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Abstract
We report a transgenic line with highly penetrant cre recombinase activity in the somatotrope cells
of the anterior pituitary gland. Expression of the cre transgene is under the control of the locus control
region of the human growth hormone gene cluster and the rat growth hormone promoter. Cre
recombinase activity was assessed with two different lacZ reporter genes that require excision of a
floxed stop sequence for expression: a chick β-actin promoter with the CMV enhancer transgene and
a ROSA26 knock-in. Cre activity is detectable in the developing pituitary after initiation of Gh
transcription and persists through adulthood with high penetrance in Gh expressing cells and lower
penetrance in lactotropes, a cell type that shares a common origin with somatotropes. This Gh-cre
transgenic line is suitable for efficient, cell-specific deletion of floxed regions of genomic DNA in
differentiated somatotropes and a subset of lactotrope cells of the anterior pituitary gland.
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Introduction
The pituitary gland is the central endocrine organ in vertebrates. Through communication with
the hypothalamus, the pituitary regulates a wide range of functions including growth, fertility,
lactation, stress response, homeostasis and metabolism. Disruption in normal pituitary gland
function may result in failed expansion of pituitary cell types, hormone deficiency, pituitary
dwarfism, or pituitary tumors (Cushman and Camper, 2001). Somatotropes are cells
responsible for growth hormone (GH) production in the pituitary gland. GH is a key component
of the somatotropic axis, stimulating the production of insulin-like growth factor-I (IGF-I) in
the liver, which in turn acts on numerous target organs to regulate growth and a variety of other
physiological processes including hearing, vision, and glucose homeostasis (Chandrashekar
et al., 2007; Schneider et al., 2003; Walenkamp and Wit, 2007).

Generation of pituitary cell-specific cre transgenic lines has allowed for the study of particular
pituitary cell functions and cell lineage relationships (Bingham et al., 2006; Charles et al., In
press; Charles et al., 2006; Cushman et al., 2000; Jorgez et al., 2006; Luque et al., 2007; Naik
et al., 2006; Yin et al., 2008). We sought to generate a tool that would be useful for studying
the development and function of somatotropes, which represent approximately 40% of the cell
population of the adult anterior lobe. Cell specific gene targeting is invaluable for studying the
function of genes that have pleiotropic effects on development, function, or carcinogenesis of
vital organs causing embryonic lethality or complications due to multi-organ effects. For
example, a systemic knockout of the growth hormone receptor (Ghr) produces cardiac and
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pulmonary phenotypes, precluding assessment of functions in other organs (Beyea et al.,
2006; Egecioglu et al., 2007). Here we present a transgenic cre line, Tg(Gh-cre)SAC1, which
expresses cre recombinase in pituitary somatotropes, with limited expression in lactotropes,
and no detectable expression in other pituitary cell types. We predict this to be a useful tool
for targeted gene ablation in committed somatotropes, and therefore a valuable resource for
the scientific community.

The Gh-cre transgenic construct contains the coding sequences for a nuclear localized cre, 1.6
kb of the human GH locus control region (LCR), 1.77 kb of rat GH promoter, and β-actin
polyadenylation sequences (Fig. 1a). The rat GH promoter has produced strong expression in
transgenic mice (Akita et al., 1997;Behringer et al., 1988;Burton et al., 1991;Lira et al.,
1988;Lira et al., 1993). The hGH LCR fragment (−14.6 kb to −16.2 kb relative to the hGH
promoter) contains two pituitary-specific DNase I-hypersensitive sites and is sufficient for
restricting expression to somatotropes and somatolactotropes, for appropriately timed
induction of hGH transgene expression in mice starting at embryonic day e15.5–e16.5, and for
selective extinction of hGH in mature lactotropes (Bennani-Baiti et al., 1998). The human GH
LCR improves the penetrance of rat GH promoter-driven transgene expression (Behringer et
al., 1988;Bennani-Baiti et al., 1998;Jin et al., 1999;Jones et al., 1995;Nasonkin, 2002).

Twelve transgenic founder mice were initially surveyed for transgene expression by mating
with the chick β-actin-LacZ cre reporter strain, known as Tg(flox-lacZ)J7Sac (Cushman et al.,
2000), and analysis of X-gal staining in doubly transgenic progeny (Nasonkin, 2002). Five of
those lines exhibited robust staining in the adult pituitary gland, and the best line, Tg(Gh-
cre)SAC1, was chosen for detailed analysis with two cre reporter strains: chick β-actin-LacZ
and Rosa26-LacZ, officially known as B6;129S4-Gt(ROSA)26Sortm1Sor/J (Soriano, 1999).

Strong X-gal staining is evident in the anterior lobe of pituitaries from mice carrying both the
transgene Tg(Gh-cre)SAC1 and the Rosa26-LacZ reporter allele, and there is no significant
background activity in mice with the Rosa-LacZ allele but no cre transgene (Figure 1b). The
cell-specificity of cre-excision was assessed in mice carrying Tg(Gh-cre)SAC1 and the chick
β-actin-LacZ cre reporter by immunohistochemical staining for pituitary hormones and X-gal
staining. Nearly all X-gal stained cells also immunostained for GH, and the majority of GH
cells were X-gal stained (Figure 1d). Despite this 1:1 correspondence between X-gal staining
and GH immunostaining, a subset of the prolactin (PRL) expressing cells stain for X-gal (Figure
1e). These PRL, X-gal double positive cells are likely to represent somatomammotropes, which
express both PRL and GH (Frawley and Boockfor, 1991).

To facilitate comparison of the Tg(Gh-cre)SAC1 transgene with other cre strains, an analysis
of cell specificity and developmental activation was performed using the popular Rosa26-LacZ
allele. X-gal staining was observed in the majority of GH immunopositive cells and a subset
of the PRL immunopositive cells (Figure 2a, b). Quantitation of cre-mediated excision revealed
61 ± 11% of the somatotropes are X-gal positive and 9 ± 5% of the lactotropes. These results
are similar to those obtained with the chick β-actin-LacZ reporter. X-gal stained cells
expressing the Rosa26-LacZ reporter have a very small blue precipitate in a restricted cytosolic
region, while the entire nucleus turns blue using the chick β-actin-LacZ reporter. This could
result in underestimated penetrance with Rosa26-LacZ. No cre-mediated excision is observed
in adult thyrotropes, gonadotropes, or corticotropes (Figure 2c–e, respectively). Although it is
not uncommon for transgenes to exhibit variable activity, even within the same line, the
majority of Tg(Gh-cre)SAC1;Rosa-LacZ double transgenic mice exhibited similar X-gal
staining in the pituitary gland (17/18), suggesting that Tg(Gh-cre)SAC1 is a reliable resource
for deletion in somatotropes. Gh expression is normally detected in the mouse pituitary by
embryonic day 15.5 (e15.5) (Japon et al., 1994). Tg(Gh-cre)SAC1 transgene activity is not

Nasonkin et al. Page 2

Genesis. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



detectable at e14.5 (Fig. 2f), but it becomes readily apparent between e15.5 and e18.5 (Fig.
2g).

Recombination in non-pituitary tissues was assessed in Tg(Gh-cre)SAC1, Rosa-LacZ reporter
mice. X-gal staining was observed in the skin surrounding the forearm of e16.5-e17.5 embryos.
Low level X-gal staining is detected in the kidney, ovary and testis of Tg(Gh-cre)SAC1;Rosa-
LacZ mice (Figure 3). The recombination in nonpituitary tissues may not represent ectopic
expression because GH is expressed human skin, and Gh transcripts are detectable in the brain
and testis of wild type mice (Slominski et al., 2000),
(http://www.informatics.jax.org/searches/reference.cgi?46734). No X-gal staining was
observed in the adult liver, skeletal muscle, adipose tissue, lung, spleen, or heart, and in one
occurrence minimal staining was observed in pancreas (data not shown). No X-gal staining
was seen in the placentas of double transgenic embryos at e16.5. In addition, we detected no
evidence of leaky cre activity in the germline (data not shown).

Mouse strains that confer gene deletion in somatotropes have been developed using the
promoter from the rat GH releasing hormone receptor (Ghrhr) (Yin et al., 2008) and the rat
Gh promoter, similar to our strategy, except without the human growth hormone locus control
region (Luque et al., 2007). In contrast to the Ghrhr-cre strain, we find no evidence of cre-
activity in thyrotropes. The Tg(Gh-cre)SAC1 strain is the first to be fully characterized for
ectopic excision activity during development and in adult tissues. Thus, the thorough
histological information we provide using a well-characterized cre-reporter gene is an
advantage of the Tg(Gh-cre)SAC1 strain.

We expect that these transgenic mice will have many uses. Permanently marked somatotropes
could be dispersed and sorted for gene expression profiling (Muzumdar et al., 2007) or used
in intact tissue to study the role of the interconnected cellular network in producing sex-specific
pulsatile patterns of GH secretion (Bonnefont et al., 2005). Another potentially intriguing
application would be somatotrope-specific deletion of Ghr to discover the role of GH feedback
on the anterior pituitary, given the many metabolic effects of systemic Ghr deletion on skeletal
and cardiac muscle function, adiposity, liver function, carcinogenesis and aging (reviewed in
(Clark et al., 2006).

METHODS
Generation of Transgene Construct

The Gh-cre transgene construct was generated by PCR amplification of 1.77 kb of sequence
from the rat GH (rGH) promoter (accession #X12967) using primers F 5′-
GGGTACCTCTAGAAGCTTAGTTTCTAGTAGG and R, 5′-
CCTGAGCAGTTTGGAATCTGG. The PCR product was amplified using the Expand High
Fidelity polymerase mix (Roche, Indianapolis, IN) under the following conditions: 95°C for 2
minutes, followed by 5 cycles of 94°C for 45 seconds, 58°C for 1 minute and 72°C for 2
minutes, then 25 cycles of 94°C for 45 seconds, 61°C for 1 minute and 72°C for 2 minutes,
and a final 10 minute extension at 72°C. The rGH promoter was cloned upstream of the cassette
containing the nuclear localized Cre and βactin-polyadenylation sequences, in the pML78
plasmid at the XhoI site (Meyers et al., 1998). To minimize the possibility of position effect
variegation (PEV) of the transgene insertion site, a 1.6 kb BglII fragment of sequence from the
human growth hormone (hGH) locus control region (LCR) was cloned upstream of the 1.77
kb rGH promoter (Bennani-Baiti et al., 1998; Jin et al., 1999; Jones et al., 1995). hGH LCR
sequences (accession # AF039413) were obtained by PCR amplification of human DNA using
hGH LCR primers F, 5 ′-CGGGGTACCTCTAGAGATCTTGTCTCAGAAAAACCC, (KpnI
and XbaI cloning sites underlined) and R, 5′-
GGGGTACCTCTAGAGATCTTGGCCTAGGCCTCG with Expand High Fidelity
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polymerase under the following conditions: 95°C for 3 minutes, followed by 5 cycles of 94°
C for 45 seconds, 60°C for 1 minute and 72°C for 2 minutes, then 25 cycles of 94°C for 40
seconds, 65°C for 1 minute and 72°C for 1 minute 45 seconds, and a final extension at 72°C
for 10 minutes.

Generation, Characterization and Maintenance of Mice
The GH-cre transgene was injected into (C57BL/6J × SJL/J) F1 × F1 zygotes, and the fertilized
eggs were then transferred into pseudopregnant foster mothers. Transgene positive progeny
were genotyped using PCR amplification of genomic DNA for the presence of cre using the
following primers: 5′-GCATAACCAGTGAAACAGCATTGCTG-3′ and 5′-
GGACATGTTCAGGGATCGCCAGGCG-3′, under the following conditions: 94°C for 3
minutes, followed by 32 cycles of 94°C for 30 seconds, 60°C for 60 seconds and 72°C for 90
seconds, and a final 10 minute extension at 72°C.

To determine the number of copies of the transgene inserted into the genome, a Southern
analysis was performed using 10μg of KpnI digested genomic tail DNA. The copy number of
Tg(GH-cre)SAC1 was estimated at 30–50 copies per haploid genome (data not shown).

Dissected pituitaries from adult progeny were assayed for X-gal activity, as previously
described (Brinkmeier et al., 1998). The pituitaries of the doubly transgenic progeny (n=8)
were stained for X-gal activity as previously described (Cushman et al., 2000). Tissues were
embedded in paraffin and sectioned at 5μm thickness. Immunohistochemistry was performed
for each of the pituitary hormones as previously described (Kendall et al., 1991).

Quantitation of cre-mediated excision in somatotropes and lactotropes was accomplished using
three doubly transgenic mice positive for Tg(GH-cre)SAC1 and the Rosa26-LacZ reporter.
Three separate regions of the pituitary were photographed after histochemical staining for PRL
or GH and X-gal. The average percentage of cells positive for GH and X-gal was calculated
by dividing the total number of double positive cells by the total number of GH positive cells.
The same calculations were done for PRL.
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Figure 1. Structure and function of Tg(Gh-cre)SAC1 transgene
A total of 1.6 kb of the human growth hormone locus control region was cloned upstream of
a 1.77 kb fragment containing the rat growth hormone promoter, the cre recombinase coding
sequences, and the beta-globin poly adenylation and terminator sequences (a). Pituitaries of
adult mice doubly transgenic for Tg (Gh-cre)SAC1 and the Rosa26 floxed stop lacZ reporter
mouse strain stained blue with X-gal indicating cre-mediated recombination (b), while cre
transgene negative mice carrying the reporter have no X-gal staining (c). Tg(Gh-cre)SAC1 mice
were mated to the cβ-actin-CMV-floxed stop NLS-LacZ reporter and tissues from doubly
transgenic progeny stained with X-gal (Cushman et al., 2000). Nuclear localized blue staining,
evidence of cre activity, is detected in cells immunostained for GH (d) and PRL (e). Black
arrows identify hormone-positive cells with cre activity, and white arrows identify hormone-
positive cells without cre activity.
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Figure 2. Tg(Gh-cre)SAC1 is specific for the somatotrope, lactotrope lineages
Adult pituitaries from mice doubly transgenic for Tg(Gh-cre)SAC1 and the Rosa26 lacZ reporter
strain were stained with X-gal and antibodies specific for GH (a), prolactin (b), TSHβ (c),
LHβ (d), or POMC (e), developed with DAB to produce a brown color, and photographed at
100x oil immersion magnification. Although doubly transgenic embryos stained for X-gal
show no blue staining at e14.5 (f), it is detected at e15.5 (g) when endogenous growth hormone
expression begins. Magnification bars (a, f) represent 10μm (a–e, f–g, respectively).
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Figure 3. Minimal ectopic Tg(Gh-cre)SAC1 transgene expression
Very limited X-gal staining is detected in non-pituitary tissues such as the skin surrounding
the limbs and trunk of developing embryos (a). At e18.5, X-gal staining is appropriately
restricted to the developing anterior lobe (A) and is absent from the intermediate (I) and
posterior (P) lobes (b). In adult tissues, X-gal staining is seen in the developing follicles of
some ovaries (c). Sporadic but very faint X-gal staining appears in the Leydig cells of the testes
(d) and in the renal cortex (e). No staining is detected in the adult liver (f). All magnification
bars represent 50μm.
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