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Abstract
Many organisms activate adaptive transcriptional programs to help them cope with decreased oxygen
levels, or hypoxia, in their environment. These responses are triggered by various oxygen sensing
systems in bacteria, yeast and metazoans. In metazoans, the hypoxia inducible factors (HIFs) mediate
the adaptive transcriptional response to hypoxia by upregulating genes involved in maintaining
bioenergetic homeostasis. The HIFs in turn are regulated by HIF-specific prolyl hydroxlase activity,
which is sensitive to cellular oxygen levels and other factors such as tricarboxylic acid cycle
metabolites and reactive oxygen species (ROS). Establishing a role for ROS in cellular oxygen
sensing has been challenging since ROS are intrinsically unstable and difficult to measure. However,
recent advances in fluorescence energy transfer resonance (FRET)-based methods for measuring
ROS are alleviating some of the previous difficulties associated with dyes and luminescent chemicals.
In addition, new genetic models have demonstrated that functional mitochondrial electron transport
and associated ROS production during hypoxia are required for HIF stabilization in mammalian cells.
Current efforts are directed at how ROS mediate prolyl hydroxylase activity and hypoxic HIF
stabilization. Progress in understanding this process has been enhanced by the development of the
FRET-based ROS probe, an vivo prolyl hydroxylase reporter and various genetic models harboring
mutations in components of the mitochondrial electron transport chain.
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Introduction
Organisms from bacteria to metazoans have evolved oxygen (O2) sensing systems
whichactivate adaptive transcriptional programs during times of O2 deprivation or hypoxia.
Transcription factors known as hypoxia inducible factors (HIFs) are the major effectors of the
hypoxic transcriptional response in metazoans. HIF activity is not only affected by cellular
O2 levels but also by reactive oxygen species (ROS) produced during hypoxia. This review
will discuss technologies employed to measure ROS, how hypoxia affects cellular ROS levels,
evidence supporting a role for ROS in cellular O2 sensing and potential mechanisms by which
ROS regulate HIF activity.
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Cellular Oxygen Sensing
Aerobic life depends on O2 to generate ATP. Since organisms often encounter decreased O2
levels, or “hypoxia” in their environment, they have evolved various O2-sensing systems that
trigger adaptive responses to help them maintain cellular and systemic energy homeostasis.
Several O2 sensors have been described in bacteria, most of which respond to the O2-dependent
redox status of the cell. For example, decreased O2 levels in E. Coli results in activation of the
fumarate and nitrate reduction (FNR) transcription factor, via effects on the bound iron-sulfur
cluster, which activates an adaptive transcriptional program [1]. In parallel with the FNR
system in E. Coli, the two-component Arc A/B system induces transcription of adaptive genes
in response to the redox state of electron carriers during hypoxic stress [2,3]. During O2
deprivation in Rhizobia and Bradyrhizobia, O2 is released from a heme moiety bound to the
histidine kinase FixL which subsequently undergoes autophosphorylation and activates the
transcription factor FixJ [4,5].

Many O2 sensing mechanisms have also been described in eukaryotes. In yeast, decreased de
novo synthesis of sterol and heme due to O2 limitation affects the activities of multiple
transcription factors, such as Hap1 and Sre1 [6,7]. In metazoans, O2 sensing systems are more
complicated. Unlike unicellular organisms, whose O2 sensors are most sensitive to anoxic
conditions, metazoans have evolved a more graded response to O2 levels due to the
heterogeneity of O2 concentrations throughout tissues. For instance, in mammals normal O2
tensions in the lung are around 16% while other tissues are approximately 2–5%. In addition,
metazoans must also elicit systemic adaptations to hypoxia which require multiple and more
complex O2 sensing mechanisms beyond simple metabolic adaptations.

In metazoans, the major hypoxic transcriptional response is mediated by hypoxia inducible
factors (HIFs) [8,9]. Standard and conditional knock-out mouse models have demonstrated a
role for HIFs in embryonic vasculogenesis, as well as adult erythropoesis and the inflammatory
response [10–13]. HIF is a heterodimeric transcription factor complex consisting of a
constitutively stabilized β subunit and a more labile α subunit [14]. HIF transcriptional activity
dramatically increases during hypoxia and leads to enhanced expression of hundreds of genes
involved in maintaining homeostasis at the cellular, tissue and systemic level [15]. HIF
complex activity is mainly mediated by protein stability of the α subunit [14,16–18]. Under
normoxic conditions (21% O2), HIFα is continuously degraded by the 26S proteasome which
is dependent on the hydroxylation of two key proline residues within the oxygen-dependent-
degradation domain (ODDD) [19–22]. This hydroxylation allows an E3 ubiquitin ligase
complex containing the von Hippel-Lindau protein (pVHL) to bind HIFα, earmarking it for
degradation by the proteasome [18]. Under hypoxic conditions, HIFα is no longer hydroxylated
and therefore no longer binds pVHL, allowing it to escape recognition by the proteasome. It
can then translocate to the nucleus, dimerize with the β subunit and activate the transcription
of target genes such as phosphoglycerate kinase and vascular endothelial growth factor [19,
21–23]. O2-sensitive hydroxylation of HIFα is regulated by HIF-specific prolyl hydroxylases
(PHDs), dioxygenases that use O2 and 2-oxoglutarate as co-substrates to carry out the
hydroxylation reaction. In addition, PHDs require iron in the ferrous state for their activity and
ascorbate to recycle that iron when oxidized in uncoupled hydroxylation reactions (Figure 1)
[19,23].

Mammalian cells express three HIF-specific PHDs, PHD1, PHD2 and PHD3, though studies
have shown PHD2 to be the most important regulator of HIF stabilization [24]. Since PHDs
have a high Km for O2 in vitro, which presumably makes their activity sensitive to O2 tensions
found in tissues, a simple regulatory model has been proposed whereby PHDs’ ability to
hydroxylate HIFα, and thereby “sense O2,” is dictated by O2 availability. However, modes of
regulation other than mere O2 availability have been reported. Some data suggest that
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byproducts of the tricarboxylic acid cycle such as succinate, malate and fumarate can inhibit
PHD2 activity and stabilize HIFα when allowed to accumulate in cells or when added to in
vitro hydroxylation reactions [25–27]. In addition, extensive data from multiple groups have
suggested a role for mitochondrial reactive oxygen species (ROS) in regulating HIFα
stabilization [28–31] The importance of ROS in cellular O2 sensing has been hotly debated
and will be a focus of the latter part of this review. We will first focus on cellular sources of
ROS, the methodology employed in measuring ROS and the relationship between ROS and
mitochondria.

Types and Sources of Cellular ROS
Diatomic oxygen is a relatively non-reactive molecule that becomes highly reactive by gaining
one electron to form superoxide anion (O2

.−), two electrons to form hydrogen peroxide
(H2O2), or three electrons to form hydroxyl radical (.OH). Cellular O2

.−can dismutate into
H2O2 spontaneously or by the enzymatic activites of cellular superoxide dismutates (SODs),
the latter contributing to the majority of intracellular H2O2. Compared to O2

.−, H2O2 is much
more stable and can diffuse through biological membranes giving it the potential to act as a
long-range signaling molecule [32–34]. Recent work has shown that ROS can serve as a
regulated and specific second- messengers to propagate signals in multiple settings [35].

The main site of cellular ROS production is the mitochondrial electron transfer chain (ETC).
Though it is commonly reported that 1–2% of electron flow on the ETC leads to ROS
production, more recent reports show this value to be as low as 0.15%, depending on the carbon
source being oxidized [36,37]. A high concentration of mitochondrial SOD ensures no
significant O2

.− accumulation beyond its initial site of production and allows for the generation
of H2O2 which has second messenger effects in the cytosol [31,38–40]. The endoplasmic
reticulum (ER) is another cellular source of ROS where resident cytochrome P-450 and b5
family members oxidize unsaturated fatty acids and xenobiotics to generate O2

.− and H2O2
[41–43]. In addition, plasma membrane-associated oxidases such as NADPH oxidases generate
ROS by oxidizing intracellular NADPH to reduce O2 into O2

.− in order to achieve localized
microbicidal function in phagosomes [44–47]. Peroxisomes contain multiple H2O2-generating
enzymes including peroxisomal catalase which metabolizes toxic molecules such as ethanol.
However, only a small percentage of peroxisomal H2O2 may escape this organelle [48]. Some
soluble oxidases, dehydrogenases and dioxygenases in the cytoplasm can also generate ROS
during catalytic cycling [49]. In summary, while many sources of intracellular ROS exist, the
most significant contribution comes from the mitochondrion, which has also been shown to
play the most important role in cellular O2 sensing.

Measurement of Cellular ROS
Compared to other biological metabolites, intracellular ROS are highly reactive and very short-
lived, making their measurement a challenge. Currently there are no direct methods for
measuring intracellular ROS levels. Some existing methods assay the downstream effects of
ROS on cellular macromolecules such as lipid oxidation, protein carbonylation or the formation
of 8-oxoguanine in DNA as a readout for ROS production [49,50]. More commonly used assays
for assessing intracellular ROS levels involve loading cells with luminescent chemicals and
fluorescent dyes which cross-react with different types of ROS to emit light. One example is
lucigenin (Luc2+) which, after being reduced to LucH.+ within the cell, can react with O2

.− to
form an unstable product that chemiluminesces. The intensity of the light emitted is then taken
as an indirect measure of the intracellular O2

−. level [51]. For measuring H2O2, 2′,7′-
dichlorfluorescein-diacetate (DCFH-DA) is the most extensively used chemical detector, given
its simple and direct chemistry with ROS [52,53]. Esterized DCFH-DA enters cells via
diffusion, becomes deacetylated and converted to DCFH. Nonfluorescent DCFH is
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subsequently oxidized by H2O2 to yield flurorescent DCF. Though more direct than cellular
downstream readouts of cellular ROS levels, methodology employing fluorescent dyes also
has drawbacks. For instance, DCFH has been shown to react with agents other than H2O2
making it more of a measure of total redox status rather than cellular H2O2 [54,55]. Moreover,
both lucigenin and DCFH have been shown to yield a fluorescent signal in the absence of ROS,
giving rise to the potential for high background and false positive readings [56–58]. In addition
to these limitations, one must also assume that cellular uptake of DCFH-DA is equivalent under
different conditions if a direct comparison is to be made. Finally, indirect effects of the
experimental manipulation itself must also be considered. For instance, with the DCF
fluorescence probe, an excitation violet-blue light is required, a wavelength which has been
linked to cellular phototoxicity and H2O2 generation [59].

A recently developed fluorescence resonance energy transfer (FRET)-based assay holds
potential to circumvent the limitations of chemical-based methods. In this assay, cyan and
yellow-fluorescent proteins are bridged by part of a bacterial heat shock protein [29,60] which
contains redox-sensitive cysteine thiols [61,62]. The thiol groups are reduced at normal
conditions but upon oxidation, a disulfide bond is formed that changes the conformation of the
hinge domain and separates the YFP and CFP. This decreases the energy transfer from CFP
to YFP enhancing the CFP signal while decreasing the YFP signal during oxidation [63]. Such
a probe can be overexpressed in cells and the ratio of CFP to YFP fluorescence taken as a
measure of cellular ROS levels in real time, a readout independent of probe concentration.
Though this technology eliminates concerns of equal probe distribution across samples and
indirect effects from excessive experimental manipulation, it will be of interest to determine
exactly which types of ROS affect the activity of this FRET probe.

ROS and Hypoxia
Though it is generally accepted that intracellular ROS levels change during hypoxia, in which
direction this change occurs is still hotly debated. From an intuitive standpoint, one might
assume that ROS levels drop during hypoxia since ROS require O2 as a substrate for their
production and several studies support this prediction. For instance, it has been shown that
endothelial cell plasma membranes release less extracellular H2O2 under hypoxia compared
to normoxia [64,65]. In addition, perinuclear endoplasmic reticulum (ER) generation of OH,
presumably derived from the “Fenton reaction” of H2O2 with transition metals, is higher under
normoxic conditions compared to hypoxia [66]. Presumably, these studies are assessing the
specific ROS-generating capacity of NADPH oxidase, the major ROS producer at the plasma
membrane and in the ER. Other studies which assess total intracellular ROS content have made
opposite observations. Using either DCFH and FRET technology discussed above, several
groups have found an increase in total intracellular ROS upon exposure to hypoxia [29–31,
67]. In addition, it has been shown that protein cabonylation and formation of 8-hydroxy-2′-
deoxyguanosine (8-OH-dG) in DNA both increase in yeast exposed to anoxia, an indirect
indication that ROS increase during this stress [68]. In this same study, expression of SOD1
also increased, a further indirect confirmation that ROS increase during O2 limitation. In all,
inconsistencies in reports on the direction and degree of hypoxic ROS production likely stem
from differences in cell types and subcellular compartments examined as well as the
inadequacy of current technology to accurately measure ROS levels. Establishing a reliable,
quantitative and sensitive method for measuring ROS will be an important step in validating
the role of ROS in the hypoxic response.

Role of ROS in Cellular O2 Sensing
The role of ROS in regulating the hypoxic response and HIF activity has remained controversial
for over a decade. Early theories on the subject suggested that NADPH oxidase might be an
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important ROS-generating cellular O2 sensor since this multi-subunit membrane-bound
enzyme is expressed in tissues implicated in systemic hypoxic responses and affects cellular
redox status depending on cellular O2 concentrations [69,70]. However more in-depth studies
did not support a requirement for NADPH in the hypoxic adaptive response [71]. Chandel et
al later suggested that mitochondria are the source of ROS involved in the hypoxic response
by showing that ρ° cells (which lack functional mitochondria) or treatment of cells with either
inhibitors of the mitochondrial electron transport chain or antioxidants impede HIFα activation,
though others failed to observe any effect of antioxidants on HIFα stabilization [31,72].
Experiments that utilized broader panels of specific inhibitors for each of the electron transport
chain complex components later suggested that an important source of hypoxic ROS is complex
III [39,73–75]. More recent studies further strengthen a role for mitochondrial ROS in hypoxic
responses by utilizing genetic models showing that deficiencies in various mitochondrial
electron transport chain components compromise hypoxic HIFα stabilization. These genetic
models are improved systems for studying the effects of mitochondrial electron transport
inhibition, as they elminate the effects of non-specificity encountered with chemical inhibitors.
For example, genetic ablation of cytochrome c by targeted mutagenesis in murine embryonic
cells or shRNA-mediated knockdown of the Rieske iron-sulfur protein of Complex III in
HEK293 cells and 143B osteosarcoma cells attenuates hypoxic, but not anoxic, HIFα
stabilization suggesting severe O2 limitation is sensed differently from more moderate hypoxia
[29,30]. Interestingly, in the same studies, it was also shown that human fibroblasts with a
deficiency in electron transport chain Complex IV, though defective in oxidative
phosphorylation, maintained HIFα stabilization under hypoxia [28]. These results suggest that
Complex III of the mitochondrial electron transport chain is the ROS-generating O2 sensor
responsible for HIFα stabilization during hypoxia.

The idea that ROS might contribute to O2 sensing has been hotly contested, especially
following the discovery of the HIF-specific prolyl hydoxylases, after which many assumed
intracellular O2 must be the only determinant of hydroxylase and HIFα activity. In direct
contrast to previous findings, some groups found that ρ° cell lines lacking functional
mitochondria still stabilize HIFα under hypoxia [76,77]. Other studies suggested that cells with
impaired mitochondrial function fail to stabilize HIFα under hypoxia, not because of defective
ROS-generation, but because of intracellular O2 re-distribution which leads to increased
availability of O2 as a substrate for the hydroxylation reaction [72,78]. Although these reports
challenge a role for mitochondrial ROS in cellular O2 sensing, they do not explain why
antioxidants, including the recently described mitochondrially-targeted compound MitoQ,
block hypoxic HIFα activity [79]. In addition, they do not explain why defects which
specifically compromise Complex III function prevent hypoxic HIFα activity, while Complex
IV defects, that impair cellular respiration and presumably O2 distribution, leave the hypoxic
response intact [28]. Complete validation of the importance of mitochondrial ROS most likely
awaits the elucidation of the mechanisms by which ROS regulate HIFα stability during
hypoxia.

Potential mechanisms for ROS in cellular O2 sensing
There are many possible mechanisms by which mitochondrial ROS regulate HIFα stability
during hypoxia. These most likely involve the PHDs, since recent work employing a cellular
prolyl hydroxylase reporter, which utilizes hydroxylation-specific mobility shifts on SDS-
PAGE gels to monitor the hydroxylation of HIFα in vivo, showed that mitochondrial inhibitors
and the anti-oxidant Mito-Q affect cellular hydroxylase activity [26]. One report has shown
that elevated ROS levels due to genetic ablation of the transcription factor JunD and consequent
downregulation of its anti-oxidant target genes, leads to PHD2 inactivation via oxidation of
ferrous iron in the catalytic domain as determined by electron paramagnetic resonance
spectroscopy [80]. However, it remains to be determined whether physiological levels of ROS
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produced during hypoxia can have the same effect on PHD2. Another plausible mechanism is
that ROS alter the disulfide bond structure of PHD2 to inhibit its activity, a mode of regulation
that has been well described for protein tyrosine phosphatases [66,81]. The recent discovery
of the crystal structure of PHD2 may be an important step in assessing this possibility [82]. A
final plausible mechanism by which ROS might affect the hypoxic response is the initiation
of a signal transduction cascade resulting in inhibitory post-translational modifications on
PHD2 (Figure 2). In support of this mechanism, recent work has shown that the p38 stress-
activated MAPK cascade is involved in ROS-dependent hypoxic responses as mouse
embryonic fibroblasts lacking either p38 MAPK or its upstream effectors MKK3/6 fail to
stabilize HIFα under hypoxia and oxidant stress [83].

Summary
While there is no doubt that O2 substrate limitation can regulate PHD2 activity, it seems
unlikely that this is the only determinant of HIFα stimulation in the complex environment of
the cell. There is much evidence to suggest that other cellular factors, especially mitochondrial
ROS, play a significant role in the hypoxic response. The development of reagents such as
cellular genetic models like the cytochrome c null cells, the ROS-sensitive FRET probe and
the in vivo hydroxylase reporter will most likely aid in uncovering the precise mechanism by
which ROS participates in cellular O2 sensing.
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Figure 1. The hydroxylase reaction
PHD2 utilizes cellular O2 and 2-oxoglutarate as co-substrates to hydroxylate two proline
residues on HIFα. PHD2 also requires ferrous iron for its activity and ascorbate to recycle
oxidized iron during uncoupled reactions.
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Figure 2. Plausible mechanisms by which ROS regulate PHD2 activity
ROS may trigger a signal transduction cascade which results in post-translational modifications
on PHD2, may oxidize bound iron, or may alter PHD2 disulfide bond structure to regulate
PHD2 activity.
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