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Abstract

The ‘‘four-eyed’’ fish Anableps anableps has numerous morphological adaptations that enable above and below-water
vision. Here, as the first step in our efforts to identify molecular adaptations for aerial and aquatic vision in this species, we
describe the A. anableps visual opsin repertoire. We used PCR, cloning, and sequencing to survey cDNA using unique
primers designed to amplify eight sequences from five visual opsin gene subfamilies, SWS1, SWS2, RH1, RH2, and LWS. We
also used Southern blotting to count opsin loci in genomic DNA digested with EcoR1 and BamH1. Phylogenetic analyses
confirmed the identity of all opsin sequences and allowed us to map gene duplication and divergence events onto a tree of
teleost fish. Each of the gene-specific primer sets produced an amplicon from cDNA, indicating that A. anableps possessed
and expressed at least eight opsin genes. A second PCR-based survey of genomic and cDNA uncovered two additional LWS
genes. Thus, A. anableps has at least ten visual opsins and all but one were expressed in the eyes of the single adult
surveyed. Among these ten visual opsins, two have key site haplotypes not found in other fish. Of particular interest is the A.
anableps-specific opsin in the LWS subfamily, S180c, with a SHYAA five key site haplotype. Although A. anableps has a visual
opsin gene repertoire similar to that found in other fishes in the suborder Cyprinodontoidei, the LWS opsin subfamily has
two loci not found in close relatives, including one with a key site haplotype not found in any other fish species. A. anableps
opsin sequence data will be used to design in situ probes allowing us to test the hypothesis that opsin gene expression
differs in the distinct ventral and dorsal retinas found in this species.
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Introduction

Anableps anableps is an active surface feeder found in the murky

intertidal regions, oceanic shore waters, and freshwater streams of

Central America and northern South America [1]. It can jump out

of water to catch flying insects, but also feeds on floating material

and diatoms in riverbank mud [2]. A. anableps eyes have

morphological adaptations that allow for simultaneous vision

above and below water. For example, its cornea is separated into

two parts by a pigment stripe that prevents glare [3], with the

above-water portion flatter than its ventral counterpart [4]. This

difference appears to compensate for the fact that light entering

the cornea from the aerial environment is refracted much more

than light entering from the aquatic environment [5]. While most

fish have spherical lenses, in A. anableps the lens is oval-shaped.

This allows light from the aerial field to pass through a relatively

flat portion of the lens, similar to the lens of a land animal, and

light from the aquatic environment to pass through a portion of

the lens with a curvature more typical for an aquatic animal [4].

Finally, the retina is divided into dorsal and ventral portions,

which receive light from the aquatic and aerial environment

respectively.

There are two other species in the genus Anableps, A. microlepis

(the finescale four-eyed fish), which is found on the Atlantic coasts

of Central and South America, and A. dowei from the Pacific coast

of Central America. All three Anableps species possess the unusual

eye morphology. The other taxa in the family Anablepidae, genus

Jenynsia (sister taxon to Anableps with 12 species) and genus

Oxyzygonectes (with one species O. dovii), have typical teleost eyes

with a single cornea and pupil, a spherical lens, and a cup-shaped

retina [6].

Beyond morphology, vision can also be examined at a

molecular level. Light receptors expressed in rod and cone cells

of the retina are called opsins. Each opsin protein is associated

with a chromophore and when exposed to light this complex

changes conformation leading to rod or cone cell hyperpolariza-

tion [7]. The detection of light requires input from just one type of

opsin-chromophore receptor. However, no single opsin receptor is

sensitive to all wavelengths of visible light. Furthermore,

wavelength discrimination (colour vision) involves the interpreta-

tion of signals from different subpopulations of cone cells

expressing opsins with different spectral sensitivities [8].

Gene duplication and divergence events are the evolutionary

source of opsins with different spectral sensitivities. In vertebrates

there are SWS1, SWS2, RH2, and LWS cone opsins. SWS opsins

are Short Wavelength Sensitive opsins that are most sensitive to

UV and blue light. RH2 opsins (Rhodopsin-like) are most sensitive

to wavelengths in the middle of the visible light spectrum (i.e.

green light) and LWS (Long Wavelength Sensitive) opsins are most

sensitive to orange and red light. Rod cells, which function

primarily in dim light, express RH1 genes (Rhodopsin) that

encode a green light absorbing pigment [9]. Opsin subfamilies
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have been expanded or lost in different vertebrate lineages. For

example, while dogs have one LWS opsin, humans have two, and

guppies (Poecilia reticulata) have four [10,11]. Placental mammals

have lost both the RH2 and SWS2 opsin subfamilies and the

coelacanth (Latimeria chalumnae) has lost all but the RH1 and RH2

opsins [10,12].

Individual opsins vary in their spectral sensitivity among and

within subfamilies. This variation is a result of changes at key

amino acid sites, which are sites that have a disproportional effect

on spectral sensitivity and are often found at locations where the

opsin contacts the chromophore [13]. Previous work has

quantified the contribution of each site to the overall wavelength

of maximal sensitivity (lmax) and it is therefore possible to identify

opsins within subfamilies with different spectral sensitivities by

comparing their amino acid sequences. In fish there are two types

of opsin-associated chromophore, A1 and A2, and depending on

which is used the spectral sensitivity can differ by up to 50 nm

[14]. Some species tune their vision by switching from one

chromophore to the other in response to environmental or

developmental changes [15,16]. While chromophore use is not

considered here, previous study has shown homogenous use of A1

in the A. anableps retina [17].

Microspectrophotometry (MSP) is a technique that estimates

wavelength sensitivity (lmax) at the cellular level. An MSP study

detected only three different classes of cones cells in A. anableps

[17]. However, phylogenetic data from close relatives, guppy and

bluefin killifish (Lucania goodei), suggests that it has many more.

MSP data might not reflect the four-eyed fish’s true repertoire if

only a subset of loci are expressed in adults or if multiple opsins are

expressed in the same photoreceptor, as has been shown in mice,

eels, and salamanders among others [18–20].

In addition to gene number and sequence, opsin expression also

varies among species, populations and even within individuals at

different periods of development. For example, in cichlids LWS

opsin expression varies with water turbidity and it appears that

population-level variation in wavelength sensitivity has played a

role in variation in male colouration [21]. At the individual level,

European eels (Anguilla anguilla) have two RH1 opsins, each tuned

to slightly different wavelengths. They express a green-shifted

locus as juveniles in fresh water and a paralogous blue-shifted locus

when they return to the ocean [22]. The lamprey (Geotria australis)

also adjusts its spectral sensitivity by switching from the expression

of one opsin paralog to another as it moves between marine and

freshwater environments and Zebrafish (Danio rerio) have two LWS

opsins that are expressed at different times of development and in

different regions of the retina [23,24]. Given these observations,

we hypothesized that the morphological adaptations leading to

simultaneous aerial and aquatic vision in A. anableps would be

accompanied by changes in opsin gene number and/or sequence

and by changes in opsin expression patterns.

Here we report the results of a PCR-based survey of A. anableps

opsins using primers complementary to regions of each locus that

are conserved in closely related species. We also used Southern

blotting probes to identify the number of opsin loci in the A.

anableps genome. These techniques revealed that A. anableps has ten

visual opsins, including representatives from each opsin subfamily.

Results

Visual opsin sequences
Transcripts of eight opsin genes (SWS1, SWS2A, SWS2B,

RH2-1, RH2-2, RH1, LWS S180a, and LWS S180r) were

amplified and sequenced using primers listed in Table 1 from

cDNA derived from a single A. anableps eye. Southern blotting

experiments utilized LWS, SWS1, SWS2, RH2 and RH1 opsin

gene probes and two samples of A. anableps genomic DNA, one

digested with EcoR1 and the other digested with BamH1. These

experiments indicated there might be two SWS1 and RH1 loci

and three LWS loci (Figure S1, Table 2). We used PCR to survey

A. anableps genomic DNA to test the hypothesis that there were

additional loci in these three subfamilies not detected in cDNA.

Five clones with inserts derived from RH1-specific primers and

five clones with inserts derived from SWS1-specific primers were

sequenced and all had the same sequence as the original cDNA

amplicon.

For the LWS opsin subfamily, two rounds of genomic PCR and

sequencing were undertaken to supplement the original cDNA

screen. The first round amplified the S180a gene that had been

retrieved from cDNA and seven novel sequences. However, we

suspected several to be mosaics produced during PCR (i.e.,

template switching) and/or during cloning (e.g., mismatch repair

of cloned heteroduplex DNA) [25,26]. In the second PCR survey

of genomic DNA, LWS opsin primers were added at the beginning

and then again just before the last PCR cycle in an attempt to

Table 1. Primers used for cDNA and genomic PCR and
Southern blot probe synthesis.

Opsin
category Primer Name Sequence

SWS1 SWS1Fw1 59- AACTACATCYTGGTMAACATCTCC-39

SWS1Fw2 59- TGGGCSTTCYACCTGCAGGC -39

SWS1Rev1 59- GAGTAGGAGAARATGATGATGG-39

SWS1Rev2 59-GAACTGTTTGTTCATGAAGGCG-39

SWS2 SWS2Fw1 59-GYACWATTCAATACAAGAARC-39

SWS2Fw3 59-AGCCTTTGGTCTCTGGCTGTG-39

SWS2Rev1 59-AAAGCARAAGCAGAAGAGGAAC-39

SWS2Rev4 59-CCCGTTGTGTACCAGTCTGG-39

SWS2AFw1 59-GTCCACCCGAGTCATAGAGC-39

SWS2ARev2 59-GCCCACGGTTGTTGACAAC-39

SWS2-2Fw2 59-TCTACACCATGGCTGGATTCAC-39

SWS2-2Rev1 59-GATGGTGGTGAATGGAACAGC-39

RH2 RH2Fw1 59- AACTTCTAYATCCCGWTGTCC-39

RH2Fw2 59-TGHTCTTCCTGATCTKCACTGG-39

RH2Rev2 59-GTCTCRTCCTCCACCATGC-39

RH2Rev4 59- TGCGGCATGAGTTCCAGTG-39

RH2-2Fw1 59-CAACAGGACGGGCTGGTGAGG-39

RH2-2Rev3 59-ACCCATTCCAATTGTTGCC-39

RH1 RH1Fw1 59-ATGAACGGCACAGAGGGACC-39

RH1Fw4 59-GCAGTGCTCATGCGGAGTC-39

RH1Rev2 59-CCTGTTGCTCCATTTATGCAGG-39

RH1Rev4 59-GCTGGAGGACACAGAAGAGG-39

LWS Fw100 59-GATCCCTTTGAAGGACCAAACT-39

Fw1a 59-TCTTATCAGTCTTCACCAACGG-39

Gamma Fw1 59-TGCTATGCAGCAGATAAATTG-39

RevEnd 59-TTATGCAGGAGCCACAGAGG-39

Rev8 59-GCCCACCTGTCGGTTCATGAAG-39

RevEx4 59- CTTCCACTGAACACATCAGG-39

Primers were used to amplify sequences from A. anableps cDNA and genomic
DNA as well as guppy cDNA.
doi:10.1371/journal.pone.0005970.t001

A Fish Eye Out of Water
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eliminate these artefacts [26,27]. Only genes uncovered in both

rounds were considered to be authentic. These genes include LWS

S180a, LWS S180b and LWS S180c and an allele of LWS S180a.

Subsequently, LWS S180c was successfully amplified from cDNA.

Phylogenetic analyses of A. anableps opsin genes
All A. anableps opsin sequences were aligned with representatives

of each subfamily from other fish species. Sequences in the

alignment were 412 to 819 bp long (Table 3). We used Mega4

[28] to calculate Tamura-Nei genetic distances [29] and to

reconstruct a neighbour joining tree (Figure 1). Sequences from

each opsin subfamily formed well-supported monophyletic groups,

with bootstrap support (500 replicates) $97%. Relationships

among species within each opsin subfamily were consistent with

well-established taxonomy [6,30]. The root of the tree was

positioned along the branch separating the LWS opsins from all

others. While no non-opsin out-group sequences were employed in

these analyses, the placement of the root between the LWS and all

other subfamilies has been well established [31]. The A. anableps

sequences occurred in each of the subfamilies confirming that

locus-specific primers had amplified the genes they targeted.

Phylogenetic analysis revealed an SWS2 gene duplication event

that occurred in the common ancestor of bluefin killifish, A.

anableps and guppy, although one of the duplicates had not been

amplified from guppy and is reported here for the first time.

Variation at amino acid positions known to influence
spectral sensitivity

We hypothesized that A. anableps opsins would contain unique

amino acid substitutions to accompany its unusual eye morphol-

ogy. However, with two exceptions (SWS2A and LWS S180c), the

key-site haplotypes in A. anableps visual opsins also occur in other

fish with ‘normal’ eyes. The residues at all of the 12 key sites in the

SWS2A opsin have been seen in other fish, but the entire

haplotype found in A. anableps, appears to be unique. This

haplotype is unlikely to produce a significant shift in maximal

absorption according to mutagenesis analyses [32]. The A. anableps

opsin gene, LWS S180c, also has a unique five key-site haplotype.

The fourth key site substitution (T285A) switching SHYTA to

SHYAA is predicted to shift the lmax216 nm [33].

Table 2. Southern blot results.

Probe Restriction Enzyme Number of Bands Band Size (Kb)

LWS EcoRI 3 4.3, 4.1, 3.8

LWS BamH1 3 5.0, 4.2, 4.0

SWS1 EcoRI 2 4.0, 2.0

SWS1 BamH1 1 4.1

RH2 EcoRI 1 2.5

RH2 BamH1 0 -

RH1 EcoRI 2 4.5, 4.0

RH1 BamH1 2 4.7, 3.8

SWS2 EcoRI 1 2.0

SWS2 BamH1 1 3.0

Summary of Southern blot analysis results obtained for A. anableps opsins
probes with genomic DNA hybridized at 41uC. If Southern blot bands out-
numbered unique cDNA sequences, we surveyed genomic DNA and sequenced
at least five clones. Bands are pictured in Figure S1.
doi:10.1371/journal.pone.0005970.t002

Table 3. Sequences used in phylogenetic analysis.

Common name Scientific names Gene name
Accession
number

The ‘‘Four-eyed’’ Fish Anableps anableps LWS S180a FJ11154

LWS S180b FJ11158

LWS S180c FJ11157

LWS S180r FJ11155

SWS1 FJ11153

SWS2A FJ11152

SWS2B FJ11151

RH2-1 FJ11149

RH2-2 FJ11150

RH1 FJ11156

Guppy Poecilia reticulata LWS S180 EU329434

LWS A180 EU329442

LWS P180 EU329456

LWS S180r EU329457

SWS1 DQ234861

SWS2A FJ11159

SWS2B DQ234860

RH2-1 DQ234859

RH2-2 DQ234858

RH1 DQ912024

Swordtail Xiphophorus pygmaeus LWS S180 EU329481

LWS P180 EU329478

LWS S180r EU329479

Bluefin Killifish Lucania goodei LWS-1 AY296740

LWS-2 AY296741

SWS1 AY296735

SWS2A AY296737

SWS2B AY296736

RH2-1 AY296739

RH1 AY296737

Medaka Oryzias latipes LWS-1 AB223051

LWS-2 AB223052

SWS1 AB223058

SWS2A AB223056

SWS2B AB223057

RH2a AB223053

RH2b AB223054

RH2c AB223055

RH1 AB180742

Zebrafish Danio rerio LWS-1 NM131175

LWS-2 NM001002443

SWS1 BC060894

SWS2 NM131192

RH2-1 NM131253

RH2-2 NM182891

RH2-3 NM182892

RH2-4 NM131254

RH1 BC05288

Common name, scientific name, gene name and GenBank accession number for
all sequences used in phylogenetic analysis.
doi:10.1371/journal.pone.0005970.t003
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Figure 1. Phylogenetic analysis of A. anableps opsins. A neighbour-joining bootstrap consensus tree of visual opsins from A. anableps and its
relatives. The percentage of trees in which the associated taxa clustered together in the bootstrap test (500 replicates) is shown at the nodes. Tamura-
Nei algorithm was used and all codon positions were included. Missing nucleotides were treated with pairwise deletion in the analysis. Sequence
accession numbers listed in Table 3.
doi:10.1371/journal.pone.0005970.g001
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Discussion

A PCR-based survey of cDNA uncovered eight different opsin

genes in Anableps anableps. Southern blotting, which utilized much

longer probes than the PCR primers, indicated that additional

genes might exist in the RH1, SWS1 and LWS opsin gene

subfamilies. A subsequent PCR-based survey of genomic DNA

uncovered two additional LWS opsin genes leading us to conclude

that A. anableps possess ten visual opsins: one violet-sensitive SWS1

opsin gene, two genes from the blue-sensitive SWS2 subfamily,

two genes encoding green-sensitive opsins from the RH2

subfamily, four LWS or red-sensitive opsin genes, and an RH1

gene.

Phylogenetics, gene duplication and key sites
Phylogenetic analysis showed that the two RH2 opsin genes in

A. anableps are orthologs of RH2-1 and RH2-2, duplicates

produced in the ancestor of guppy, medaka (Oryzias latipes),

pufferfish (Takifugu rubripes), and stickleback (Gasterosteus aculeatus).

Although we have no data on opsin gene location in A. anableps, the

RH2 gene pair appears to be the product of a tandem duplication

event as RH2-1 and RH2-2 are linked in medaka and pufferfish

[34,35]. The single band produced during Southern analysis of

RH2 genes might be explained by the lack of a cut site between

the tandem duplicates. The A. anableps and guppy SWS2 opsin

gene duplicates reported here are orthologs of tandem duplicates

found in medaka, called SWS2A and SWS2B [34]. SWS1 appears

to be a single-copy gene in nearly all fish, including A. anableps.

One exception is ayu (Plecoglossus altivelis), which contains a species-

specific SWS1 opsin gene duplication [36]. We sequenced a single

RH1 opsin from A. anableps cDNA. Only Conger eel (Conger

myriaster) and scabbardfish (Lepidopus fitchi) have RH1 duplicates

[37,38]. The Southern blot analysis showed two bands for RH1

and SWS1. This banding might have been caused by allelic

variation in cut site loci or non-specific Southern probe

hybridization.

LWS opsin gene duplication events have occurred indepen-

dently in several fish lineages; the ancestors of zebrafish, medaka,

guppy and blind cavefish (Astyanax fasciatus) each experienced

independent LWS gene duplication events [11,34,39,40]. In some

cases, LWS opsin gene duplication has been followed by amino

acid substitutions at sites known to influence spectral sensitivity

(human, guppy and zebrafish), whereas in others (medaka, blind

cavefish and bluefin killifish) duplicates have the same 5- key-site

haplotype [11,34,39–42]. The single exon LWS opsin gene S180r,

which, appears to have been produced by retrotransposition in the

ancestor of the livebearers and bluefin killifish [11], has been

retained in A. anableps. This gene is one of those that retained the

SHYTA five key site haplotype after duplication. LWS P180 (with

the key-site haplotype PHFAA) and LWS S180 (with key site

haplotype SHYTA) are tandem duplicates that have been

uncovered in Poecilia and Xiphophorus [11], two genera in the

family Poeciliidae, sister family to Anablepidae [30]. However, the

duplication event producing this gene pair appears to pre-date the

poeciliid, anablepid divergence. The A. anableps LWS S180a gene

is similar to, and has the same key-site haplotype as, guppy LWS

S180 and the A. anableps LWS S180c? gene contains a region at the

39 end that is remarkably similar to the homologous portion of the

poeciliid LWS P180 opsin gene (Figure 2). However, LWS S180c
is not the sister sequence to the poeciliid LWS P180 genes as

predicted by the hypothesis that they are products of the same

tandem duplication event. We believe this is a consequence of

post-duplication gene conversion events within the genus Anableps.

Thus it appears that a combination of duplication and conversion

have produced a unique opsin (with a SHYAA haplotype) in a fish

with unique eye morphology.

A recent duplicate present in A. anableps and not in close

relatives is LWS S180b. It is identical to LWS S180a aside from a

short region of sequence variation in the 59 end. This variation

changes the amino acid sequence; however, it does not result in a

new key site haplotype as it occurs before amino acid position 180,

the first of the five key sites in LWS opsins.

Thus, molecular adaptations for aerial vision, at the primary

sequence level, may be confined to one of the most recently

created opsin genes, LWS S180c which has a unique key site

haplotype (SHYAA instead of SHYTA), and coincides with the

evolution of the unique eye morphology. Alternatively, these

observed sequence level changes could be neutral or possibly even

Figure 2. Sequence comparison between LWS genes. An alignment of 100 bp region of interest between between A. anableps LWS S180a and
LWS S180c. Over this area, A. anableps LWS S180c is more similar to poeciliid P180, than to other A. anableps sequences.
doi:10.1371/journal.pone.0005970.g002
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mildly deleterious. However, it is likely that spectral tuning

through amino acid substitutions is just one part of the adaptations

for aerial vision, along with eye morphology, photoreceptor

distribution and opsin expression pattern changes [4,43,44].

Implications for expression
Although little is currently known about opsin expression

patterns in the A. anableps retina, we predict that the photic

contrast between the aerial and aquatic environment will have

provided a selective pressure for divergent patterns of expression.

The turbid water that A. anableps lives in filters light, allowing the

long wavelength light to transmit most readily [45]. It is possible

that A. anableps copes with the differences in light composition by

using different opsin expression patterns in its two retinal

hemispheres. Previous MSP work has attempted to measure

pigment differences between retinal hemispheres, but no differ-

ences in pigments present were detected [17]. However, as

mentioned previously, MSP suggests A. anableps possessed only

three visual pigments altogether. Although nine of the ten opsins in

this study were recovered from cDNA and thus expressed to some

level, there can be extreme variation in opsin expression levels,

both between duplicates and during development, therefore it is

possible that at any given time only a portion of the repertoire is

functionally significant [46,47]. In future studies, we will use in situ

hybridization to examine the mechanism of visual adaptation in A.

anableps using probes designed from the opsin repertoire

characterized here. By cataloguing its opsin repertoire we have

laid the groundwork for much exciting research in not only A.

anableps itself, but in the nature of aerial and aquatic vision.

Materials and Methods

RNA isolation, cDNA synthesis and DNA isolation
Live Anableps anableps were obtained from a commercial supplier

(The Afishionados, Winnipeg, Manitoba, Canada). One juvenile

individual was euthanized in buffered MS222. Total RNA was

isolated from one eye using AurumTM Total RNA Fatty and

Fibrous Tissue Pack, immediately after euthanasia and enucle-

ation. RNA was stored at 280uC. cDNA was synthesized using

BioRadH iScript Select cDNA Synthesis Kit from total RNA.

DNA was isolated from muscle tissue using QIAquickH DNeasy

Blood & Tissue Kit.

Primer design and PCR
PCR primers were developed for eight genes in five visual opsin

subfamilies, SWS1, SWS2, RH1, RH2, and LWS (Table 1). These

primers were complementary to regions in each opsin gene or

subfamily that were conserved in guppy (Poecilia reticulata), and

bluefin killifish (Lucania goodei). Two forward and two reverse

primers were employed for each gene.

Each primer pair was used to survey cDNA or genomic DNA in

PCR reactions using Bio-Rad iProof high-fidelity DNA polymer-

ase in an EppendorfTM MastercyclerH EP Grad S thermocycler

using the following conditions: Initial denaturation at 98uC for 30

seconds, 35 cycles with denaturation at 98uC for 5 seconds,

annealing at 50–70uC (in 5uC gradations) for 12 seconds,

extension at 72uC for 25 seconds and a final extension at 72uC
for 5 minutes. During the second round of genomic DNA

screening we added additional primers (1 ml at 10 mM) at the

beginning of the last PCR cycle to prevent heteroduplex

formation. Guppy cDNA was also surveyed using SWS2A opsin

primers designed from conserved regions in A. anableps and bluefin

killifish. The guppy PCR templates were obtained from a lab-

reared fish descended from samples collected in Cumana,

Venezuela (i.e., an Endler’s guppy).

Cloning
PCR products were run on 1.5% agarose gel. Amplicons of the

predicted size were excised using QIAquickH Gel Extraction Kit.

If only one band was observed the portion of the product not run

on the gel was purified using QIAquickH PCR Purification Kit.

Purified products were A-tailed using InvitrogenTM Taq polymer-

ase and cloned using the PromegaH pGEMTM - T Easy Vector

System II kit. Clones containing inserts of the correct size were

sequenced using labelled M13 forward and reverse primers and a

Licor sequencer at the Centre for Biomedical Research at the

University of Victoria.

Southern Blotting
A. anableps genomic DNA was extracted from muscle tissue using

phenol-chloroform extraction. DNA was digested in two separate

reactions for 48 hours at 37uC using restriction enzymes, EcoRI

and BamHI. Digestion was followed by overnight ethanol

precipitation. Neither EcoRI nor BamHI cut within the region of

the opsin genes that were complementary to the probes. 10 to

20 mg of digested DNA was electrophoresed in a 1.5% agarose gel

and transferred onto a Bio-RadH Zeta-Probe nylon membrane

using the Bio-RadH Model 785 Vacuum Blotter. Transferred

DNA was immobilized by UV exposure for 5 minutes using a

UVP HL-2000 HybriLinker prior to hybridization. DIG-labelled

probes complementary to A. anableps opsins were synthesized using

a RocheH PCR DIG Probe Synthesis Kit under the following

amplification conditions: initial denaturation at 95uC for 2

minutes, 38 cycles with denaturation at 95uC for 30 seconds,

annealing at 50–56uC for 30 seconds, extension at 72uC for 40

seconds and a final extension at 72uC for 7 minutes. These LWS,

SWS1, SWS2, RH2, RH1 probes were amplified from cloned

genomic DNA using the primer sets Fw100/Rev_Ex4, SWS1

Fw1/SWS1 Rev1, SWS2Fw3/SWS2Rev4, RH2 Fw1/RH2 Rev4

and RH1Fw4/RH1Rev4 (Table 1). Southern blot hybridization

and detection was conducted according to the protocol provided

in the RocheH DIG Application Manual for Filter Hybridization.

Overnight hybridization at 41uC was performed in roller bottles

using a UVPH HL-2000 HybridLinker. Hybridized membranes

were subsequently washed at room temperature for 10 minutes

(265 minutes) with 26 SSC followed by a 65uC wash for 30

minutes (2615 minutes) with 0.56SSC (both solutions contained

0.1% SDS). RocheH sheep Anti-Digoxigenin-AP, Fab fragments

conjugated to alkaline phosphatase in conjunction with RocheH
CSPD chemiluminescent substrate was used to detect the presence

of bound digoxigenin probes. Generated blots were exposed to

RocheH Lumi-film Chemiluminescent Detection Film for 3 to

24 hours prior to development.

Phylogenetic analysis
A phylogenetic tree was reconstructed for the complete set of

opsin sequences. It included sequences from guppy, swordtail,

bluefin killifish, medaka and zebrafish (Table 3). Phylogenetic trees

were constructed using Mega4 utilizing Tamura-Nei algorithm,

Neighbour-joining, and support for nodes were estimated using

500 bootstrap reanalyses [28,29,48,49]. Sequences were 412 to

819 bp long.

Supporting Information

Figure S1 Southern blot images. A composite image of all

Southern blot results for A. anableps opsins probes with A.
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anableps genomic DNA hybridized at 41uC. Bands are indicated

with arrows and quantified in Table 2.

Found at: doi:10.1371/journal.pone.0005970.s001 (5.21 MB TIF)
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