
INTRODUCTION
Human hepatocellular carcinoma (HCC) is considered 
the fifth most frequent malignancy worldwide and the 
third most common cause for cancer mortality with 
an increasing incidence in Asia and Africa, but also in 
industrial countries[1]. In more than 80% of  cases, a well-
defined etiology such as viral infection with hepatitis B- 
and C-viruses (HBV and HCV), aflatoxin B1 intoxication, 
chronic alcohol abuse, or hereditary diseases is associated 
with its development (Figure 1); however, clinical diagnosis 
of  HCC is difficult due to the lack of  reliable serum 
markers. Moreover, the therapeutic options for HCC 
patients are sobering due to the high angioinvasive capacity 
of  the tumor.

Although the underlying molecular mechanisms re-
sponsible for the development and progression of  HCC 
have not been completely delineated, it has become clear 
that aberrant activation of  growth factor signaling path-
ways is a pivotal event in hepatocarcinogenesis. Besides 
the hepatocyte growth factor (HGF)/MET, Wingless 
(Wnt/frizzled/β-catenin), transforming growth factor 
α (TGFα)/EGF-R, and transforming growth factor β 
(TGFβ)/TβR-signaling, dysregulation of  the evolutionary 
highly conserved insulin-like growth factor (IGF) pathway 
is critically involved in proliferation and anti-apoptosis 
of  HCC cells associated with uncontrolled tumor growth 
and chemoresitance[2]. In fact, based on its central regula-
tory position in tumor cell homeostasis, this signaling axis 
is considered a promising therapeutic anti-cancer target 
in many human malignancies. This review focuses on the 
molecular changes of  IGF-signaling detected in human 
HCC, animal model systems that underline the central role 
of  IGF-Ⅱ-signaling in hepatocarcinogenesis, as well as 
resulting therapeutic strategies for the treatment of  human 
liver cancer. 

Composition of the IGF-Pathway 
The key molecules in this pathway are the ligands IGF-Ⅰ 
and IGF-Ⅱ, IGF-binding prote ins ( IGFBP1-6) , 
membrane-associated receptors [IGF-Ⅰreceptor (IGF-IR), 
mannose-6-phosphate receptor/IGF-Ⅱ receptor (IGF-Ⅱ
R)], and insulin receptor substrates (IRS-1-6). 

IGF-Ⅰand IGF-Ⅱ are small, secreted molecules that 
are predominantly produced by the liver and which stimu-
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Abstract
Constitutive activation of the insulin-like growth factor 
(IGF)-signaling axis is frequently observed in human 
hepatocellular carcinoma (HCC). Especially the over-
expression of the fetal growth factor IGF-Ⅱ, IGF-Ⅰ
receptor (IGF-IR), and cytoplasmic downstream effec-
tors such as insulin-receptor substrates (IRS) contribute 
to proliferation, anti-apoptosis, and invasive behavior. 
This review focuses on the relevant alterations in this 
signaling pathway and independent in vivo  models that 
support the central role IGF-Ⅱ signaling during HCC 
development and progression. Since this pathway has  
become the center of interest as a target for potential 
anti-cancer therapy in many types of malignancies, vari-
ous experimental strategies have been developed, in-
cluding neutralizing antibodies and selective receptor ki-
nase inhibitors, with respect to the specific and efficient 
reduction of oncogenic IGF-Ⅱ/IGF-IR-signaling. 
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late different cell types in both an autocrine and paracrine 
manner. These factors display differing expression kinetics 
as the expression of  IGF-Ⅱ declines while the bioavail-
ability of  IGF-Ⅰincreases shortly after birth. Besides 
the transcriptional regulation (e.g. genomic imprinting of  
the igf-Ⅱ gene promotor), ligand bioavailability is further 
influenced by the presence of  IGFBPs in tissues and 
serum[3]. Secreted IGFBPs bind extracellular IGFs with 
affinities comparable to IGF-IR and therefore modulate 
ligand bioactivity. For instance, 70% of  IGF-Ⅱ is bound 
to IGFBP-3, which is the most abundant BP in serum[4]; 
however, depending on the cellular context, both inhibi-
tory as well as stimulatory effects of  IGFBPs on IGF-
signaling have been described. All IGFBPs are substrates 
for proteases and their bioavailability/bioactivity is regu-
lated by limited proteolytic cleavage with an impact on 
IGF-dependent physiological processes[5]. However, IGF-
independent biological effects under pathophysiological 
conditions have also been described for several IGFPBs[6].

The signaling of  IGF-Ⅰand IGF-Ⅱ is mediated by 
IGF-IR, a heterotetrameric protein (two α- and β-chains), 
which consists of  an extracellular ligand binding site and an 
intracellular tyrosine kinase domain. IGF-IR binds IGF-Ⅰ 
with 15- to 20-fold higher affinity than IGF-Ⅱ[7]. Ligand 
binding and receptor tyrosine kinase (RTK)-dependent 
phosphorylation of  intracellular substrates such as IRS and 
Src homology collagen (Shc) then lead to the activation 
of  the phosphatidylinositol 3-kinase (PI3-kinase)/protein 
kinase B (PKB/AKT)-axis and the Ras/mitogen activated 
protein kinase (MAPK)-pathway[8]. IRS proteins are a family 
of  six (IRS‑1 to IRS‑6) related adaptors that integrate and 
coordinate signaling of  the insulin receptor (IR) and also 
the IGF-IR. They are responsible for most of  the biological 
activities of  IGF‑IR[9].

In addition, IGF-Ⅱ (but not IGF-Ⅰ) efficiently binds 
and activates a distinct isoform of  the insulin receptor 
lacking exon 11 (IR-A)[10-12]. IR and IGF-IR are highly 
homologous RTKs (up to 84% in the tyrosine kinase 
domain and 100% at the ATP-binding site)[13], but there are 
substantial functional differences between both molecules: 
while both receptors exert metabolic effects, IGF-IR is 
anti-apoptotic, mitogenic, and it facilitates a malignant 
phenotype[14]. However, IR-A plays a central role not 
only in metabolic processes, but also in IGF-Ⅱ-induced 
migration in cells lacking IGF-IR[11]. These different 
biological effects are possibly based on ligand/receptor 
abundance, protein turnover or currently undiscovered 
peculiarities of  the distinct signaling axes. In addition, 
recent findings show that structural features in the domain 
governing ligand specificity do distinguish IGF-IR  
from IR[15].

In contrast, IGF-ⅡR which is structurally unrelated 
to IGF-IR, does not exhibit cytoplasmic kinase activity[16]. 
Although this receptor does not directly contribute 
to IGF-signaling, it regulates IGF-Ⅱ turnover and 
bioavailability through receptor-mediated endocytosis and 
subsequent degradation[17]. IGF-Ⅰand insulin cross-react 
very weakly with IGF-ⅡR and therefore are not regulated 
by its (inhibitory) activity[18].

IGF-Signaling in 

Hepatocarcinoge-nesis
Alterations in the IGF-signaling pathway have been 
described in several adult and pediatric human tumors 
such as Wilms tumors[19], as well as colon[20,21], lung[22], 
breast[23,24], and prostate cancer[25]. The reactivation of  IGF-

Figure 1  Schematic representation of human hepatocarcinogenesis. Human HCC usually develops on the background of a chronic liver disease (e.g. hepatitis, alcoholic 
liver disease, hemochromatosis). Dysplastic foci and dysplastic nodules are regarded as premalignant lesions preceding the development of HCC. In addition, “early” HCCs 
(< 2 cm, highly differentiated, non-invasive) are distinguished from fully developed HCCs (fast growing, invasive). However, human hepatocarcinogenesis represents a 
developmental continuum where a clear cut classification of a given lesion is often impossible. Increasing evidence suggests that aberrant IGF-Ⅱ expression represents an 
early event in hepatocarcinogenesis; however, comparable data are currently not available for IGF-IR, and IRS. Nevertheless, reactivation of the IGF-Ⅱ/IGF-IR signaling 
pathway seems to be a progression step in human liver cancer.
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signaling in HCC predominantly occurs at the level of  
IGF-Ⅱ expression, which is secreted by the tumor cells 
themselves, which is suggestive of  autocrine mechanisms 
of  stimulation[26,27]. This growth factor is highly expressed 
in the fetal liver and early after birth, but its expression is 
strongly reduced in adulthood in humans, mice and rats[28-30]. 
Several studies have shown elevated expression levels for 
IGF-Ⅱ in preneoplastic lesions (Dysplastic Nodules) 
and very high levels in HCC (Table 1, Figure 1), which is 
mainly based on aberrant activation of  the epigenetically 
regulated igf-Ⅱ promoters P1-P4[31]. Indeed, HCCs showing 
high level of  expression of  IGF-Ⅱ exhibit reconstitution 
of  the fetal type transcription pattern due to a loss of  
promotor-specific imprinting and hypomethylation[26,32-35]. 
Furthermore, viral proteins have been reported to facilitate 
IGF-Ⅱ overexpression in HBV- and HCV-associated 
HCCs. For example, the HBV-derived HBx protein and the 
HCV-derived core gene product induce IGF-Ⅱ expression 
through interaction with transcription factors activity such 
as Sp1 and Egr1[36,37]. In addition, the inactivation of  tumor 
suppressor genes such as p53 by aflatoxin-induced mutations 
in codon 249 increases IGF-Ⅱ expression through the 
formation of  transcriptional complexes[38]. 

Besides the direct transcriptional induction of  IGF-Ⅱ 
expression, additional mechanisms may contribute to el-
evated IGF-Ⅱ bioavailability in HCC cells. Firstly, reduced 
levels of  IGFBP-1, -2, -3, and -4 in HCCs were found to 
be associated with IGF overexpression[39,40]. These IGFBP-
based effects on IGF-concentration may be even more 
complex, since a reduced degradation of  IGFBPs by 
matrix-metalloproteinases (MMPs) was regulated by tissue 
inhibitors of  MMPs (TIMPs). The regulation of  TIMP-1, 
which is repressed in many HCCs, is associated with chang-
es in IGF-Ⅱ abundance[41,42]. Secondly, the downregulation 
or inactivation of  IGF-ⅡR theoretically leads to increased 
concentrations of  IGF-Ⅱ based on insufficient internali-
zation and degradation. Here, the reduced expression of  
IGF-ⅡR, the loss of  heterozygosity (LOH) at the igf-Ⅱr 
gene locus, homozygous deletions, and missense mutations 
with an impact on ligand binding have been described with 
respect to HCCs[43-49]. However, other studies did not de-
tect any genetic alterations at the igf-Ⅱr locus, which may 
be due to methodological and population-based differenc-
es[50-52]. Moreover, few studies described elevated IGF-ⅡR  
levels in HCCs[53,54]. Independent of  the underlying mo-
lecular mechanism, IGF-Ⅱ overexpression denominates a 
group of  HCCs with fewer tumor infiltrating lymphocytes, 
a lower apoptosis rate[55] and extrahepatic metastasis[56]. 
Thus, serum IGF-Ⅱ availability was proposed as a tumor 
marker discriminating HCC from cirrhosis[57].

IGF-Ⅰ- and IGF-Ⅱ-mediated signaling may occur 
through IGF-IR and IR holoreceptor dimers as well as 
through IGF-IR/IR hemireceptor complexes[58,59]. Particu-
larly IGF-Ⅱ has been shown to efficiently activate both 
IGF-IR and IR-A. However, our own results suggested that 
the presence of  IR was not essential for IGF-Ⅱ-mediated 
oncogenic properties in liver tumor cells, since efficient 
siRNA-dependent inhibition of  IR (all isoforms) did not 
lead to changes in proliferation, apoptosis, or migration 
in HCC cells (unpublished data). Therefore, in HCC cells 
IGF-IR is the relevant receptor for protumorigenic IGF-Ⅱ  

signaling. This finding is supported by the fact that IGF-IR 
is highly expressed in many human malignancies and that 
only IGF-IR-signaling is crucial for oncogenic transforma-
tion and tumor cell survival[60]. Indeed, while IGF-IR levels 
were constitutively low in normal hepatocytes, IGF-IR was 
overexpressed in HCC and HCC cell lines (Table 1). Just as 
it was observed for elevated IGF-Ⅱ expression, viral-based 
molecular mechanisms and mutational inactivation of  tu-
mor suppressor genes caused IGF-IR overexpression: HBV-
derived HBx protein as well as p53 mutations in codon 249 
induce IGF-IR[61,62], suggesting that these protumorigenic 
events modulate several IGF-pathway constituents such as 
IGF-Ⅱ and IGF-IR to reach maximal (oncogenic) signaling  
efficiency.

Lastly, IRS-1, -2, and -4 are overexpressed in most 
HCCs (Table 1). So far, most analyses are reported for 
IRS-1, showing that elevated IRS-1 levels mediate anti-
apoptosis[63], tumor cell growth[64], and mitosis[65]. Further, 
it has been found that the HCV-derived core protein 
reduced IRS-1 expression in HCC cell lines[66]. To our 
knowledge, no molecular mechanisms responsible for the 
elevated IRS-1 expression (e.g. other viral proteins) have 
been described so far. Whether other IRS family members 
serve identical functions in HCC cells has not yet been  
analyzed.

In summary, several lines of  evidence suggest a 
‘multi-hit’ model for the oncogenic activation of  IGF-
Ⅱ signaling in HCC. Firstly, the sum of  protumorigenic 
events detected in HCCs (e.g. increased IGF-Ⅱ, IGF-
IR, and IRS bioavailability) indicates the potential for 
multiple hits in one single tumor. Secondly, viral proteins 
and the inactivation of  tumor suppressor genes induce 
several IGF-Ⅱ pathway constituents. Although increased 
bioavailability of  IGF-Ⅱ appears to be the dominant 
mechanism in human hepatocarcinogenesis, many hits in 
this pathway may be necessary to obtain full malignant 
competence. 

Animal Models
The pivotal oncogenic function of  IGF-Ⅱ-signaling 

Table 1  Expression of IGF-(Ⅱ) signaling axis constituents in 
human HCC

Signaling constituent                             Dysregulation (%)

IGF-II 9.2[117]

22.5[26]

25.6-60[118]

66.7[54]

40[119]

100[120]

50[121]

14[55]

IGF-IR 7-78[117]

40[53]

IRS-1 46.7[53]

100[122]

IRS-2 53.3[53]

86[123]

IRS-4 46.7[53]
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in hepatocarcinogenesis is supported by several animal 
models. Transgenic mice expressing IGF-Ⅱ (20-30-fold 
increased levels in serum) develop hypoglycemia and many 
types of  malignancies, which are most frequently HCC[67]. 
In contrast, overexpression of  IRS-1 is associated with in-
creased DNA-synthesis, but liver tumor development was 
not detected[68]. In knockout model systems the disruption 
of  the igf-Ⅱr gene leads to elevated IGF-Ⅱ levels; but 
since these animals exhibit lethal organ abnormalities (e.g. 
organomegaly), no further studies concerning liver tumor 
development have been carried out[69-71].

In addition to these IGF-pathway-specific transgenic 
and knockout animals, additional models, initially not in-
tended for the examination of  the IGF-axis, supported 
the functional relevance of  especially dysregulated IGF-
Ⅱ in hepatocarcinogenesis. Both mice with liver-directed 
expression of  SV40T-Ag or HBV presurface gene prod-
ucts (preS1 and preS2) developed HCCs, which is associ-
ated with a high level of  IGF-Ⅱ expression[72]. Moreover, 
transgenic mice overexpressing the woodchuck hepatitis 
virus/c-MYC[73], c-MYC[74], and TGFα[75] developed HCCs 
accompanied by elevated IGF-Ⅱ expression in the tu-
mors. Equally, liver tumors in p53-null animals exhibited 
increased amounts of  IGF-Ⅱ as compared to normal lit-
termates after delivery of  polyoma virus middle T antigen 
(PyMT)[76]. 

Cross-breeding experiments underlined the importance 
of  IGF-Ⅱ-signaling in hepatocarcinogenesis. Interbreed-
ing of  IGF-Ⅱ knock-out mice with SV40T-Ag animals 
resulted in a reduced frequency (up to 15-fold) and size 
of  liver tumors as compared to animals only expressing 
the oncogene[77], suggesting an important role of  IGF-
Ⅱ-signaling in tumor progression. This anti-tumorigenic 
effect for IGF-Ⅱ-deficiency in tumor models was sup-
ported by similar results in animals expressing SV40T-Ag 
in Langerhans cells showing widely identical results[30]. In 
a more indirect approach, TIMP1 overexpression reduced 
IGF-Ⅱ-driven HCC development in SV40T-Ag transgenic 
animals based on reduced tumor cell proliferation and 
vascularization[41,78,79]. However, it is also noteworthy that 
mice expressing the c-MYC oncogene and which are defi-
cient for IGF-IR only showed a marginally reduced HCC 
incidence compared to animals expressing the oncogene 
alone[74]. 

The functional connection between the viral infection 
of  hepatocytes and IGF-Ⅱ abundance was supported 
by studies utilizing the woodchuck model system. After 
woodchuck hepatitis virus (WHV) infection, a high level 
of  IGF-Ⅱ expression was detected in precancerous wood-
chuck liver and in up to 45% of  HCCs, which correlates 
with repressed viral DNA replication and n-MYC expres-
sion in early precancerous lesions[34,80]. Further studies re-
vealed that IGF-Ⅱ availability protected from n-MYC-in-
duced apoptosis especially under serum-free conditions[81]. 
Therefore, the selection for cells with high IGF-Ⅱ levels 
may rescue a more unfavorable tumor phenotype and 
therefore promote tumor progression. Lastly, a reactiva-
tion of  IGF-Ⅱ expression in experimentally induced liver 
tumors using different chemical substances (3’-Me-DAB, 
2-AAF, DENA) has been described in rats[82-84].

These data clearly show that IGF-Ⅱ overexpression 
and intactness of  the IGF-Ⅱ/IGF-IR pathway is also 
a common event in murine liver tumor development, 
independent of  the underlying molecular mechanisms 
(e.g. oncogene activity, regeneration processes, chemically 
induced carcinogenesis)[72]. 

Therapy 
IGF-Ⅱ is highly expressed during prenatal develop-
ment and early after birth but levels rapidly decline in 
adulthood[28,29]. Since IGF-Ⅱ signaling is frequently re-
activated in human hepatocarcinogenesis, inhibition of  
this pathway unlikely affects normal liver function under 
physiological conditions and therefore represents a favo-
rable therapeutic strategy. Several techniques have been 
developed to modulate the activity of  IGF-(Ⅱ) signaling 
in different tumor cell types[85]. Many approaches, such 
as neoexpression of  dominant-negative receptor mutants 
(dnIGF-IR) or transfection of  IGF-IR-specific antisense 
oligodeoxynucleotides, attained convincing inhibitory 
effects on IGF/IGF-IR signaling in vitro and in vivo[85]. 
However, neutralizing antibodies binding IGF-IR and 
IGF-IR-specific small inhibitory molecules are currently 
the most promising therapeutic and clinically relevant 
approaches[60]. 

Neutralizing antibodies
Recently, numerous blocking antibodies recognizing 
different membrane-bound RTKs such as EGF-R/HER1 
(Cetuximab/Erbitux) and HER2 (Trastuzumab/Herceptin) 
have been developed[86]. Besides IGF-Ⅱ-binding antibodies 
that physically inhibit ligand/receptor interaction[87,88], 
many neutralizing antibodies specific for IGF-IR have 
been described such as alpha-IR3[89], mAb391[90], scFv-
FC[91], CP-751,871[92], IMC-A12[93], 7H2HM[94] EM164[95], 
h7C10[96], 4G11[97], 19D12[98], R1507[60], AMG479[60], and 
19D12[60]. Reduced IGF/IGF-IR signaling is presumably 
based upon lysosome-dependent degradation of  IGF-
IR[90,91]. Since proteasome inhibitors (e.g., Brefeldin) as 
well as protein synthesis inhibitors (e.g., cyclohexamide) 
did not affect antibody-dependent downregulation of  
the receptor[90,91], it has been speculated that anti-IGF-
IR antibodies hampered steady-state protein turnover 
based on endosomal accumulation of  antibody/receptor 
complexes[99]. Although the anti-tumor effects of  these 
antibodies were tested for several different cell types in 
preclinical studies, no comprehensive analyses regarding 
the anti-tumorigenic impact on HCC cells have been 
published to date. However, it is noteworthy that for 
other tumor entities, clinical trials for antibodies targeting 
IGF-IR have been launched such as CP-751, 871 (Pfizer), 
IMC-A12 (ImClone Systems), R1507 (Roche), and 
AMG479 (Amgen)[60].

Tyrosine kinase inhibitors
In addition to neutralizing antibodies, small molecule 
inhibitors targeting RTKs such as EGF-R/HER1 (Gefitinib/
Iressa), BCR/ABL fusion product (Glivec/Imatinib), 
or cellular kinases (the multi-kinase inhibitor Sorafenib/
Nexavar recognizing VEGF-R, PDGF-R, c-kit, Raf, and 
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RET) have been developed. Since IGF-IR and the IR 
are structurally related, highly specific IGF-IR inhibitors 
are necessary to prevent diabetogenic effects in patients. 
Published IGF-IR-selective RTK-inhibitors are tyrphostins 
(AG538[100,101], AG1024[102], AG1034[102]), cyclolignans (picr
opodophyllin[103,104]), 6-5 ring-fused compounds[105], pyrrole 
derivatives (NVP-AEW541[106,107], NVP-ADW742[108,109]), 
PQIP[110], BMS536924[111], and BMS-554417[112]. Anti-
tumorigenic effects of  some inhibitors on HCC cells have 
been demonstrated. The application of  NVP-AEW541[113] 
and picropodophyllin (Nussbaum et al, unpublished data) 
was shown to reduce tumor cell proliferation and increase 
apoptosis. Equally, IGF-Ⅱ induced tumor cell motility was 
reduced by picropodophyllin (Nussbaum et al, unpublished 
data). In addition, the inhibition of  IGF-IR-signaling by a 
combination of  AG1024 and EGF-R-signaling by RTK-
inhibitors or blocking antibodies synergistically reduced 
tumor growth[114,115]. However, NVP-ADW742 affects 
the viability of  hepatocytes in a concentration-dependent 
manner. This RTK-inhibitor potentiated bile acid-induced 
cell death in normal hepatocytes, suggesting liver toxicity 
in patients with aberrant bile flow[116]. Because IGF-
IR signaling is almost absent in normal hepatocytes, it is 
questionable whether these effects were IGF-dependent or 
independent. Thus, the effects of  IGF-IR-specific inhibition 
on normal and diseased liver have to be analyzed carefully.

Although the anti-tumorigenic effects of  IGF-IR-
specific small molecules have been analyzed in numerous 
tumor cell types in preclinical setups[60], to our knowledge, 
no clinical trials have been initiated to date. 

Conclusion
Several components of  the IGF-signaling axis, such as 
IGF-Ⅱ, IGF-IR and IRS, are frequently dysregulated in 
human hepatocarcinogenesis. The oncogenic reactivation 
of  IGF-Ⅱ-signaling has been verified in several in vivo 
models and supports the therapeutic relevance of  this 
pathway. However, aberrant growth factor bioactivity 
involved in tumor development cannot be understood 
in a mono-dimensional manner since an intense cross-
talk between IGF-IR signaling and other oncogenic 
pathways have been described[2]. Indeed, first functional 
studies revealed the necessity for multi-modal approaches 
for optimal anti-tumorigenic results and dose reduction. 
Therefore, i t is questionable whether the highest 
specificity is the ‘gold standard’ for efficient treatment of  
malignancies, especially with respect to the development 
of  (IGF-IR specific) RTK inhibitors. Thus, inhibitors 
targeting IGF-IR and other RTKs or combinations of  
different specific substances targeting distinct pathways 
might be attractive therapeutic approaches in the future.   
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