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Abstract
Secondary structure content (SSC) cannot be accurately calculated from circular dichroism (CD)
spectra for the majority of proteins whose three dimensional structures have been solved. ‘Reliable’
SSC that is significantly different from random SSC can be calculated from CD spectra only for all-
α proteins and all-α proteins with canonical β-strand geometry.

The two fields to which the protein CD spectroscopy is applied with well-developed
methodology are folding thermodynamics [1;2] and secondary structure estimation [3]. Most
thermodynamic studies rely on relative changes in CD spectra and are therefore relatively
independent of calibration with structure. In contrast, the calculation of protein secondary
structure content (SSC) requires strict cross-calibration/validation of experimental and
reference CD spectra with reference crystallographic or NMR structural data. Following the
development and dissemination of reliable CD analysis software via the internet [4;5;6;7],
improvements in SSC calculations have resulted from increasing the number of proteins in the
protein reference set [4], splitting the ordered fractions of regular and distorted portions [6]
and expanding CD spectral analysis to wavelengths below 185 nm using vacuum ultraviolet
circular dichroism spectroscopy [8;9]. Splitting the ordered fractions occurs when α-helices
and β-strands are divided into regular and distorted classes [6] yielding six secondary structure
classifications: regular α-helix (αR), distorted α-helix (αD), regular β-strand (βR), distorted
β-strand (βD), turn and disordered.

The performances of secondary structure calculations are typically characterized by the root-
mean-square deviations (RMSD) between the crystal and CD estimates of the secondary-
structure content,

(1)

where Xi and Yi are the crystallographic and CD estimates of a given type of secondary structure,
i, in N reference samples. The overall RMSD is determined by considering all secondary
fractions collectively [4;6;8]. Lower values of RMSD indicate less discrepancy between the
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calculated and crystallographic data. It is generally accepted that RMSD measures the
predictive power of the method.

Joint application of splitting the ordered fractions and utilization of the lower wavelength CD
data (down to 160 nm if obtainable) yields in the best accuracy [8]. Overall RMSD values
obtained for 29 of 31 studied proteins [8] are less than the overall RMSD values of 0.091 –
0.098 calculated on the basis of the splitting only [6].

Two questions arise from this and similar results. First, what is the lower limit for RMSD in
such calculations? Second, is the accuracy that is reached sufficient to make a reliable and
meaningful estimation of SSC for the proteins from their CD spectra? To answer these
questions we have compared the overall RMSD for the 31 proteins calculated from their CD
spectra [8] with the overall RMSD value obtained for simulated SSC assuming that the main
secondary structure types (α-helices, β-strands, turns and disordered) are represented equally.
The simulated SSC values were assumed equal to 0.125 each for regular and distorted helices
and strands (αR, αD, βR, βD) and 0.25 each for turns and unordered structure.

Table 1 lists the RMSD values comparing crystallographic and CD SSC estimates (RMSDcd)
and the RMSD values comparing the crystallographic estimates with those obtained from
simulated SSC values of SSC (0.125 or 0.25 in the particular cases; RMSDs). The proteins in
Table 1 are grouped accordingly to their tertiary structure class: all-α, all-α and αβ combining
α+β and α/β classes [10;11]. Peroxidase and xylanase are placed in the all-α and all-β groups
since their helix/strand ratios are 13/2 and 1/15, respectively.

It is readily evident in the table that except for human serum albumin, only for the proteins
belonging to all-α and all-β classes are the simulated RMSD values essentially higher than the
experimental ones and values higher than the overall RMSD value of 0.091 estimated for 29
proteins for DSSP assignments [6]. Of the 22 proteins of the αβ class, 10 show simulated
RMSDs lower or comparable with experimental ones while the remainder has simulated
RMSD lower than the overall value of the DSSP assignment [6]. The only exception is insulin,
presumably due to its small dimension, short structural elements and uncertainty in its
intermolecular interactions in solution [12]. These properties are expected to influence the CD
spectrum of insulin. Moreover individual β-sheets have variable CD spectra due to the
variations in the geometry of β-structure in proteins [13]. If β-strands are within an unusual
structural motif like the Pentapeptide Repeat Protein fold, the SSC calculated from CD and
crystallographic data demonstrate poor correspondence [14]. Thus the analyzed proteins
included in all-β class all apparently have canonical β-structure.

As follows from this analysis SSC cannot be accurately calculated from CD spectra for the
vast majority of the proteins. Reliable calculation of SSC from CD spectra can be made only
for all-α proteins and all-α proteins whose β-strands geometry is apparently canonical. Why
does this occur and can the method be ‘repaired’? We propose there are some intrinsic limits
to the application of CD spectroscopy to protein secondary structure calculation as summarized
below: a) The quality of the Ramachandran plots of the reference crystallographic structures
is poor for some reference CD datasets. In fact, the residues for most of the structures in some
protein reference sets are under the 90% and even the 80% thresholds for the most favored
region of the Ramachandran plot [15]; b) The quality of the proteins used for solution and
crystallographic studies may not be consistent. Many of the reference CD spectra are obtained
using commercially prepared proteins without purification [4;8]; c) The consistency of the
reference CD database sets is sometimes suspect. The spectrum of some proteins differs in
different databases [15]; d) There has been little cross validation of the instruments used to
obtain reference and experimental CD spectra. Many reference CD spectra were obtained long
ago sometimes on laboratory-specific instruments whose specifications are not documented.
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Perhaps creation of a central resource of the published and cross-validated CD data files such
as the proposed Protein Circular Dichroism Data Bank [16] can help solve these problems.

Lastly, the different algorithms used to calculate protein SSC from crystallographic structures
give average contents for particular structures with standard deviations comparable with the
RMSD values shown in the Table 1 [6;9]. Unlike the above problems this one cannot be easily
fixed. Its solution requires the mutual agreement of the scientific community on the ceasing
the indiscriminate use of the programs DSSP, Procheck, STRIDE, XtlSSTR and PROMOTIF
in favor of one. We favor the DSSP algorithm as it is mostly used for PDB files.

We conclude that a reliable and meaningful estimation of SSC from the CD spectra can not be
made for proteins with the mixed α and β elements in their structure and apparently for proteins
with the noncanonical β-strand geometry. At the same time such estimations can be used as
relative measures of the structural changes of the proteins at different conditions such as those
observed during folding and unfolding.
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