
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comparing the independent GTR model with equal rates
to the GTR model with varying rates across sites using n =
4 discrete rate classes, as proposed by Yang [25]. The log
Bayes Factor equals 355.6, indicating a very strong prefer-
ence towards the varying rates across sites assumption
using four discrete rate classes. The mean estimate for the
shape parameter of the gamma distribution using four
rate classes equals 1.156 (Baele et al., 2008). Because four
rates classes may not be sufficient to approximate the con-
tinuous gamma distribution, we have gradually increased
the number of rate classes n as reported in Table 4. The log
Bayes Factor equals 354.3 for n = 5, 354.6 for n = 6, 354.4
for n = 7 and 356.0 for n = 8 rate classes. Increasing the
number of rate classes beyond n = 4 hence does not yield
important improvements in model fit.

The previous results show that allowing for varying rates
across sites drastically increases model fit compared to
assuming equal rates for all sites. Analysis of the data
using the context-dependent evolutionary model has fur-
ther shown that substitution behavior is heavily depend-
ent upon the neighbouring base composition [12]. A well-
known context-dependent substitution process is the 5-
methylcytosine deamination process (i.e., the CpG effect),
which has been the subject of several studies (see e.g. [26-
28]). We have calculated the log Bayes Factor of two dif-
ferent CpG effects. We have modeled the traditional CpG
effect where the substitution behavior of a site can differ
from the other sites when the 3' neighbor is guanine. The
mean log Bayes Factor for this model, which contains a
mere 12 parameters, equals 137.8 (annealing: [127.1;
141.0], melting: [137.0; 146.2]), a significant improve-

Model-switch integration for the Ancestral Repeats datasetFigure 1
Model-switch integration for the Ancestral Repeats dataset. Results for the two model-switch integration schemes: (a) 
annealing, i.e.  increases from 0 (independent GTR model) to 1 (GTR16C full context-dependent model) and (b) melting, i.e. 
 decreases from 1 to 0. The comparison between a single run (left) and a composite run using ten intervals (right) reveals 
almost identical log Bayes Factor estimates. The composite run yields a slightly broader confidence interval around the log 
Bayes Factor estimate.
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ment in terms of model fit compared to the independent
model. We have also modeled a CpG effect that is depend-
ent upon its 5' neighbor, i.e. those sites with guanine as a
3' neighbor are assumed to have a different substitution
behavior depending on the 5' neighbor. Such a model has
30 parameters and a mean log Bayes Factor of 157.8 when
compared to the independent GTR model (annealing:
[142.7; 155.0], melting: [159.6; 173.8]), i.e. this model is
preferred over both the model assuming the traditional
CpG effect and the independent model. However, the log
Bayes Factor of 642.2 attained by the full context-depend-
ent model (as compared to the independent GTR model)
suggests that many more complex evolutionary patterns
exist besides the CpG effect.

The likelihood-based reduction approach: results
Figure 2 shows the stepwise clustering of contexts with
corresponding log Bayes Factors reported in Table 5. The

Table 1: Comparison of single versus composite run Bayes 
Factor estimation.

Annealing Integration

 = 0.001 Integration interval Q.E. d s total error

Q = 200 0.00 – 0.10 -121.7 11.7 2.0 14.9
0.10 – 0.20 57.3 0.1 0.4 0.7
0.20 – 0.30 68.9 0.0 0.2 0.4
0.30 – 0.40 74.3 0.0 0.2 0.3
0.40 – 0.50 77.8 0.0 0.2 0.3
0.50 – 0.60 80.6 0.0 0.1 0.2
0.60 – 0.70 82.1 0.0 0.1 0.2
0.70 – 0.80 83.9 0.0 0.1 0.2
0.80 – 0.90 87.0 0.0 0.2 0.3
0.90 – 1.00 102.7 1.3 1.5 3.8

Total 0.00 – 1.00 592.9 13.2 4.9 21.3

Composite Run log Bayes Factor: 592.9
Composite Run Confidence Interval: [571.6; 614.2]

Single Run log Bayes Factor: 592.7. d = 13.4. s = 2.5.  = 17.6
Single Run Confidence Interval: [575.1; 610.2]

Melting Integration

 = 0.001 Integration interval Q.E. d s total error

Q = 200 1.00 – 0.90 121.7 8.2 3.3 13.7
0.90 – 0.80 87.5 0.0 0.2 0.3
0.80 – 0.70 84.5 0.0 0.1 0.2
0.70 – 0.60 82.7 0.0 0.1 0.2
0.60 – 0.50 80.8 0.0 0.1 0.2
0.50 – 0.40 77.9 0.0 0.2 0.3
0.40 – 0.30 74.5 0.0 0.2 0.3
0.30 – 0.20 69.1 0.0 0.2 0.4
0.20 – 0.10 58.1 0.1 0.4 0.7
0.10 – 0.00 -42.9 3.2 1.4 5.6

Total 1.00 – 0.00 693.8 11.7 6.2 21.9

Composite Run log Bayes Factor: 693.8
Composite Run Confidence Interval: [671.9; 715.7]

Single Run log Bayes Factor: 693.6. d = 12.3. s = 3.6.  = 18.3

Single Run Confidence Interval: [675.3; 711.9]

Comparison of single versus composite run Bayes Factor estimation 
reveals virtually identical log Bayes Factors, but tighter confidence 
intervals for the single run calculation, both in the annealing and 
melting scheme of the thermodynamic integration approach. A 
constant increment  (or decrement) of 0.001 was used for  with Q 
= 200 iterations for each value of . Q.E. is the quasistatic estimator 
for each (thermodynamic) integration interval with discrete and 
sampling error denoted by d and s, respectively.

Table 2: Split calculation for the annealing model-switch 
integration.

 Integration interval Q.E. d s total error

0.0001 0.00–0.01 -71.7 1.0 0.5 1.8
0.0001 0.01–0.02 -16.8 0.1 0.2 0.4
0.0002 0.02–0.04 -8.8 0.0 0.2 0.4
0.0002 0.04–0.06 0.8 0.0 0.2 0.3
0.0002 0.06–0.08 5.5 0.0 0.1 0.2
0.0002 0.08–0.10 7.9 0.0 0.1 0.2
0.001 0.10–0.20 57.3 0.1 0.4 0.7
0.001 0.20–0.30 68.9 0.0 0.2 0.4
0.001 0.30–0.40 74.3 0.0 0.2 0.3
0.001 0.40–0.50 77.8 0.0 0.2 0.3
0.001 0.50–0.60 80.6 0.0 0.1 0.2
0.001 0.60–0.70 82.1 0.0 0.1 0.2
0.001 0.70–0.80 83.9 0.0 0.1 0.2
0.001 0.80–0.90 87.0 0.0 0.2 0.3
0.0002 0.90–0.92 17.9 0.0 0.0 0.1
0.0002 0.92–0.94 18.0 0.0 0.0 0.1
0.0002 0.94–0.96 18.4 0.0 0.1 0.1
0.0002 0.96–0.98 19.1 0.0 0.1 0.2
0.0001 0.98–0.99 10.3 0.0 0.1 0.2
0.0001 0.99–1.00 18.1 0.3 0.5 1.1

Total 0.00–1.00 630.7 1.6 3.6 7.5

Composite Run log Bayes Factor: 630.7
Composite Run Confidence Interval: [623.2; 638.2]

Using a constant number of Q = 200 iterations per , the contribution 
of each integration interval to the Bayes Factor value was calculated 
on a separate processor. This leads to an improved approximation of 
the contribution for the intervals [0.0; 0.1] and [0.9; 1.0] and also 
decreases the width of the confidence interval from 42.6 to 15.0 The 
increment  was allowed to change and Q = 200 iterations were 
performed for each value of . Q.E. is the quasistatic estimator for 
each integration interval with discrete and sampling error denoted by 
d and s, respectively.
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full context-dependent model, consisting of 16 clusters
each containing one context (denoted GTR16C), is shown
by the white bar which corresponds to a log Bayes Factor
of 642.2 (as compared to the independent GTR model).
Each step of the algorithm yields a reduction of one con-
text, resulting in the light grey bars in Figure 2, which are
annotated with the new cluster structure that is being
formed at that step. For example: in the first step, i.e. the
reduction from 16 to 15 clusters (i.e. model GTR15C in
Table 5), the CXC and TXC contexts are merged, reducing
the number of parameters from 96 to 90. The log Bayes
Factor of this 15-context model over the GTR model
equals 669.2. In the second step, i.e. the reduction from
15 to 14 clusters (i.e. model GTR14C in Table 5), the GXG
and TXG context are merged, further reducing the number
of parameters to 84. While this 14-clusters model yields a
lower log Bayes Factor over the GTR model (665.9) than
the 15-clusters model, there is no reason to stop here as

this decrease may well be the result of sampling and dis-
cretization error on the Bayes Factor and thus more opti-
mal models might still be obtained by further context
reduction. After further reductions, our likelihood-based
reduction scenario yields an optimal clustering scheme for
the Ancestral Repeats dataset consisting of 10 clusters
(GTR10C; using a total of 60 parameters), as indicated by
the dark grey bar in Figure 2. This 10-clusters-model yields
a log Bayes Factor of 700.1 over the independent GTR
model. The 10 clusters are shown in Figure 3, which iden-
tifies 6 separate single-context clusters (for the evolution-
ary contexts AXA, AXG, CXA, CXT, TXA and TXT) and 4
clusters consisting of two or three contexts. A first cluster
contains 2 contexts: AXT and CXG, a second cluster con-
tains 3 contexts: AXC, GXC and GXA, a third cluster con-
tains 2 contexts: GXG and TXG, and a final cluster
contains 3 contexts: CXC, GXT and TXC.

The graph-based reduction approach: results
As predicted above, the likelihood-based reduction
approach favors small clusters. To confirm this assump-
tion, we have re-run a Markov chain using a context-
dependent model consisting of the optimal number of 10
clusters derived using the likelihood-based approach.
Using the parameter estimates from this model, we have
calculated the posterior variances of the (yellow) cluster
containing the AXC, GXA and GXC contexts and com-
pared them to the empirical variances obtained from
merging these three contexts but not re-running the chain.
The actual posterior variances were much smaller, equal-
ing merely between 3% and 24% of the empirical vari-
ances that were used. However, calculating these posterior
variances is practically not feasible for fast model building
because running a new Markov chain for the Ancestral
Repeats dataset takes about 4 days per run. Further, the
result of each run needs to be awaited to decide upon the
next step in the clustering algorithm, which greatly

Table 3: Split calculation for the melting model-switch 
integration.

 Integration interval Q.E. d s total error

0.0001 1.00–0.99 22.0 1.2 0.6 2.2
0.0001 0.99–0.98 10.2 0.0 0.1 0.2
0.0002 0.98–0.96 19.2 0.0 0.1 0.2
0.0002 0.96–0.94 18.5 0.0 0.1 0.1
0.0002 0.94–0.92 18.1 0.0 0.0 0.1
0.0002 0.92–0.90 17.8 0.0 0.0 0.1
0.001 0.90–0.80 87.5 0.0 0.2 0.3
0.001 0.80–0.70 84.5 0.0 0.1 0.2
0.001 0.70–0.60 82.7 0.0 0.1 0.2
0.001 0.60–0.50 80.8 0.0 0.1 0.2
0.001 0.50–0.40 77.9 0.0 0.2 0.3
0.001 0.40–0.30 74.5 0.0 0.2 0.3
0.001 0.30–0.20 69.1 0.0 0.2 0.4
0.001 0.20–0.10 58.1 0.1 0.4 0.7
0.0002 0.10–0.08 8.0 0.0 0.1 0.2
0.0002 0.08–0.06 5.6 0.0 0.1 0.2
0.0002 0.06–0.04 1.3 0.0 0.2 0.3
0.0002 0.04–0.02 -8.7 0.1 0.2 0.5
0.0001 0.02–0.01 -15.5 0.1 0.2 0.4
0.0001 0.01–0.00 -57.8 0.6 0.4 1.2

Total 0.00–1.00 653.7 2.3 3.6 8.2

Composite Run log Bayes Factor: 653.7
Composite Run Confidence Interval: [645.5; 661.9]

Using a constant number of Q = 200 iterations per , the contribution 
of each integration interval to the Bayes Factor value was calculated 
on a separate processor. This leads to an improved approximation of 
the contribution for the intervals [1.0; 0.9] and [0.1; 0.0] and also 
decreases the width of the confidence interval from 43.9 to 16.3. The 
decrement  was allowed to change and Q = 200 iterations were 
performed for each value of . Q.E. is the quasistatic estimator for 
each integration interval with discrete and sampling error denotes by 
d and s, respectively.

Table 4: Number of discrete rate classes when assuming varying 
rates across sites and the resulting increase in model fit 
obtained.

Model Contexts Annealing Melting log BF

GTR+G4 1 (7) [334.8; 348.4] [362.5; 376.7] 355.6
GTR+G5 1 (7) [334.1; 348.1] [360.4; 374.7] 354.3
GTR+G6 1 (7) [333.6; 347.8] [361.3; 375.7] 354.6
GTR+G7 1 (7) [332.9; 347.1] [361.6; 375.9] 354.4
GTR+G8 1 (7) [334.0; 348.0] [363.7; 378.3] 356.0

GTR 1 (6) - - 0

Starting from the default number of four rate classes for the discrete 
gamma approximation (GTR+G4), we have tested increasing numbers 
of rate classes. A minor improvement in model fit can be obtained by 
allowing for eight rate classes (GTR+G8), but such a small 
improvement may be due to discretization and sampling errors.
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increases the time needed to obtain an optimal context-
dependent model.

In view of this, the graph-based reduction approach was
designed. The decisions taken in the first 22 iterations are
shown in Table 6, with corresponding log Bayes Factors in
Figure 4 and Table 7. Starting from the full context-

dependent model (GTR16C in Table 7), each step of the
algorithm yields a reduction of one context, as shown by
the light grey bars in Figure 4 which are annotated as in
Figure 2. The first two reduction steps of the graph-based
approach are identical to those of the likelihood-based
approach. Further reductions show that fewer clusters are
constructed by instead expanding existing clusters. The

Stepwise likelihood-based clustering of the Ancestral Repeats dataFigure 2
Stepwise likelihood-based clustering of the Ancestral Repeats data. The stepwise clustering of contexts using the 
likelihood-based clustering approach shows, from top to bottom, the subsequent merges of contexts for the Ancestral Repeats 
dataset. The starting point is a full (96-parameter) context-dependent model, shown in white. The optimal model has 10 clus-
ters and 60 parameters.
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reduction to 13 clusters (GTR13C in Table 7), for exam-
ple, consists of merging the previously separated GXT con-
text with the cluster constructed in the first reduction step,
thus creating a new cluster with 3 contexts: CXC, GXT and
TXC.

To illustrate step 4 of the algorithm (see the Materials &
Methods section), we discuss the 5th step of the graph-
based reduction approach. The 4th iteration has yielded a
model allowing for twelve clusters: a first cluster consists
of four contexts (CXC, GXC, GXT and TXC), a second clus-
ter consists of two contexts (GXG and TXG) and ten other
clusters consist of a single context. To calculate the current
clustering cost, the cost of the branch connecting contexts
GXG and TXG (1064.87 units) is added to the cost of all
the interconnecting branches between the CXC, GXC,
GXT and TXC contexts (see Table 6): CXC-GXC
(1524.96), CXC-GXT (1925.79), CXC-TXC (872.10),
GXC-GXT (1940.97), GXC-TXC (1777.24) and GXT-TXC
(1300.93). The clustering in step 4 thus has a cost of
10,406.86 units. The proposed step in the 5th iteration to
expand the four-contexts cluster (CXC, GXC, GXT and
TXC) with a fifth context, i.e. AXC, then results in a cost of
20,124.32 units. However, expanding the four-context
cluster with CXA instead of AXC yields a cost of 19,423.12
units, as the CXA context lies reasonably close to all four
contexts whereas AXC lies mainly close to the GXC con-
text. Therefore, the four-context cluster is not expanded in
this 5th iteration.

After further reductions, the graph-based method yields a
different optimal model than the likelihood-based
approach for the Ancestral Repeats dataset. The optimal
clustering consists of 8 clusters (GTR8C; using a total of 48
parameters for the model) with a log Bayes Factor of 712.7
(see Table 7), thus yielding an improvement in model fit

Table 5: Stepwise context reduction for the Ancestral Repeats 
dataset using the likelihood-based approach.

Model Contexts Annealing Melting log BF

GTR16C 16 (96) [623.2; 638.2] [645.5; 661.9] 642.2

GTR15C 15 (90) [658.0; 672.1] [665.0; 682.0] 669.2
GTR14C 14 (84) [651.9; 668.4] [664.3; 678.9] 665.9
GTR13C 13 (78) [661.7; 675.9] [672.6; 686.4] 674.2
GTR12C 12 (72) [679.8; 694.7] [695.8; 714.7] 696.3
GTR11C 11 (66) [676.5; 692.7] [694.4; 709.7] 693.3
GTR10C 10 (60) [686.0; 700.1] [698.9; 715.5] 700.1
GTR9C 9 (54) [675.3; 689.0] [685.5; 701.1] 687.7
GTR8C 8 (48) [656.7; 669.7] [678.5; 695.6] 675.1

GTR 1 (6) - - 0

The stepwise context reduction for the Ancestral Repeats dataset 
using the likelihood-based clustering approach reveals an optimal 
model with 10 clusters (GTR10C). It attains a log Bayes Factor of 
700.1 (over GTR1C), which is a significant improvement over the full 
context-dependent model (GTR16C) that has 36 additional 
parameters. Further reducing the number of contexts decreases 
model fit.

Stepwise graph-based clustering of the Ancestral Repeats dataFigure 4
Stepwise graph-based clustering of the Ancestral Repeats data. The stepwise clustering of contexts using the graph-
based clustering approach shows, from top to bottom, the subsequent merges of contexts for the Ancestral Repeats dataset. 
The starting point is a full (96-parameter) context-dependent model, shown in white. The optimal model has 8 clusters and 48 
parameters.
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over the optimal clustering found by the likelihood-based
approach. This model is illustrated by the dark grey bar in
Figure 4. This model is reached in the 12th step in Table 6,
which corresponds to the graph coloring scheme shown
in Figure 5. The 8 clusters are shown in Figure 6, which
identifies 5 separate single-context clusters (for the evolu-
tionary contexts AXA, AXG, CXT, TXA and TXT) and 3
clusters consisting of two or more contexts. A first cluster
contains 2 contexts: AXT and CXG, a second cluster con-
tains 4 contexts: AXC, GXA, GXG and TXG, and a final
cluster contains 5 contexts: CXA, CXC, GXC, GXT, and
TXC.

We have concluded earlier (see Table 4) that using more
than four rate classes for the discrete approximation does
not yield clear improvements in model fit. Hence, we have
combined the optimal model, obtained with the graph-
based reduction approach, with the assumption of vary-
ing rates across sites using four rate classes. We have com-
pared this reduced model with varying rates across sites to
the full context-dependent model with varying rates
across sites (also with four rate classes). The full context-
dependent model yields a log Bayes Factor of 960.1

(annealing: [935.5; 959.4], melting: [690.9; 984.6]),
thereby clearly outperforming the full context-dependent
model with equal rates (with a log Bayes Factor of 642.2)
and the independent model with varying rates across sites
(with a log Bayes Factor of 355.6). Further, the optimal
model yields an even higher log Bayes Factor of 1029.8
(annealing: [1001.8; 1022.4], melting: [1037.0; 1058.1]),
thereby conserving the increase in model fit obtained with
equal rates (see Table 7).

Interpretation of the optimal model
The graph-based reduction approach yields the best per-
forming context-dependent model for the Ancestral
Repeats dataset, but the interpretation of the clustering of
neighboring base compositions is far from obvious. To
gain insight, we have studied the parameter estimates of
the GTR model for the 16 neighboring base compositions,
which have been reported and discussed in previous work
(Baele et al., 2008). In a first step, we try to determine why
the five contexts AXA, AXG, CXT, TXA and TXT are clus-
tered separately in the 'optimal' context-dependent
model. The AXA and AXG contexts have much higher rCT
parameter estimates than all other contexts. For the AXG

Table 6: Determining the reduction path for the graph-based reduction approach.

Step Context 1 Context 2 Log likelihood difference Performed Model

1 CXC TXC 872.10 YES GTR15C
2 GXG TXG 1064.87 YES GTR14C
3 GXT TXC 1300.93 YES GTR13C
4 CXC GXC 1524.96 YES GTR12C
5 AXC GXC 1750.50 NO
6 GXC TXC 1777.24 SKIP
7 AXT CXG 1868.77 YES GTR11C
8 CXC GXT 1925.79 SKIP
9 CXA GXT 1928.98 YES GTR10C
10 GXC GXT 1940.97 SKIP
11 GXA TXG 1961.01 YES GTR9C
12 AXC GXA 1964.73 YES GTR8C
13 GXA GXG 1973.80 SKIP
14 AXC CXG 1983.92 YES GTR7C
15 AXC TXG 2043.25 SKIP
16 CXA GXC 2047.72 SKIP
17 AXC GXG 2211.16 SKIP
18 CXG TXG 2302.08 SKIP
19 CXG GXG 2341.46 SKIP
20 CXG GXC 2343.32 YES GTR6C
21 AXC AXT 2352.48 SKIP
22 GXT TXA 2363.72 YES GTR5C

... ... ... ... ... ...

The graph-based reduction approach constructs the optimal model (GTR8C in Table 8) for the Ancestral Repeats dataset in 12 iterations (first 
column). The second and third column show which 2 contexts (or clusters) are proposed for merging; the fourth column shows the difference in 
log likelihood between the full 16-contexts model and the resulting 15-contexts model should only those 2 contexts given in the second and third 
column be merged; the fifth column shows the decision on the proposed merge (YES: the merge is performed; NO: the merge is not performed 
due to a lower cost alternative; SKIP: the merge is already present in the current clustering); the sixth column shows the resulting model when a 
merge operation is performed.
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context, this could be attributed to a CpG effect, condi-
tional on the preceding adenine. This might mean that,
for the AXA context, a non-CpG methylation process is
present although we are unaware of earlier reports of such
a process in the AXA context. In previous work (see [12]),
we already elaborated on the possibility of a TpA effect,
especially in the AXA context. Such an effect could occur
conditional on the preceding base, as is the case for the
CpG effect.

Non-CpG methylation is the subject of many discussions
in mammalian evolution. Woodcock et al. [29] reported
that 55% of all methylation in human spleen DNA could
be at dinucleotides other than CpG. In their analysis of
mammalian DNA, Ramsahoye et al. [30] found that
embryonic stem cells, but not somatic tissues, have signif-
icant cytosine-5 methylation at CpA and, to a lesser extent,
at CpT. However, high relative rates between C and T have
been observed in aligned gene/pseudogene sequences of
human DNA in the past [31]. The reason for the separate
clustering of the CXT and TXT contexts seems to be the
lower than average (and again, than all other contexts)
rCT parameter estimates (or the higher than average rAG
parameter estimates). When considering that the CXT and
TXT contexts can be found on the complementary strand
of the AXG and AXA contexts, this makes perfect sense.
This complementarity aspect is actually dominantly
present in Figure 6 when considering the green and red
clusters. Indeed, the green cluster contains contexts AXC,
GXA, GXG and TXG while the red cluster contains all the

complementary contexts, resp. GXT, TXC, CXC and CXA,
further augmented with GXC. This latter context, along
with the other symmetrical contexts (i.e. whose comple-
mentary context is the context itself) AXT, CXG and TXA
correspond to a zero first principal component in Figure
6. This first principal component has a loading of 0.73 for
the rAG parameter and -0.68 for the rCT parameter, with
loadings for the other parameters all below 0.03. Hence,
this principal component roughly measures the differ-
ences between the rAG and rCT parameter estimates. This
explains why most of the clustering patterns in Figures 3
and 6 are retrieved in the rAG and rCT parameter esti-
mates.

Only the separate TXA context cannot be explained using
the transition estimates. Because both the rAG and rCT
parameter estimates for this context are lower than aver-
age, the transversion estimates must be studied (see [12],
online supplementary material). The TXA context has the
highest rAT and rGT parameter estimates of all 16 contexts
and the rAC parameter estimates are also above average,
which seems to lead to a significantly differing evolution-
ary behavior when compared to all other contexts. This
observation reinforces our opinion that modeling differ-
ent substitution behavior of the transition parameters (as
is mainly the case when modeling CpG effects) cannot by
far account for the complexity of mammalian DNA evolu-
tion. Indeed, the separate clustering of the TXA context
suggests that modeling different substitution behavior of
the transversion parameters depending on the nearest
neighbors can increase model fit. This is supported by a
clear preference of the six-cluster model (GTR6C in Table
7), clustering TXA separately, over the five-cluster model
(GTR5C in Table 7), which includes TXA in a large cluster
with 11 other contexts.

We have already shown that modeling CpG effects, both
dependent and independent of the preceding base, does
not even come close to modeling a full context-depend-
ence scheme based on the flanking bases in terms of
model fit. The evolutionary patterns of sites with guanine
as the 3' neighbor can nonetheless be seen to lie close in
the principal components plot (see Figure 6). All four
occurrences lie in the lower left section of the plot, even
though only the GXG and TXG contexts are effectively
clustered together. This reinforces our finding that CpG
effects are only one aspect of context-dependent evolution
and that CpG effects are dependent of the preceding base,
with adenine being the most influential 5' neighbor
resulting in a separate cluster. In terms of the transition
parameter estimates, the CXG context has lower (higher)
rCT (rAG) parameter estimates than both GXG and TXG,
which explains why only GXG and TXG are clustered
together. Apart from a small difference in the rCG param-
eter estimates, both contexts are very similar in their

Table 7: Stepwise context reduction for the Ancestral Repeats 
dataset using the graph-based approach.

Model Contexts Annealing Melting log BF

GTR16C 16 (96) [623.2; 638.2] [645.5; 661.9] 642.2

GTR15C 15 (90) [658.0; 672.1] [665.0; 682.0] 669.2
GTR14C 14 (84) [651.9; 668.4] [664.3; 678.9] 665.9
GTR13C 13 (78) [664.9; 679.6] [676.4; 693.1] 678.5
GTR12C 12 (72) [673.3; 689.1] [685.3; 701.7] 687.4
GTR11C 11 (66) [682.3; 697.9] [693.5; 710.4] 696.0
GTR10C 10 (60) [677.5; 693.4] [697.5; 710.3] 694.7
GTR9C 9 (56) [693.7; 707.6] [710.4; 724.6] 709.1
GTR8C 8 (48) [699.3; 711.7] [712.4; 727.5] 712.7
GTR7C 7 (42) [686.5; 700.0] [705.1; 719.3] 702.7
GTR6C 6 (36) [650.6; 663.0] [651.2; 664.8] 657.4
GTR5C 5 (30) [641.4; 652.3] [639.2; 649.2] 645.5

GTR 1 (6) - - 0

The stepwise context reduction using our graph-based clustering 
approach reveals an optimal model with 8 clusters for the Ancestral 
Repeats dataset (GTR8C). It attains a log Bayes Factor of 712.7 (as 
compared to GTR1C), a significant improvement over the full 
context-dependent model (GTR16C) which has twice as many 
parameters. This model also outperforms the 10-clusters model 
determined by the likelihood-based clustering approach.
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Graphical representation of the graph-based context reduction approachFigure 5
Graphical representation of the graph-based context reduction approach. The graphical representation of the 
graph-based reduction approach illustrates the coloring scheme to build the different clusters (the complete graph figure was 
obtained using GrInvIn; see [34]). The edges are labeled with the step of the graph-based algorithm during which they were 
colored. Given the large number of vertices in the graph, there are many possibilities of merging contexts into clusters. The 
coloring of nodes and vertices in this figure reveals an optimum of 8 clusters for the Ancestral Repeats dataset: 5 separate dark 
grey clusters (each containing a single context: AXA, AXG, CXT, TXA and TXT) and 3 colored clusters. The green cluster 
contains 4 contexts: AXC, GXA, GXG and TXG, the yellow cluster contains 2 contexts: AXT and CXG, and the red cluster 
contains 5 contexts: CXA, CXC, GXC, GXT, and TXC.

Graphical representation of the graph-based optimal model for the Ancestral Repeats datasetFigure 6
Graphical representation of the graph-based optimal model for the Ancestral Repeats dataset. The optimal 
model for the Ancestral Repeats dataset, using the graph-based clustering approach, reveals 8 clusters: 5 separate grey clusters 
(each containing a single context: AXA, AXG, CXT, TXA and TXT) and 3 colored clusters. The green cluster contains 4 con-
texts: AXC, GXA, GXG and TXG, the yellow cluster contains 2 contexts: AXT and CXG, and the red cluster contains 5 con-
texts: CXA, CXC, GXC, GXT, and TXC.
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parameter estimates. The same goes for the AXT and CXG
contexts, which only differ in the rCG parameter esti-
mates. However, the cluster containing both GXG and
TXG also contains the GXA and AXC contexts, meaning
that this cluster (like all clusters determined) does not
contain all the contexts with either identical 5' or 3' neigh-
boring bases, i.e. the cluster containing GXG and TXG
does not contain the AXG and CXG contexts. The GXA
context differs from the GXG and TXG contexts in its
parameter estimates for rCT and rAC, and a small differ-
ence for rAT. The transversion estimates of the AXC con-
text yield no drastically differing observations when
compared to those of the other three contexts in the clus-
ter. The difference seems to lie in the transition parame-
ters, where the AXC context is observed to have decreased
rCT parameter estimates compared to the other contexts
in the cluster.

One cluster left for discussion is the one containing the
CXA, CXC, GXC, GXT and TXC contexts. Different from
those sites with guanine as the 3' neighbor, those sites
with cytosine as the 3' neighbor are clustered closer to one
another, with CXC, GXC and TXC being part of the same
cluster and thus only AXC being part of another cluster. In
other words, as is the case when the 3' neighbor is gua-
nine, those sites with adenine as their 5' neighbor are
positioned away from the other occurrences with the
same 3' neighbor. Apart from the rCG parameter esti-
mates, the different contexts show only small differences

in the parameter estimates. The CXA context has lower
rCG parameter estimates than the other contexts in the
cluster, which might explain why CXA is the last context
to be added to the cluster in the graph-based reduction
approach.

The Nuclear SSU rRNA dataset
The likelihood-based reduction approach: results
Given the larger increase in model fit brought about by
the graph-based reduction approach for the Ancestral
Repeats dataset, we have opted to test this method on a
previously analyzed nuclear small subunit ribosomal
RNA dataset [12]. As this dataset is much smaller than the
Ancestral Repeats dataset, calculation of the necessary log
Bayes Factors is much faster and does not require applying
our split calculation approach for the thermodynamic
integration method. Instead, we have used a larger
number of chain updates (Q = 1000) while increasing or
decreasing  by 0.001 throughout the whole integration
interval.

The starting point of the analysis of the nuclear SSU rRNA
dataset is different from that of the Ancestral Repeats data-
set in that the standard context-dependent model yields a
log Bayes Factor of -17.65 compared to the independent
GTR model (see Table 8), suggesting a large decrease in
terms of model fit of the context-dependent model. While
this could mean that there are no dependencies in this
dataset, it might also be the result of overparameteriza-
tion.

The first four reductions made by the likelihood-based
reduction approach yield a context-dependent model
with equal model fit to that of the independent GTR
model. Further reductions yield a context-dependent
model consisting of six contexts, which significantly out-
performs the independent model with a log Bayes Factor
of 19.62. This indicates that the true context-dependent
effects were initially undetectable due to the drastic
increase in parameters. As we show here, a careful model-
building strategy can unveil the important evolutionary
contexts, leading to an increased performance in terms of
model fit. This will become an even more important
aspect when modelling additional dependencies. The
stepwise clustering of contexts for the likelihood-based
clustering, in terms of the log Bayes Factor, can be seen in
Figure 7 and Table 8. The optimal clustering using this
likelihood-based reduction approach can be seen in Fig-
ure 8.

The extended likelihood-based reduction approach: results
Because the nuclear SSU rRNA dataset is relatively small,
it is feasible to re-estimate the evolutionary parameters
after each merge of contexts or clusters. This allows for a
more accurate calculation of the posterior variances for

Table 8: Stepwise context reduction for the nuclear SSU rRNA 
dataset using the likelihood-based approach.

Model Contexts Annealing Melting log BF

GTR16C 16 (96) [-21.25; -15.74] [-19.29; -14.31] -17.65

GTR15C 15 (90) [-17.17; -13.45] [-14.19; -10.30] -13.78
GTR14C 14 (84) [-14.05; -10.21] [-10.09; -5.13] -9.87
GTR13C 13 (78) [-11.07; -7.85] [-6.80; -3.42] -7.28
GTR12C 12 (72) [-2.61; 1.25] [-0.71; 3.31] 0.31
GTR11C 11 (66) [-0.11; 3.55] [0.62; 3.77] 1.96
GTR10C 10 (60) [-2.33; 1.28] [8.76; 13.06] 5.19
GTR9C 9 (54) [6.94; 10.27] [9.03; 13.94] 10.05
GTR8C 8 (48) [9.54; 12.82] [12.12; 16.21] 12.67
GTR7C 7 (42) [12.80; 16.45] [18.26; 22.96] 17.62
GTR6C 6 (36) [13.75; 16.89] [21.71; 26.13] 19.62
GTR5C 5 (30) [15.87; 18.89] [17.86; 22.19] 18.70
GTR4C 4 (24) [13.03; 16.88] [17.38; 20.71] 17.00
GTR3C 3 (18) [9.43; 12.63] [12.61; 15.66] 12.58
GTR2C 2 (12) [11.69; 15.19] [12.84; 16.58] 14.08

GTR 1 (6) - - 0

The stepwise context reduction using the likelihood-based clustering 
approach reveals an optimal model with six clusters for the nuclear 
SSU rRNA dataset (GTR6C). It attains a log Bayes Factor of 19.62 (as 
compared to GTR1C), a significant improvement over the full 
context-dependent model (GTR16C).
Page 17 of 23
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:87 http://www.biomedcentral.com/1471-2148/9/87
each cluster of contexts and may result in a different con-
text-dependent model. We call this approach the extended
likelihood-based reduction approach and compare its
results to the regular likelihood-based reduction
approach. Note that re-estimating a posterior variance
would take over four days of computation time in the
Ancestral Repeats dataset, which in turn would lead to
over sixty days of computation time in total until all Bayes
Factor calculations can be started.

As can be seen from Table 9, the extended likelihood-
based reduction approach yields an identical optimal
model as the simple likelihood-based reduction approach
although the path that both approaches take towards this
optimal model is different (data not shown). This illus-
trates that the simple approach may yield a good approx-
imation and that it is not always necessary to perform
tedious calculations to achieve a decent parameter-per-
formance trade-off. The approximation may become
poorer, however, as the clustered contexts are further apart
(because this increases the difference between empirical
and posterior variance of each cluster).

The graph-based reduction approach: results
In this dataset, the graph-based reduction approach yields
an optimal model with three clusters, containing only 18

parameters. The stepwise reduction, starting from the full
context-dependent model, can be seen in Figure 9, with
the corresponding log Bayes Factors for each step given in
Table 10. A representation of the optimal clustering sce-
nario is shown in Figure 10, where the three clusters can
be identified: a first (red) cluster containing the contexts
AXG, GXG and TXG, a second (yellow) cluster containing
the single context TXC and a large (green) cluster contain-
ing all remaining 12 contexts. The log Bayes Factor for this
model equals 16.55 when compared to the independent
model, which is just below the log Bayes Factor generated
by the optimal model using the likelihood-based reduc-
tion approach, although the two model performances are
not significantly differing from one another. Note how-
ever that the confidence intervals in both directions seem
to overlap more using the graph-based reduction
approach, resulting in higher accuracy for the calculated
log Bayes Factors.

Interpretation of the optimal model
The optimal model for the nuclear SSU rRNA dataset con-
sists of six clusters and has 36 parameters. The reasons for
this specific clustering scenario can be identified by con-
sidering the parameter estimates for the 96 parameters of
the model, as reported in earlier work [12]. The fact that
there is support for the presence of CpG effects in this

Stepwise graph-based clustering of the nuclear SSU rRNA dataFigure 7
Stepwise graph-based clustering of the nuclear SSU rRNA data. The stepwise clustering of contexts using the likeli-
hood-based clustering approach shows, from top to bottom, the subsequent merges of contexts for the nuclear SSU rRNA 
dataset. The starting point is a full (96-parameter) context-dependent model, shown in white. The optimal model has 6 clusters 
and 36 parameters.
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dataset only leads to the clustering of contexts AXG and
GXG while TXG is clustered with TXC and CXG with GXC.
The TXG context has higher estimates for the rGT param-
eter and its substitution behavior bears more resemblance
to that of TXC. The CXG context has much higher rAG esti-
mates compared to the AXG and GXG contexts, with the
highest rAG estimates for the CXA and CXT contexts
which are clustered together. The larger clusters are harder
to explain as there are more differences between the indi-
vidual parameters. For example, it can be seen that the
largest cluster has more or less average estimates for all six
parameters, although this is not the case for the rAT
parameter where the contexts with higher estimates are
clustered together with the exception of the TXC context.

Note that the increases in terms of model fit of these con-
text-dependencies (as expressed through the log Bayes
Factor) might seem less relevant in this dataset given the
drastic increase brought about by assuming varying rates
across sites, i.e. a log Bayes Factor of 499.10 units com-
pared to the independent GTR model (see [12]). In other
datasets (e.g. the Ancestral Repeats dataset), however, the
opposite is true. Hence, a context-dependent model might
also be useful for those datasets where no drastic increases
in terms of model fit are brought about by assuming var-
ying rates across sites, such as the frequently analyzed
dataset of six -globin pseudogenes [32] which origi-
nally appeared in the work of Miyamoto et al. [33].

Conclusion
In this work, we have introduced a parallelization of the
model-switch integration method, as proposed by Lartil-

Graphical representation of the likelihood-based optimal model for the nuclear SSU rRNA datasetFigure 8
Graphical representation of the likelihood-based optimal model for the nuclear SSU rRNA dataset. The optimal 
model for the nuclear SSU rRNA dataset, as obtained by both the likelihood-based and the extended clustering approach, has 
6 clusters: the red cluster contains 2 contexts: AXG and GXG, the green clusters contains 2 contexts: TXC and TXG, the light 
blue cluster contains 3 contexts: AXA, AXT and GXT, the yellow cluster contains 2 contexts: CXG and GXC, the purple clus-
ter contains 5 contexts: AXC, CXC, GXA, TXA and TXT, and the orange cluster contains 2 contexts: CXA and CXT.
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Table 9: Stepwise context reduction for the nuclear SSU rRNA 
dataset using the extended likelihood-based approach.

Model Contexts Annealing Melting log BF

GTR16C 16 (96) [-21.25; -15.74] [-19.29; -14.31] -17.65

GTR15C 15 (90) [-17.17; -13.45] [-14.19; -10.30] -13.78
GTR14C 14 (84) [-14.05; -10.21] [-10.09; -5.13] -9.87
GTR13C 13 (78) [-9.48; -6.19] [-7.70; -3.72] -6.77
GTR12C 12 (72) [-6.99; -3.70] [-3.84; -0.05] -3.62
GTR11C 11 (66) [-0.60; 2.92] [2.97; 7.62] 3.23
GTR10C 10 (60) [4.85; 8.77] [6.62; 11.95] 8.05
GTR9C 9 (54) [9.05; 12.46] [8.55; 13.02] 10.77
GTR8C 8 (48) [8.07; 11.26] [8.68; 12.44] 10.11
GTR7C 7 (42) [15.82; 19.60] [15.09; 21.19] 17.93
GTR6C 6 (36) [13.75; 16.89] [21.71; 26.13] 19.62
GTR5C 5 (30) [15.87; 18.89] [17.86; 22.19] 18.70
GTR4C 4 (24) [14.10; 17.69] [14.30; 18.90] 16.25
GTR3C 3 (18) [11.20; 14.99] [15.22; 18.24] 14.91
GTR2C 2 (12) [8.37; 11.57] [13.14; 17.04] 12.53

GTR 1 (6) - - 0

The stepwise context reduction using the extended likelihood-based 
clustering approach reveals the same optimal model with six clusters 
as the simple likelihood-based clustering approach for the nuclear SSU 
rRNA dataset.
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lot and Philippe [18], to accurately calculate Bayes Factors
for model comparisons on large datasets. The main
advantage of our approach consists of the ability to split
the calculations of the Bayes Factors over different com-
puters, to minimize the time to yield results at the cost of
only a slightly larger variation around the actual esti-
mates. Given the increase in computation power using
cluster computing during recent years, the ability to split
certain calculations over different computers is a valuable
aid in analyzing large datasets, such as the one studied in
this work. Using thermodynamic integration with bidirec-
tional checks, we have evaluated 28 models against the
independent GTR model for the Ancestral Repeats dataset,
a large dataset consisting of 10 sequences each containing
114,726 sites. As indicated by Lartillot and Philippe [18],
thermodynamic integration requires tremendous
amounts of CPU time.

Calculations for all the log Bayes Factors for the Ancestral
Repeats dataset reported in this work were split over 20
processors, using the settings shown in Tables 2 and 3.
Calculating one of these 20 integration intervals takes
about 5 days on an Intel Xeon 2.4 Ghz processor. Given
that bidirectional checks were performed and that 28

models were evaluated, this amounts to over 15 years of
computation time that was used to obtain the log Bayes
Factors and the corresponding confidence intervals for the
Ancestral Repeats dataset. Given the magnitude of the
improvements shown by our models, we did not have to
use the most stringent settings for the thermodynamic
integration method, which would obviously have
increased computational demands even more.

Using this split-calculation approach, we have shown that
significant improvements in terms of model fit (calcu-
lated through the use of Bayes Factors) of context-depend-
ent models are possible, by optimizing the performance-
parameter tradeoff. Indeed, standard context-dependent
models tend to estimate too many parameters, reducing
the amount of data present to estimate each pattern accu-
rately. Furthermore, many parameters in such context-
dependent models might be nearly equal to one another,
meaning that several parameters in the model may just as
well be replaced by one single parameter.

Using both our likelihood- and graph-based clustering
approaches, we have shown that evolutionary patterns in
the Ancestral Repeats dataset do not solely depend upon

Stepwise graph-based clustering of the nuclear SSU rRNA dataFigure 9
Stepwise graph-based clustering of the nuclear SSU rRNA data. The stepwise clustering of contexts using the graph-
based clustering approach shows, from top to bottom, the subsequent merges of contexts for the nuclear SSU rRNA dataset. 
The starting point is a full (96-parameter) context-dependent model, shown in white. The optimal model has 3 clusters and 18 
parameters.
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a similar identity of either the 5' or 3' neighboring base.
We have shown that even CpG effects depend upon the 5'
neighbor of the site under consideration and that many
more substitution patterns are present in the data, as the
CpG effect yields a much smaller increase in model fit
than the full context-dependent model. The clustering
results of our optimal context-dependent model,
obtained through our graph-based reduction approach,
confirm this finding. No cluster contains all four occur-
rences of the neighboring base combinations, conditional
on either 5' or 3' neighboring base. At most, three contexts
with either a similar 5' or 3' neighboring base are clustered
together, i.e. CXC, GXC and TXC appear in a cluster
together with CXA and GXT.

In contrast with the calculation for the Ancestral Repeats
dataset, each model comparison for the nuclear SSU rRNA
dataset could be performed in a single run of 5 days. Using
the likelihood- and graph-based reduction approaches,
we calculated all 15 reduction steps from the full context-
dependent model to the independent model and found
that the optimal clustering scheme contains six clusters.
The likelihood-based approach yields the largest improve-
ment in terms of model fit for this nuclear SSU rRNA data-
set and also overthrows the initial conclusion that a full
context-dependent model does not explain the data better
than an independent model. This clearly illustrates that
great care must be taken when building complex models
that contain many parameters. A similar conclusion can

be drawn for other context-dependent approaches (see
e.g. [13,14]) than the one used in this paper [12].

One might argue that the visualization of the different
contexts on a scatter plot (see Figures 3, 6, 8 and 10) along
with the credibility intervals for all the available parame-
ters of the context-dependent model (see [12]) provide
enough clues to determine an optimal clustering scenario.
While certain aspects of the optimal clustering scenario
may be retrieved through the use of visualization aids,
many other aspects of the clustering would then depend
upon subjective decisions, thereby reducing reproducibil-
ity. To avoid the need for subjective decisions and restric-
tion to the first two principal components, we have
presented two automatic approaches which we found to
yield better context-dependent models in a straightfor-
ward manner.

The approaches discussed in this work can be used with
different underlying evolutionary models. While we have
assumed context-dependent evolution using 16 different
GTR models in this work, we have assumed the equilib-
rium frequencies to be context-independent. In other
words, we assume a stationary equilibrium distribution
for the base frequencies. Such an assumption may be
overly restrictive and its relaxation in a context-dependent
framework may result in a larger increase in terms of
model fit at the expense of increased computation times.

Graphical representation of the graph-based optimal model for the nuclear SSU rRNA datasetFigure 10
Graphical representation of the graph-based optimal model for the nuclear SSU rRNA dataset. The optimal 
model for the nuclear SSU rRNA dataset, using the graph-based clustering approach, reveals only 3 clusters. The yellow cluster 
contains one single context: TXC, the red cluster contains 3 contexts: AXG, GXG and TXG and the green cluster contains all 
12 remaining contexts.

−4 −2 0 2 4

−
1

0
1

2

First principal component

S
ec

on
d 

pr
in

ci
pa

l c
om

po
ne

nt

AXA

AXC

AXG

AXT

CXA

CXCCXG

CXT

GXA

GXC

GXG

GXT

TXA

TXC

TXG

TXT
Page 21 of 23
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:87 http://www.biomedcentral.com/1471-2148/9/87
The computational complexity of the model selection
approaches presented in this paper may be reduced by
using a reversible jump MCMC (RJMCMC) approach
[35]. By designing appropriate trans-dimensional jumps,
flexible increases and decreases of the number of evolu-
tionary contexts can be implemented. Analyzing the pos-
terior distribution of the identities of the models that are
required can then identify the optimal combination of
contexts to be used in subsequent analyses.

Finally, the approaches discussed in this work can be
applied to a wider range of problems whereby decisions
on the equality of parameter values must be taken. For
instance, when assuming branch- or lineage-specific evo-
lutionary models (using the independence assumption),
the number of models may initially be too large as not
each branch or lineage may require a specific model dif-
fering from all other models present in the analysis.
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The stepwise context reduction using the graph-based clustering 
approach reveals an optimal model with 3 clusters for the nuclear 
SSU rRNA dataset (GTR3C). It attains a log Bayes Factor of 16.55 (as 
compared to GTR1C), a significant improvement over the full 
context-dependent model (GTR16C).
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