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Abstract
Strategies to enhance T cell recovery are of increasing clinical importance to overcome long lasting
T cell deficiencies, which occur in association with infections, autoimmunity and chemo/
radiotherapy as well as aging of the immune system. In this review we discuss those strategies that
are close to or in the clinic. Interleukin-7, sex steroid modulation, keratinocyte growth factor, growth
hormone and cellular therapies using ex vivo generated T cell precursors are currently being tested
in recipients of a hematopoietic stem cell transplantation and patients with malignancies or HIV/
AIDS.
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T cell deficiencies can occur through infection (such as HIV), autoimmune diseases, chemo/
radiotherapy or as a consequence of aging of the immune system (especially the thymus). T
cell deficiency has been associated with an increased risk of infection and malignancies and a
failure to respond to vaccination. For example, much of the late morbidity and mortality
following hematopoietic stem cell transplantation (HSCT) can be attributed to delayed T cell
reconstitution, leading to increased opportunistic infection and malignant relapse. There is also
a growing body of evidence suggesting that early lymphocyte reconstitution, following both
allogeneic and autologous HSCT, is a good prognostic indicator of disease outcome 1–5.

Several strategies to enhance immune reconstitution have been developed in preclinical models
(reviewed in6), but few have made it into clinical trials. We will focus on those strategies which
are close to entering the clinic.

Interleukin-7
Interleukin 7 (IL-7) is a 25kD glycoprotein produced by stromal cells in the thymus and bone
marrow 7, as well as by keratinocytes and enterocytes 8. IL-7 binds the IL-7 receptor (IL-7R)
which consists of the α-chain (also known as CD127) and the common cytokine receptor γ-
chain (γc) 9. IL-7R is expressed on many cells of the immune system including common
lymphoid precursors, triple negative (CD3−CD4−CD8−) and single positive (CD3+CD4+CD8
− or CD3+CD4−CD8+) thymocytes, CD4+ and CD8+ T cells, developing B cells, γδ T cells,
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thymic dendritic cells (DCs) and monocytes, as well as nonhematopoietic cells such as
intestinal epithelial cells and keratinocytes (reviewed in 8).

IL-7 is a non-redundant cytokine for both T and B cell development in mice. Mice treated with
anti-IL-7 antibodies, and those deficient in IL-7Rα or IL-7 exhibit severely impaired
lymphocyte development. Thymic cellularity is profoundly decreased in both types of
knockout mice 10,11, and while a small number of αβ T cells develop, γδ T cells are absent
12. In humans, a defect in the IL-7Rα results in a complete lack of T cells and severe combined
immunodeficiency syndrome (SCID) 13. Interestingly, in contrast to mice IL-7 does not appear
to be a requirement for normal B cell development in humans 13.

IL-7 promotes both the survival and differentiation of immature triple negative and mature
single positive thymocytes 14,15. It is also essential for the production of γδ T cells 12 and
thymic dendritic cells 16. In the periphery, IL-7 has been identified as a key regulator of
peripheral T cell survival and function. It has anti-apoptotic effects, possibly through the
upregulation of Bcl-2 17, and while it is not essential for the initiation of a T cell-mediated
antigenic response, it is necessary for the generation of memory T cells 18–21. IL-7 has also
been shown to be a non-redundant regulator of homeostatic expansion of CD4+ and CD8+

naïve and memory T cells in settings of lymphopenia 17.

Preclinical studies in mouse HSCT models have demonstrated that post-transplant IL-7
administration can enhance T cell reconstitution in recipients of a syngeneic or allogeneic
HSCT through increased thymopoiesis, increased homeostatic proliferation of transferred and
de novo - generated mature T cells and decreased peripheral T-cell apoptosis 22–28. IL-7
treatment not only increased T cell numbers but also enhanced their function. However, IL-7
did not show any effect on the T cell repertoire 25.

One of the concerns about the use of IL-7 in the setting of an allogeneic HSCT has been whether
IL-7 may lead to or exacerbate graft versus host disease (GVHD). As demonstrated in a number
of studies, IL-7 does not lead to GVHD in the setting of a T cell-depleted (TCD)-BMT 25.
However, depending on the dose of T cells and the duration and dose of IL-7 administration,
the cytokine may exacerbate GVHD when it is administered in a T cell-replete HSCT 27,28.
Finally, IL-7 administration preserved the graft-vs-leukemia (GVL) activity of a T cell-replete
allograft 25.

CYT 99 007 (Cytheris, Inc.), a recombinant non-glycosylated form of human IL-7, has been
studied in phase I clinical trials. As of March 1, 2007, 61 patients have been treated with
subcutaneous CYT 99 007 in five different phase I dose-escalation trials conducted in various
clinical settings, in a dose range varying from 3 to 60 mcg/kg/dose (R. Buffet, personal
communication). In general, administration of IL-7 was associated with little toxicity, and
immunologic efficacy was demonstrated in these early studies. Repeated doses of CYT 99 007
induced a dose-dependent sustained expansion of CD4+ and CD8+ T cells with memory and
naïve phenotypes, including Recent Thymic Emigrants (RTEs) defined as CD45+CD31+ T
cells 29. As expected, expansion resulted from an increase in both T cell proliferation and
survival, assessed through the expression of Ki-67 and Bcl-2 markers, which also appeared to
be strongly linked to the IL-7 dose. Consistent with the homeostatic role of IL-7, the magnitude
and duration of T cell expansion seemed to be more pronounced in patients with lower T cell
counts at baseline. The same T cell expansion profile was observed in a patient treated with
CYT 99 007 after an allogeneic HSCT (Perales, unpublished observation). Studies of a
potentially less immunogenic glycosylated formulation of IL-7 (CYT107, Cytheris) are
currently underway.
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Sex Steroid Modulation
Apart from their conventional roles in sexual dimorphism, differentiation and development,
sex steroids are known to be involved in many other biological systems, including the immune
system. The effects of sex steroids on the immune system might be responsible for gender
disparity in susceptibility to autoimmune disease, and decreased T cell immunity during
pregnancy. However, sex steroids appear to affect most hematopoietic developmental stages,
as well as the function of mature immune cells 30–45.

Most studies agree that thymic atrophy becomes most pronounced at the time of puberty,
concomitant with an increase in circulating sex steroids 46–51. The link between sex steroid
ablation (via surgical or chemical castration) and reversal of age-related thymic atrophy is well
established. When mice or rats are castrated before puberty, thymic atrophy is delayed and if
they are castrated later in life thymic atrophy is reversed 52–57. Castration and the subsequent
reversal of thymic atrophy results in an increase in RTEs, resulting in an increase in peripheral
naïve T cells 57. Increased T cell numbers translate to an increase in peripheral T cell function
57.

Administration of estrogens, progesterone or testosterone leads to reversible thymic atrophy,
which resembles that observed with age 55,58–63. Furthermore, the thymic enlargement/
regeneration observed following castration is inhibited or reversed in a dose-dependent manner
by the administration of testosterone or estrogen 55,59,64.

LHRH agonist administration results in a reversible inhibition of testicular steroidogenesis and
spermatogenesis in males (chemical castration) 54. LHRH agonist administration leads to an
increase in thymic weight and reversal of age-related thymic structural defects, including the
appearance of a clear distinction between cortex and medulla and an obvious corticomedullary
junction 54,65–67.

Many groups have studied the expression of classical intracellular androgen receptors (iARs)
in the thymus. iARs have been shown to be present in both male and female thymi 68, in whole
thymus homogenate 20,58,68–73, thymic stroma 68,74, purified thymocytes 20,75 and all
thymocyte subsets (based on expression of CD4 and CD8) 76. Thymic stroma and thymocytes
express both estrogen receptor α (ERα) and estrogen receptor β (ERβ) 77–79.

Because ARs and ERs have been identified on both thymocytes and thymic stromal cells, sex
steroids may either act directly on thymocytes to affect apoptosis, proliferation and/or
differentiation, or act indirectly via the thymic stroma. The mechanisms by which sex steroids
act on the thymus remain to be fully elucidated. Olsen et al. (2001) used Tfm mice that have
a point mutation in the androgen receptor and significantly larger thymi than androgen-
sensitive mice to study the affect of androgen receptor signalling in the thymus 80. BMT
experiments were used to show that the presence of a functional androgen receptor on the
stromal components of the thymus but not the thymocytes is essential for normal age-related
thymic atrophy and the regeneration seen following sex steroid ablation 80. Similar
experiments were carried out using ERα knockout mice (ERKOs), ERβ knockout mice
(BERKOs) and double knockouts (DERKOs) 81,82. Again, BMT experiments were used to
demonstrate that it was the expression of ERα, or lack thereof, on the thymic stromal cell
components that predominantly mediated the changes in thymic cellularity observed 81.

Studies from Boyd and collegues 56,57 have identified very early effects on hematopoietic
thymic precursors following surgical castration. Early thymic progenitors (ETPs) are decreased
in number with age 56,83 and surgical castration restores ETP numbers 56. Normalization of
triple negative thymocyte proportions were also observed 56,57. Medina et al. (2001) have
also shown that early bone marrow lymphoid progenitors are negatively regulated by estrogen
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34. These data, along with early in vitro studies 84,85, suggest that while the major mode of
action of sex steroids is via the thymic stroma, there may also be direct effects on thymocytes
and their precursors.

Several recent studies have taken advantage of the above observations and identified sex steroid
modulation as a therapy to enhance immune reconstitution.

A study by Roden et al. demonstrated that surgical castration of mice led to an increase in
thymus, lymph node and spleen size, as well as peripheral T cell numbers and T cell
proliferation (to antigen specific and nonspecific stimuli) 86. The T cell repertoire of these
mice was similar to that of sham-castrated controls, suggesting that sex steroid ablation does
not lead to the peripheral expansion of particular T cell clones 86. Castration following
induction of lymphopenia by cyclophosphamide treatment enhanced BM and thymic recovery
as well as peripheral lymphoid reconstitution and function 86 (Goldberg et al. unpublished
observation).

Several studies demonstrated that immune reconstitution following autologous and allogeneic
HSCT was enhanced by surgical castration 57,87,88. BM precursor cells including LSKs
(Lineage- Sca-1-, ckit- cells that represent a population enriched for hematopoietic stem cells),
common lymphoid precursors (CLPs), pro-B, pre-B and immature B cells were all positively
affected. Similar results were observed in the thymus, with enhanced recovery observed in all
thymocyte subsets 87,88. In both autologous and allogeneic HSCT models castration led to an
increase in the number of splenic T and B cells. T cell function determined by delayed type
hypersensitivity was significantly increased in castrated vs sham-castrated allogeneic HSCT
recipients. Importantly, castrated allogeneic HSCT recipients did not experience worse GVHD,
and GVT activity remained intact 88.

Sutherland et al. (2005) showed that chemical castration of humans using an LHRH agonist,
which is both reversible and transient led to enhanced thymic function 57. In a small cohort of
10–16 patients, 60% of patients showed increased numbers of RTEs, as measured by TREC
levels. Blood lymphocyte counts were also significantly increased, as were CD4+ and CD8+

T cells and NK cells.

These preliminary clinical data, along with the large body of preclinical data support sex steroid
ablation as a potential adjunct therapy to follow treatments which induce immunosuppression.
Clinical trials testing the efficacy of chemical sex steroid ablation (using Lupron) as a means
to enhance immune reconstitution after allogeneic and autologous HSCT are underway in
Australia and the USA, and the effects on T cell recovery are promising (personal
communication – Richard Boyd).

Keratinocyte Growth Factor
Keratinocyte Growth Factor (KGF), or fibroblast growth factor 7 (FGF7), is an epithelial
mitogen produced predominantly by cells of mesenchymal origin, including fibroblasts in the
mammary gland, lung, skin, prostate, stomach and bladder as well as smooth muscle cells and
microvascular endothelium (summarized in 89). More recently, Gray et al. described a
population of thymic fibroblasts as the major producers of KGF within the thymic stroma 90.
Interestingly, thymocytes also produce KGF and the expression of KGF increases during their
differentiation 91. KGF causes epithelial cell proliferation and differentiation in several tissues,
including intestine (gut epithelial cells), skin (keratinocytes), and thymus (thymic epithelial
cells (TECs)). KGF acts through a single receptor, FGFR2IIIb, which is expressed
predominantly but not exclusively by epithelial cells 89. In the thymus, FGFR2IIIb is expressed
on TECs but not on thymocytes 92. KGF is currently an FDA-approved drug for oral mucositis
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prophylaxis in patients receiving high-dose therapy, such as myeloablative conditioning prior
to a HSCT93,94.

While thymus size and thymocyte subsets are not altered in KGF−/− mice, these mice are more
susceptible to thymic damage (such as irradiation), resulting in a significant delay in thymic
recovery 95.

KGF administration results in an increase in thymus size in both old and young mice or mice
treated with irradiation, cyclophosphamide or dexamethasone 95. Furthermore, KGF
adminstration leads to an increase in peripheral T cell numbers in aged mice 95. When
KGF−/− mice were used as recipients of syngeneic or allogeneic BMTs, defective thymopoiesis
and T cell reconstitution were observed. However, when used as donors these disruptions were
not observed 95, suggesting that the KGF required for post-irradiation thymic recovery is
produced by non-haematopoietic cells of host origin.

Min et al. (2007) observed that a single course of KGF treatment reversed age-related decreases
in thymocyte numbers and restored the disrupted thymic microenvironment, as well as
peripheral T cell function 96. Continued treatment led to an increase in thymic cell numbers
96.

Rossi et al. (2007) showed that KGF treatment led to the expansion of TECs and differentiation
of immature TECs. Although these stromal changes were transient, they led to a long-lasting
augmentation of thymocyte development and T cell export 97. Stromal exposure to KGF was
required for these changes to occur, while thymocyte precursor exposure did not appear to play
a role 97. Wnt5b, Wnt10b, BMP2 and BMP4 were upregulated in vivo following KGF
treatment, and thymii from Smad4−/− (required for canonical BMP signaling) mice did not
increase in size following KGF treatment, suggesting an essential role for BMP signaling in
the mechanism of KGF-induced enhanced thymopoiesis. Furthermore, blocking p53 and
NFκB suppressed upregulation of Wnt10b upon KGF treatment, suggesting that KGF signaling
involves both p53 and NFκB pathways 97.

KGF treatment of recipients prior to syngeneic 98 and allogeneic 95,98 HSCT leads to
enhanced thymopoiesis and peripheral T cell reconstitution 95,98. Moreover, pretreatment with
KGF could significantly decrease GVHD morbidity and mortality in allogeneic HSCT
recipients 92,99–101.

Studies by Ferrara and colleagues suggested that the ameliorating effect of KGF on GVHD
was due to protection of gut epithelium from damage associated with conditioning 101.
However, Blazar and colleagues demonstrated that KGF decreased GVHD in the absence of
conditioning 100, suggesting that KGF can protect target tissues from GVHD in other ways.
The authors suggest that KGF may protect against T cell mediated damage 100. Rossi et al.
also used a conditioning-free GVHD model to assess whether treatment with KGF led to
cytoprotection of TECs 92. KGF pretreatment prevented the loss of thymus size and cellularity,
which are associated with GVHD. Furthermore, thymocyte subset proportions remained intact
and the GVHD-associated decrease in percentage of DP thymocytes was not observed 92.
Thymic architecture was preserved following pretreatment with KGF, as were cortical and
medullary TEC subsets 92.

In a recent study, rhesus macaques were treated with KGF (single or multiple doses) prior to
CD34+ peripheral blood progenitor transplantation 102. KGF improved thymic-dependent T
cell reconstitution, when compared to untreated recipients. Thymic architecture was restored
in the KGF-treated groups 12 months after transplant, while thymi from control mice remained
atrophic. Naïve T cell numbers were increased following KGF treatment, as were T cell
receptor excision circles (TRECs) and T cell receptor diversity. Furthermore, the increases in
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thymic T cell reconstitution led to an increase in peripheral T cell function, as measured by the
humoral response to a T cell-dependent neo-antigen 102.

In summary, KGF enhances thymopoiesis through its protective and trophic effects on TECs,
which results in increased production of IL-7 by TECs, as well as increased resistance to
apoptosis and epithelial cell recovery. A better preservation or recovery of the thymic
microenvironment should allow for enhanced seeding of T cell precursors resulting in
improved T cell production.

These preclinical data suggest that KGF can be used to enhance T cell reconstitution in
lymphopenic patients. At present, studies are underway at our center to assess whether KGF
administration can enhance T cell recovery in patients who have received a T cell-depleted
allogeneic HSCT.

Growth Hormone
Growth hormone (GH) is predominantly produced and stored by the anterior pituitary 103.
However, several studies have shown that it is also produced by hematopoietic cells 104–
107. GH receptor (GHr) is expressed by developing thymocytes, all hematopoietic cells in the
bone marrow, as well as B cells, T cells and macrophages in the periphery (reviewed in 108).
GH is believed to affect the immune system via its stimulatory effects on insulin-like growth
factor 1 (IGF-1), but may also have a direct effect. IGF-1 and GH serum levels decrease with
age in humans (Reviewed in 108).

In both rodents and humans, macrophages are the main source of IGF-1 in the hematopoietic
system 109,110, but production has also been observed in thymic epithelial cells 111,112 and
BM cells 113,114. IGF-1 receptors are expressed by NK cells, B cells, and T cells (differential
expression depending on activation state), as well as erythrocytes and monocytes (Reviewed
in 108). In vitro and in vivo assays have shown enhanced hematopoiesis and immune function
following GH or IGF-1 treatment 108. Conversely, some studies have suggested that GH
deficient mice have significantly smaller thymi (reversible with administration of GH),
diminished B cell production and myeloid deficiencies 115. However, these abnormalities are
not observed in humans with GH deficiency. Studies by Welniak et al. (2002) suggest that the
results observed in the GH deficient dwarf mice are variable and are dependent on stress,
weaning age and conditions under which the mice are housed 108.

Hematopoietic progenitors in the spleen and BM are increased following administration of GH
to adult mice 116. GH hormone administration following sygeneic bone marrow
transplantation in mice leads to enhanced hematopoiesis (analyzed by colony-forming unit-
cultures) and erythropoiesis, as well as enhanced recovery of leukocytes and platelets 117.
While the augmentation of peripheral neutrophil recovery was substantial, lymphocyte
recovery was only marginally enhanced (albeit statistically significantly) 117.

Following allogeneic HSCT and GH administration thymic cellularity is increased, as are
peripheral T cell and B cell numbers 118. In addition, mice that were treated with GH following
BMT rejected third-party grafts significantly faster than control HSCT mice 118. Studies
treating mice with IGF-1 following HSCT support these findings. IGF-1 treatment following
allogeneic HSCT significantly increases peripheral T cells numbers and T cell proliferation
without exacerbating GVHD 119, and reconstitution is also enhanced following syngeneic
HSCT 120.

Growth hormone enhances immune reconstitution predominantly through stimulating IGF-1
production, which provides anti-apoptotic signals. It may also act directly on thymic stromal
cells to increase the production of growth factors such as SCF and IL-7 108.
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GH and IGF-1 have already been administered to AIDS patients with mixed results. The growth
factors were well tolerated and increased thymic volume in children, but only a modest increase
in T cell function was observed.

OP9-DL1 Generated T Cell Precursors
Studies by Zuniga-Pflucker and Bernstein demonstrated that normal T cell development from
HSCs can be achieved in vitro, using activation of Notch-1 in the presence of growth factors
(especially IL-7). This is due to the development of an in vitro culture system which takes
advantage of the requirement of Notch-Notch ligand interaction for normal T cell development
121,122. In vivo proliferation, survival, lineage commitment and tissue architecture are all
dependent on Notch signaling to varying degrees (reviewed in 123). It is, however, the
interaction between Notch1 and its ligand Delta-like 1 or 4 (DL1 or DL4) that is essential for
T lineage commitment and differentiation.

When cultured in an in vitro system in the presence of Notch1, both murine and human
hematopoietic and embryonic stem cells develop into T cells or their precursors 122,124–
126. To date, two Notch1-based culture systems have been developed: a. coculture of seeded
cells with OP9 bone marrow-derived stromal cells expressing DL1 (OP9-DL1 cells) 122, and
b. culture of precursor cells in the presence of immobilized DL1-hIgG fusion protein
(DL1ext-IgG) 121.

Using the OP9-DL1 stromal cells, the culture of murine LSKs (Lineage−Sca-1+c-kit+ HSC
containing population) in the presence of IL-7 and FLT3L can result in large numbers of T/
NK cell precursors. These cells can then be adoptively transferred with either T cell-depleted
(TCD) BM or purified LSKs to enhance T cell reconstitution 127. Recipients of OP9-DL1-
derived T cell precursors showed increased thymic cellularity and significantly improved donor
T-cell chimerism. Combination of T cell precursor administration and treatment with KGF had
additive effects on thymic reconstitution. In thymectomized recipients, adoptively transferred
T cell precursors enhanced extrathymic T cell development. OP9-DL1-derived T cell
precursors gave rise to host-tolerant CD4+ and CD8+ populations with normal T cell receptor
repertoires, cytokine secretion, and proliferative responses to antigen. Administration of OP9-
DL1 derived T-cell precursors increased resistance to L. monocytogenes infection after HSCT
and mediated significant GVT in the absence of GVHD 127. This novel method can be
modified to generate high numbers of human T cell precursors from human CD34+ cells
125,126, indicating the feasibility of using this approach to improve immune response and
anti-tumor activity in patients with T cell deficiencies including recipients of high-dose
chemotherapy, or autologous and allogeneic HSCT.

In addition to high-dose chemotherapy and autologous and allogeneic HSCT, adoptive T cell
precursor therapies could present a new approach for the treatment of T cell deficiencies such
as SCID and AIDS, as well as the management of hematopoietic failure due to radiation
damage. Bernstein and coworkers developed an animal product-free Notch1 based culture
system using DL1ext-IgG to generate clinical grade heterogenous populations of human
hematopoietic progenitor cells. They are currently conducting a clinical trial at Fred
Hutchinson Cancer Research Center to study the effect of adoptively transferred progenitor
cells, originating from cord blood-derived CD34+ HSCs expanded with DL1ext-IgG, on immune
reconstitution after HSCT.

In conclusion, although a true T cell growth factor, similar to G-CSF or GM-CSF for myeloid
lineage and erythropoietin for the erythroid lineage, has not been developed, several candidate
strategies, including IL-7, KGF, Lupron and T/NK cell precursors are now in clinical
development. The potential use of these strategies for immunotherapies holds great promise
for the future.
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