Dropout Rates in Randomized Clinical Trials of Antipsychotics: A Meta-analysis Comparing First- and Second-Generation Drugs and an Examination of the Role of Trial Design Features

Jonathan Rabinowitz^{1,2}, Stephen Z. Levine², Orna Barkai², and Ori Davidov³

²Bar Ilan University, Ramat Gan, Israel; ³University of Haifa

Dropout is often used as an outcome measure in clinical trials of antipsychotic medication. Previous research is inconclusive regarding (a) differences in dropout rates between firstand second-generation antipsychotic medications and (b) how trial design features reduce dropout. Meta-analysis of randomized controlled trials (RCTs) of antipsychotic medication was conducted to compare dropout rates for firstand second-generation antipsychotic drugs and to examine how a broad range of design features effect dropout. Ninety-three RCTs that met inclusion criteria were located (n = 26, 686). Meta-analytic random effects models showed that dropout was higher for first- than second-generation drugs (odds ratio = 1.49, 95% confidence interval: 1.31-1.66). This advantage persisted after removing study arms with excessively high dosages, in flexible dose studies, studies of patients with symptom exacerbation, nonresponder patients, inpatients, and outpatients. Mixed effects models for meta-analysis were used to identify design features that effected dropout and develop formulae to derive expected dropout rates based on trial design features, and these assigned a pivotal role to duration. Collectively, dropout rates are lower for second- than first-generation antipsychotic drugs and appear to be partly explained by trial design features thus providing direction for future trial design.

Key words: dropout/second-generation antipsychotic/ first-generation antipsychotic

Introduction

Dropout occurs frequently in clinical trials of antipsychotic treatment. It is an important outcome because it may reflect drug tolerability, adverse effects, and lack of compliance. For instance, in the recent clinical antipsychotic trials of intervention effectiveness (CATIE) study discontinuation was a primary outcome measure. Seventy four percent of CATIE trial participants discontinued their assigned study medication before study completion at 18 months,¹ and dropout rates were roughly equivalent for first-(ie, typical) and second-generation (ie, atypical) antipsychotics. Indeed, high dropout rates are not uncommon in RCTs of antipsychotic medication. Across studies of different durations, meta-analysis has estimated that dropout rates exceed a third of patients treated with antipsychotic medication in RCTs.²

Meta-analyses have reported lower dropout rates for second-generation antipsychotics than placebo.²⁻⁴ Such reviews, however, are inconclusive regarding differences in dropout rates between first- and second-generation medications. One meta-analysis of studies up to the year 2000 has reported that only clozapine shows significantly lower dropout rates than first-generation medications. Another meta-analysis covering studies conducted through 1998⁵ has found differences favoring amisulpride, clozapine, risperidone, and olanzapine over first-generation medications. A meta-analysis of 28 published studies covering 4 of the major second-generation antipsychotics in Western populations through 2003 reported lower dropout rates for second-than first-generation treatment but only for flexible dose studies.⁶ Thus, research, based on meta-analyses shows lower dropout rates for secondgeneration antipsychotic drugs than placebo. Research, however, is inconclusive regarding differences in dropout rates between second- and first-generation antipsychotic treatment.

Research has examined how study design features of antipsychotic trials correspond with dropout rates. Wahlbeck et al² have reported that dropout increases with trial length and year of publication. Yet, Kemmler et al³, who examined placebo-controlled trials up to 12 weeks long, did not find a significant association of dropout and duration, publication year, or use of multiple dosages. Yet, they³ did find that the presence of a placebo arm relates to a higher dropout rate in the active treatment arm. Furthermore, conclusions regarding secondgeneration antipsychotic medications differ between

¹To whom correspondence should be addressed; tel: +972-9-748-3679, fax: +972-9-740-1318, e-mail: jr827@columbia.edu.

[©] The Author 2008. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org.

active- and placebo-controlled trials, highlighting the appropriateness of this comparson.⁷ Also, flexible rather than fixed dosage⁶ and higher dosages of first-generation medications⁵ have been reported to increase the difference in dropout rates between first- and second-generation medications. To provide a more comprehensive consideration of design features than has been covered previously, it is appropriate to consider patients levels of symptomatology and whether patients treated were in or outpatients because these may effect dropout rates.

The current meta-analysis compares dropout rates between first- and second-generation antipsychotic drugs and examines the effects of trial design features on dropout rates. Specifically, we examine the effects of trial duration, presence of placebo arm, number of trial arms, fixed vs flexible dosing, dosage, inpatient vs outpatient, symptom severity, and publication year on dropout rates. All published and unpublished studies irrespective of duration and sample size are included.

Methods

Literature Search

Trial reports were retrieved by an extensive literature search of the Cochrane Central Register of Controlled Trials and PubMed. The former includes published and nonpublished clinical trials and is based on extensive database searches, reference lists of published trials, and contacts with drug manufacturers and primary researchers.⁸ The search aimed to identify all double-blind randomized clinical trials of second-generation antipsychotic medications (risperidone, olanzapine, clozapine, quetiapine, amisulpride, ziprasidone, sertindole and aripiprazole) fulfilling the following criteria: being published or presented between the years 1990 and 2006, consisting of any adult patient population with a diagnosis of schizophrenia, schizoaffective or schizophreniform disorder.

Cumulatively our searches rendered 202 references using the following search string "(efficacy or effectiveness or relapse or remission or safety) and (schizophrenia or schizoaffective disorder or schizophreniform disorder) and (clozapine or olanzapine or risperidone or amisulpride or aripiprazole or quetiapine or sertindole or ziprasidone) and (adult and double mind)" in either the title, abstract, or keyword for the years 1990-2006. The removal of open-label trials rendered 162 references available. Sixtytwo of these references were secondary publications of studies previously presented in a primary publication, and 7 additional references were excluded for missing information on dosing and or on dropout rates. This left 93 trials that met the inclusion criteria (see Appendix). Eight studies compared placebo, first-, and second-generation medications; 44 compared first- and second-generation without placebo; 19 compared second-generation and placebo; and 22 compared second-generation antipsychotic medications. Seven studies (7.5%) were published prior to 1996, 73 (78.5%) from 1997 to 2003, and 13 (14%) from 2004 to 2006.

Data Acquisition

The following information was extracted from each trial study report: the number of patients randomized to the different treatment arms, the total number of dropouts in the individual treatment arms, trial duration, patient type (stable responder, symptom exacerbation, nonresponder), hospitalization status (inpatients, outpatients, or both), study year, fixed vs flexible dosing, dose for fixed dose studies, and mean dose for flexible dose studies. In some studies, mean dose was not provided and so was estimated from the dosage range. To provide an overview, table 1 includes all studies with at least 100 patients per treatment (see Appendix for data from all studies), and Table 2 presents all placebo-controlled trials.

Data Analysis

To compare the dropout rates within study arms between first- and second-generation antipsychotic medications, meta-regression (random effects metaanalysis) was conducted in \mathbb{R}^{52} with the rmeta package.⁵³ For comprehensiveness, this analysis was conduced first for all studies and then for those with at least 30, 50, and 100 patients per treatment. To test whether dropout differences might relate to the use of excessive dosages, analysis was rerun after removing study arms using excessive dosages and then for each second-generation drug. To see whether differences persisted, additional subanalyses were conducted of studies using flexible nonexcessive dosing, studies of nonresponder patients, studies of inpatients, and studies of outpatients.

Excessive dosing was operationalized as doses over the maximal effective dose based on the Davis et al⁵⁴ metaanalysis of dose responses. That meta-analysis aimed to identify the near-maximal effective dose, namely, the threshold dose required to cumulate in all or almost all clinical responses for each drug. For example, the near-maximal efficacy dose for chlorpromazine is 450 mg/day and for risperidone is 4 mg/day.

In the second part of the analysis to predict dropout, mixed effects models for meta-analysis were conduced with the Mima function in the R statistical software environment.⁵⁵ Covariates included were duration in weeks, number of study arms, presence of placebo, fixed vs flexible dosing, patient type (stable responder, symptom exacerbation, nonresponder), whether study was conducted on inpatients only, whether or not a study arm used excessively high dosages, and study year. Separate models were conducted for first-generation, secondgeneration, and placebo arms. This permitted us to derive

Reference	Duration in wk	п	Treatment and Dosage	Dropout n	% Dropout	п	Dropout	% Dropout	Treatment and Dosage	Arms Overdose Nonsignificant and Dropout Notes Supplemented Where Applicable
Colonna et al ⁹	52	370	Am 605	167	45.1	119	62	52.1	H 14.6	Both arms overdosed
Copolov et al ¹⁰	6	221	Qu 455	69	31.2	227	80	35.2	H 8	
Csernansky et al ¹¹	52	179	Ri 3	104	58.1	188	142	75.5	Н 7.5	
Daniel et al ¹²	52	141	SE 24	27	19.1	141	43	30.5	H 10	
Emsley et al ¹³	12	143	Qu 600	32	22.4	145	28	19.3	H 20	Qu overdosed only
Hirsch et al ¹⁴	28	148	Zi 116.5	82	55.4	153	89	58.2	H 8.6	
Kane et al ^{15,16}	6	154	Pe 39.10	44	28.6	146	31	21.2	Ar 28.8	Ar overdosed
Kane et al ¹⁷	4	384	Ar 15, 30	149	38.8	104	42	40.4	H 10	Ar is overdosed
Kasper et al ¹⁸	52	861	Ar 30	494	57.4	433	305	70.4	H 10	Ar is overdosed
Lieberman et al ^{19,20}	12	131	Ol 9.1	42	32.1	132	61	68.1	H 4.4	
Lieberman et al ¹	78	1175	Ol 11.25, Qu 300, Ri 2.25, Zi 60	869	74.0	257	192	74.7	Pe 12	
Peuskens ²¹	8	1136	Ri 1, 4, 8, and 16	284	25.0	226	63	27.9	Н 10	Ri > 4 overdosed, (r = 8, n = 230, dropout = 24.35%, r = 12, n = 226, dropout = 27.43%, r = 16, n = 224, dropout = 28.3%)
Rosenheck et al ²²	52	205	Cl 552	88	42.9	218	157	72.0	H 28	Both arms overdosed
Rosenheck et al ²³	52	159	Ol 15.8	91	57.2	150	96	64.0	H 14.3	H overdosed
Schooler et al ²⁴	104	278	Ri 3.3	117	42.1	277	101	36.5	H 2.9	
Tollefson et al ^{25,26}	6	1336	Ol 13.2	448	33.5	660	351	53.2	H 11.8	H overdosed

 Table 1.
 Summary of Studies Comparing Dropout in First- and Second-Generation Antipsychotic Medications With a Sample Size of At Least 100 Patients Per Treatment Arm

Note: H = Haloperidol, Qu = Quetiapine, Ri = Risperidone, SE = Sertindole, Zi = Ziprasidone, Ol = Olanzapine, Rinj = Risperidone Injectable, Cl = Clozapine, Pe = Perphenzine, Ar = Aripiprazole, Ch = Chlorpromazine. Trials with more than 2 treatments are ordered by drug and corresponding n, dropout number, and % dropout. Placebo arm details omitted.

equations for the prediction of dropout that operate much in the manner of typical regression models.

Results

Descriptive Statistics

The 94 studies constituted a total sample size of 26 686 subjects. They received first- (n = 5465) or secondgeneration antipsychotic medications (n = 19400) or placebo (n = 1821). Participants allocated to first-generation medication ranged from 21 to 660 in each trial. The number treated with second-generation drugs ranged from 21 to 1336, and the number treated with placebo ranged from 22 to 155. The distribution of number of study arms was 2 arms (k = 66; 70.2%), 3 arms (k = 10; 10.6%), 4 arms (k = 6; 6.4%), and 5–8 arms (k = 12; 12.8%). The sample size for each dose arm ranged from 21 to 1336.

Comparing Dropout in First- and Second-Generation Antipsychotic Drugs

First- and second-generation treatments were compared utilizing random effects meta-analysis. To enable comparison of first- and second-generation medications, if the number of treatment conditions was not 2 (ie, one first- and one second-generation arm) then the arms were aggregated. The inclusion of all 52 studies comparing first- and second-generation medications, in figure 1, showed significantly lower dropout rates for secondgeneration drugs (OR = 1.49, 95% CI = 1.31, 1.66; test for heterogeneity: χ_{51}^2 = 116.39, P = 0, estimated random effects variance = 0.1). As shown in table 3, this finding replicated in the 43 trials with over 30 participants in each treatment condition, the 33 trials with over 50 participants in each treatment condition, and the 16 trials with over 100 participants in each condition. It is noted that although the odds ratios dropped slightly in

Table 2. Description of Placebo-Controlled Studies

Publication	Publication Year	Duration in wk	n	% Dropout	Study Arms
Arvanitis and Miller ²⁷	1997	6	51	68.6	7
Beasley and Sanger ²⁸	1996	6	50	80.0	3
Beasley and Tollefson ²⁹	1996	6	68	67.6	5
Beasley et al ³⁰	2003	52	102	53.9	2
Borison et al ³¹	1996	6	55	60.0	2
Boyer et al ³²	1995	6	34	26.5	3
Chouinard et al ³³	1993	8	22	72.7	6
Cooper et al ³⁴	1999	8	53	47.2	3
Cooper et al ³⁵	2000	26	58	84.5	2
Corrigan et al ³⁶	2004	6	86	25.6	8
Daniel et al ³⁷	1999	6	92	46.7	3
Danion et al ³⁸	1999	12	83	39.8	3
Kane et al ¹⁷	2002	4	106	45.3	4
Kane et al ^{15,16}	2003	12	98	67.3	6
Keck et al ³⁹	1998	4	48	50.0	3
Lecrubier et al ⁴⁰	2006	26	34	64.7	4
Loo et al ⁴¹	1997	26	72	68.1	2
Marder et al ⁴²	1994	8	66	68.2	6
Meltzer et al ⁴³	2004	6	98	79.6	6
Pigott et al ^{44,45}	2003	26	155	71.0	2
Potkin et al ⁴⁶	2003	4	103	49.5	4
Small et al ⁴⁷	1997	6	96	59.4	3
Tollefson et al48	1999	.70	53	15.1	2
Van-Kammen et al ⁴⁹	1996	5.70	38	39.5	4
Arato et al ⁵⁰	2002	52	71	85.9	4
Woods et al ⁵¹	2003	8	29	27.6	2

Note: k = 26 studies.

magnitude with arm sample size, the results suggested that second-generation treatment persistently had lower dropout rates than first-generation treatments. Dropout rates of specific second-generation drugs were compared with first-generation drugs in figure 2. These results showed a significant difference for amisulpride, olanzapine, risperidone, and an almost significant difference for clozapine and quetiapine.

Dropout rates of first- and second-generation drugs were further compared in table 3 by examining subgroups of studies. First, differences were retested after removing study arms with excessive doses (see Methods section) from both first- and second-generation drug arms. After removing 52 study arms in 53 studies due to excessive dosing, 21 studies remained available for analysis that compared first- and second-generation medication.

While based on only a small number of studies, these results showed a significant advantage for olanzapine and a nearly significant difference for risperidone but not for ziprasidone, clozapine, and quetiapine. No data were available to examine amisulpride and aripiprazole after removing excessive dosing. This analysis was repeated after removing fixed dose studies with excessive dosages. Collectively, 122 fixed and 84 overdosed study arms were removed leaving 17 studies available for analysis. Advantages for second-generation drugs were observed (see table 3). Next studies of patients with symptom exacerbation, nonresponder patients, inpatient, and outpatient were examined. These too all showed an advantage for second-generation drugs. Collectively, therefore, the current results consistently demonstrate at the aggregate level, for specific drugs even if not overdosed, and accounting for relevant moderators a unitary trend of higher dropout for first- than second-generation antipsychotic treatment.

Predictors of Dropout

Mixed effects regression models presented in table 4 were conducted separately for first generation, second generation, and placebo to examine the association of trial design features and dropout. Trial duration was consistently significant (<.01) in the 3 models. Specifically, the longer the trial the higher the dropout rate. Duration had a large effect size (Zs > 2.56), indicating its influence. In second-generation trials, flexible vs fixed dose also significantly reduced dropout, and for first-generation drugs, there was a nearly significant effect (P = .06) for excessive dosing which increased dropout. Numbers of study arms, presence of a placebo arm, and study year were not significantly associated with dropout.

The regression models in table 4 may be applied to derive expected dropout rates. Caution is warranted because they have not been validated in trials not included in the analysis. To illustrate the use of the equations, the following are examples based on a placebo, first-, and second-generation study arms. Based on the placebo study arm of Pigott et al⁴⁴ in 2003 the placebo equation is applied as follows: (intercept 2226.70) + (year 2003 × -1.10) + (symptom level 0 × $(4.67) + (\text{in patient study } 1 \times 5.96) + (\text{arms } 2 \times 10^{-3})$ 1.86) + (duration in weeks 26×0.94) + (fixed dosing 1×10.02). This produces an estimated dropout rate of 67.5% where the actual rate was 71.0%. The firstgeneration drug equation is illustrated using the haloperidol arm from Lieberman et al (2003)¹⁹ as follows: $(intercept - 1760.18) + (year 2003 \times 0.89) + (symptom)$ level 1×-3.75 + (in patient study 0×-0.75) + (with placebo arm 1×11.75 + (number of arms $6 \times$ $(3.13) + (duration in weeks 12 \times 0.31) + (fixed dosing)$ 0×4.18 + (excessive dosing 0×11.05). This produces an estimated dropout rate of 53.0% where the rate was 46.2%. The second-generation drug equation is illustrated

Fig. 1. Forest Plots Comparing All First- and Second-Generation Studies.

using the olanzapine arm from CATIE¹ as follows: (intercept -1063.80) + (year 2005 × 0.54) + (symptom level 1 × 1.85) + (in patient study 0 × -1.49) + (with placebo arm 0 × 4.23) + (arms 5 × 0.52) + (duration in weeks 78 × 0.38) + (fixed dosing 0 × 8.23) + (excessive dosing 0 × -3.50). This produces an estimated dropout rate of 52.99% where actual dropout rate was 63.64%.

The average difference between the estimated and actual percentage dropout across study arms was 6.44 (SD = 16.26). Differences were observed by drug and are presented in ascending order as follows: chlorpromazine, M = -6.64 (SD = 12.69, k = 5), placebo, (SD = 15.48, k = 26),Μ = -5.85amisulpride, Μ = -0.95(SD = 11.38,k = 19). ziprasidone, M = 1.87 (SD = 17.76, k = 15), haloperidol, M = 7.78(SD = 16.45, k = 41), olanzapine, M = 8.52 (SD = 14.94), k = 43), risperidone, M = 8.69 (SD = 2.46, k = 40), clozapine, M = 8.87 (SD = 15.65, k = 9), aripiprazole, M = 10.80 (SD = 13.55, k = 10), quetiapine, M = 14.87

(SD = 3.65, k = 15). This highlighted that the formula was generally accurate but estimated dropout for some drugs with greater accuracy than others.

Discussion

The current meta-analysis indicates that the use of secondgeneration antipsychotic medication has lower dropout rates than first-generation treatments. Several design features of randomized clinical trials of antipsychotic medications are identified that are significantly associated with dropout rates. Among these, a longer duration was most consistently and strongly associated with dropout, although effects are observable also for dosing (fixed vs flexible) and excessive dosing. Significant effects are not found for publication year, number of study arms, the presence of a placebo study arm, inpatient study, or symptom level. The trial design features that we examined were used to develop an equation to estimate expected dropout

Fig. 2. Forest Plots Comparing First- and Second-Generation Antipsychotic Drugs.

Table 3. Results of Meta-analysis for All Studies and Subgroups of Studies

Grouping	OR (95% CI)	Test for Heterogeneity (χ^2); Estimated Random Effects Variance (REV)
All studies $(n = 52)$	1.49 (1.31, 1.69)	116.39, $df = 51$, $P = 0$; REV = 0.1
Studies with at least 30 patients per arm	1.46 (1.27, 1.66)	106.02, $df = 42$, $P = 0$, REV = 0.1
Studies with at least 50 patients per arm	1.43 (1.24, 1.64)	90.14, $df = 32$, $P = 0$, REV = 0.1
Studies with at least 100 patients per arm	1.38 (1.11, 1.71)	90.14, $df = 15$, $P = 0$, REV = 0.15
Studies not using excessive doses for first- and second-generation drugs $(n = 21)$	1.34 (1.14, 1.57)	30.72, df = 20, P = .059; REV = 0.04
Clozapine $(n = 3)$	0.97 (0.49, 1.92)	3.81, $df = 2$, $P = .149$; REV = 0.17
Olanzapine $(n = 8)$	1.74 (1.38, 2.2)	1.57, $df = 7$, $P = .98$; REV = 0
Quetiapine $(n = 3)$	1.04 (0.58, 1.87)	6.84, $df = 2$, $P = .03$; REV = 0.17
Risperidone $(n = 5)$	1.30 (0.88, 1.93)	15.3, $df = 4$, $P = .004$; REV = 0.13
Ziprasidone $(n = 2)$	0.93 (0.65, 1.34)	1.26, $df = 1$, $P = .26$; REV = 0.01
Flexible dose studies not using excessive dosing $(n = 17)$	1.37 (1.12, 1.68)	27.77, $df = 16$, $P = .03$; REV = 0.07
Studies of patients with symptom exacerbation $(n = 40)$	1.40 (1.26, 1.57)	48.64, $df = 39$, $P = .14$; REV = 0.02
Studies of nonresponder patients $(n = 10)$	1.53 (1.01, 2.32)	47.77, $df = 9$, $P = 0$; REV = 0.31
Inpatient studies $(n = 23)$	1.54 (1.3, 1.84)	38.4, $df = 22$, $P = .02$; REV = 0.06
Outpatient studies $(n = 29)$	1.45 (1.2, 1.74)	77.69, $df = 28$, $P = 0$; REV = 0.13

rates. The equation shows a reasonable correspondence between predicted and actual dropout rates.

Clinical Implications

A previous meta-analysis² covering studies up to the year 2000 reported an effect only for clozapine. Unlike that review, but like a review of 36 selected studies through

2003,⁶ our results show significant effects spanning second-generation drugs. Beyond those reviews, the results identify drug-specific effects. Our results also differ from another meta-analysis covering studies through 1998⁵ that reports differences favoring amisulpride, clozapine, risperidone, and olanzapine. In that meta-analysis for all but amisulpride, these differences are found only in the

Table 4. Mixed Effects Regression for Meta-analysis (Mima in R) Predicting Dropout

	Second Ge	neration (Arms = 1	71) ^a	First Gene	ration (Ar	$ms = 52)^{1}$	b	Placebo (Arms = 26	5) ^c	
	Estimate	SE	Ζ	Р	Estimate	SE	Ζ	Р	Estimate	SE	Ζ	Р
Intercept	-1063.80	774.72	-1.37	0.17	-1760.18	1726.94	-1.02	0.31	2226.70	2296.50	0.97	0.33
Publication year	0.54	0.39	1.41	0.16	0.89	0.86	1.03	0.30	-1.10	1.15	-0.96	0.34
Symptom level ^d	1.85	3.20	0.58	0.56	-3.75	5.91	-0.63	0.52	4.67	11.13	0.42	0.67
Inpatient	-1.49	2.98	-0.50	0.62	-0.75	5.99	-0.12	0.90	5.96	8.23	0.72	0.47
With placebo	4.23	3.57	1.19	0.24	11.75	10.42	1.13	0.26			_	
Number of arms	0.52	0.92	0.56	0.57	3.13	2.69	1.16	0.24	1.86	2.47	0.75	0.45
Duration in weeks	0.38	0.08	4.99	0.0001	0.31	0.12	2.57	0.01	0.94	0.33	2.88	0.004
Fixed dose	8.23	3.39	2.43	0.01	-4.18	7.03	-0.59	0.55	10.02	10.57	0.95	0.34
High dosage	-3.50	2.68	-1.30	0.19	11.05	5.92	1.87	0.06	_	_	_	—

^aEstimate of (residual) heterogeneity: 257.92; test for (residual) heterogeneity: QE = 83076.29; df = 162; P < .0001; omnibus test of all moderators: QME = 50.32; df = 8; P < .0001.

^bEstimate of (residual) heterogeneity: 307.14; test for (residual) heterogeneity: QE = 23856.1; df = 43; P < .0001; omnibus Test of all Moderators: QME = 20.00; df = 8; P = .01.

^cEstimate of (residual) heterogeneity: 314.62; test for (residual) heterogeneity: QE = 9494.47; df = 19; P < .0001; omnibus Test of all Moderators: QME = 10.62; df = 6; P = .10.

^dBased on study inclusion criteria: 0 nonresponder patients, 1 patient with symptom exacerbation, 2 stable responder patients.

Publication	Total n	Total Dropout	Duration in wk	Arms	Placebo n	Placebo Dropout	First Generation <i>n</i>	First Generation Dropout	Second Generation <i>n</i>	Second Generation Dropout	Placebo	Symptoms	Fixed	Dosage	In Hospital
Addington et al ⁵⁶ Arato et al ⁵⁰	296 278	98 179	8 52	2 4	71	61			296 207	98 118	Р	SE SE	fix		In
Arvanitis and Miller ²⁷ Azorin et al ⁵⁷	361 273	212 72	6 12	7 2	51	35	52	34	258 273	143 72	Р	SE SE	fix	NME NME	In
Beasley Sanger et al ²⁸ Beasley et al ²⁹	152 335	107 196	6 6	3 5	50 68	40 46	69	39	102 198	67 111	P P	NR SE	fix fix	NME	In
Beasley et al ⁵⁸ Beasley et al ³⁰	431 326	184 85	6 52	5 2	102	55	81	38	350 224	146 30	Р	SE SR	fix	NME	In
Bitter et al ⁵⁹ Borison et al ³¹ Boyer et al ³² Brook et al ⁶⁰	150 109 104 132	63 59 19 16	18 6 6 1	2 2 3 2	55 34	33 9	42	8	150 54 70 90	63 26 10 8	P P	SE SE SE SE	fix	NME NME	In In In
Buchanan et al ⁶²	75	11	10	2			37	3	38	8		NR			
Buchanan et al ⁶¹	63	6	16	2			34	3	29	3		SE			
Carriere et al ⁶³	199	70	16	2			105	46	94	24		SE		NME	
Casey et al ⁶⁴ Chan et al ⁶⁵ Chang et al ⁶⁶	207 60 62	55 8 4	8 8 8	3 2 2			30	3	207 60 32	55 8 1		SR SE SE	fix	NME NME	In In
Chouinard et al ³³ Chue et al ⁶⁷	135 640	65 527	8 12	6 2	22	16	21	13	92 640	36 527	Р	SE SE	fix fix		In
Colonna et al ⁹	489	229	52	2			119	62	370	167		SE		NME	
Conley and Mahmoud ⁶⁹	377	96	8	2					377	96		SE		NME	
Conley 1998 ⁷⁰ Conley et al ⁶⁸ Cooper et al ³⁴	84 114 159	25 54 69	8 12 8	2 3 3	53	25	42 38 53	13 26 25	42 76 53	12 28 19	Р	NR NR SE	fix fix	NME	In In
Cooper et al ³⁵	119	90	26	2	58	49			61	41	Р	SR	fix		
Copolov et al ¹⁰ Corrigan et al ³⁶ Csernansky et al ¹¹	448 735 367	149 154 246	6 6 52	2 8 2	86	22	227 188	80 142	221 649 179	69 132 104	Р	SE SE SR			In In
Daniel et al ¹²	282	70	52	2			141	43	141	27		SE	fix		
Daniel et al ³⁷	302	86	6	3	92	43			210	43	Р	SE	fix		
Danion et al ³⁸	242	62	12	3	83	33			159	29	Р	SE	fix		
Emsley ⁷¹	183	46	6	2			84	26	99	20		SE		NME	
Emsley et al ¹³	288	60	12	2			145	28	143	32		NR	fix		
Gureje et al ⁷²	65	36	30	2					65	36		SE		NME	
Heck et al ⁷³	77	30	7	2			37	15	40	15		SE		NME	
HGFH Korea ⁷⁴	104	29	6	2			51	16	53	13		SE			
Hirsch et al ¹⁴	301	171	28	2			153	89	148	82		SR			

Appendix Randomized Controlled Trials of Second Generation Antipsychotic Medications Summary

Appendix Continued

	Total	Total	Duration		Placebo	Placebo	First	First Generation	Second Generation	Second Generation					In
Publication	n n	Dropout	in wk	Arms	n	Dropout	Generation <i>n</i>	Dropout	n	Dropout	Placebo	Symptoms	Fixed	Dosage	Hospital
Hoyberg et al ⁷⁵ Huttunen et al ⁷⁶ Ishigooka et al ⁷⁷	107 98 182	29 40 48	8 6 8	2 2 2			52 89	15 30	55 98 93	14 40 18		SE SE SE			In In
Jakovljevic et al ⁷⁸ Jeste et al ⁷⁹	60 175	22 41	6 8	2 2			30	13	30 175	9 41		SE SE			In
Kane et al ^{15,16}	300	75	6	2			146	31	154	44		NR		NME	
Kane et al ⁸⁰	71	35	26	2			34	22	37	13		NR		NME	
Kane et al ¹⁷	594	239	4	4	106	48	104	42	384	149	Р	SE	fix	NME	
Kane et al ^{15,16}	400	222	12	6	98	66			302	156	Р	SE	fix		
Kasper et al ¹⁸ Keck et al ³⁹	1294 139	799 64	52 4	2 3	48	24	433	305	861 91	494 40	Р	SE SE	fix fix		In
Kennedy et al ⁸¹	117	47	6	2			34	18	83	29		SE			
Kudo et al ⁸²	180	59	8	2					180	59		SE			
Lecrubier et al ⁴⁰	244	143	26	4	34	22			210	121	Р	SE	fix		
Lee et al ⁸³	54	9	6	2					54	9		SE			
Lieberman et al ^{19,20,84}	263	103	12	6			132	61	131	42	Р	SE			
Lieberman et al ¹	1432	1061	78	5			257	192	1175	869		SE			
Lieberman et al ²⁰ Loo et al ⁴¹	160 141	30 80	52 26	2 2	72	49	80	18	80 69	12 31	Р	SE SE	fix		In
Marder et al ⁴² Martin et al ⁸⁵	388 377	199 81	8 26	6 2	66	45	66	32	256 377	122 81	Р	SE SE	fix	NME	In
McQuade et al ⁸⁶	317	230	26	2					317	230		SE			
Meltzer et al ⁴³ Messotten ⁸⁷ Moller et al ⁸⁸ Mortimer et al ⁸⁹ Mullen et al ⁹⁰	481 60 191 377 728	337 9 64 135 235	6 8 6 26 16	6 2 2 2 2 2	98	78	98 32 96	68 3 39	285 28 95 377 728	191 6 25 135 235	Р	SE SE SE SE SE	fix fix	NME NME NME	In In In In
Naber et al ⁹¹	114	71	26	2					114	71		SE			
Petit et al (1997) Peuskens and Link ⁹³ Peuskens ²¹ Peuskens et al ⁹²	126 201 1362 228	55 13 347 69	8 6 8 8	2 2 6 2			63 100 226	30 9 63	63 101 1136 228	25 4 284 69		SE SE SE SE	fix fix	NME	In In In
Pigott et al ^{44,45} Potkin et al ⁴⁶ Puech et al ⁹⁴ Purdon et al ⁹⁵	310 404 319 65	194 162 82 32	26 4 4 54	2 4 5 3	155 103	110 51	64 23	21 14	155 301 255 42	84 111 61 18	P P	SR SE SE SE	fix fix fix	NME NME NME	In In In
Ritchie et al ⁹⁶	66	14	4	2					66	14		SR			
Rosenheck et al ²² Rosenheck et al ²³	423 309	245 187	52 52	2 2			218 150	157 96	205 159	88 91		NR NR		NME	In

	Ē	Ē	f		-	-	ŗ	First	Second	Second				,
Publication	l otal n	Iotal Dropout	Duratioi t in wk	Arms 1	rlacebo 1	Placebo Dropout	First Generation 1	Generation n Dropout	Generation	Generation Dropout	ı Placebc	Symptoms Fix	ed Dosag	In e Hospital
Sanger et al ⁹⁷	83	31	9	2			24	15	59	16		SE		
Schooler et al ²⁴	555	218	104	2			277	101	278	117		SE		
Sechter et al ⁹⁸	310	123	26	2					310	123		SR	NME	
Simpson et al ⁹⁹	269	115	9	2					269	115		SE		In
Small et al ⁴⁷	286	159	9	e G	96	57			190	102	Ь	SE fix		In
Speller et al ¹⁰⁰	60	11	52	7			31	7	29	4		SE	NME	In
Tollefson et al ^{25,26}	1996	<i>466</i>	9	7			660	351	1336	448		NR		
Tollefson et al ⁴⁸	106	11	1	2	53	8			53	3	Р	SE fix		
Tran et al ¹⁰²	339	161	28	2					339	161		SE	NME	
Tran et al ¹⁰¹	54	24	14	2			28	14	26	10		SE		
Van-Kammen et al ⁴⁹	153	53	9	4	38	15			115	38	Р	SE fix		In
Volavka et al ¹⁰³	157	99	14	4			37	16	120	50		SE	NME	In
Wetzel et al ¹⁰⁴	132	44	9	7			62	25	70	19		SE	NME	In
Wirshing et al (1999) ¹⁰⁵	67	11	8	2			33	9	34	5		NR	NME	
Woods et al ⁵¹	09	19	8	2	29	8			31	11	Р	SE		
Zhang et al ¹⁰⁶	78	5	12	7			37	4	41	1		SE fix	NME	In

fixed and not random effects analysis, and no evidence supporting differences for quetiapine are identified. Like Wahlbeck et al² we found that dropout increases with trial length, however, we did not find a significant effect of publication year. While Kemmler et al³ reports an effect for placebo arms in studies up to 12 weeks long, we did not find a significant placebo arm effect, which may be related to our inclusion of studies regardless of length. We also did not find an effect of multiple dosage regimes. Corresponding to others,⁶ flexible rather than fixed dosage was found to effect dropout in secondgeneration and not first-generation arms. Like Geddes et al⁵, we found a nearly significant effect of high dosages on dropout for first-generation medications. Collectively, therefore, our findings support the use of secondgeneration treatment over first-generation treatment where dropout is the outcome.

Limitations

Several limitations are notable. It is not possible to estimate the possible bias introduced by studies not published, although our review was used by the Cochrane database that includes unpublished studies. Also, our meta-analysis does not eliminate studies due to a priori criteria that may have biased the results (eg, including only large clinical trials or only trials of a certain duration). Another limitation is that the current data contain limited clinical information. Such information is likely to influence the study outcomes, although the clinical information our study contained did not (ie, hospitalization status and symptom severity). It is noted that there is a payoff in meta-analysis between number of variables and the number of studies. The approach taken here was to opt for more studies in an unbiased manner, thus maximizing statistical power. Statistical power was, however, small when examining the specific effects of some of the second-generation medications. The number of studies included in the current meta-analysis, however, is much larger than previous reviews. The available data do not yet permit the analysis of long-acting injectable second-generation antipsychotics (eg, risperidone injectable) and thus highlight a direction for future research once enough studies become available. The formula to derive expected dropout rates may be useful to plan trials and compare study results. The formula should, however, be used with caution until it is validated by predicting dropout rates in future studies.

Conclusions

The current results demonstrate that dropout rates are moderately yet consistently reduced by second- rather than first-generation antipsychotic medication. This trend replicates across medications and irrespective of

Appendix Continued

a series of moderators investigated (eg, hospitalization status, dosage). The current meta-analysis represents, to our knowledge, the largest study of how methodological factors effect dropout in clinical trials of antipsychotic medication. The results indicate that dropout rates are significantly influenced by the trial duration, fixed vs flexible dosing, and excessive dosing. These findings provide a significant increment in understanding dropout rates in clinical trials and may contribute to the design of future clinical trials. Collectively, these results show moderate and consistent benefits, indicated by dropout reduction, that favor second- over firstgeneration medications and provide formulae to assist future trial designs.

Supplementary Material

Supplementary material for this article is available online at http://schizophreniabulletin.oxfordjournals.org/.

Acknowledgments

Author Rabinowitz has received research grants, travel support, and or consulting fees from Janssen Pharmaceuticals, Eli Lilly, Pfizer, and Novartis. Other authors have no conflicts of interest. This work was done as part of a PhD conducted in the Department of Mathematics at Bar Ilan University.

References

- 1. Lieberman JA, Stroup TS, McEvoy JP, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. *N Engl J Med.* 2005;353(12):1209–1223.
- Wahlbeck K, Tuunainen A, Ahokas A, Leucht S. Dropout rates in randomised antipsychotic drug trials. *Psychopharmacology (Berl)*. 2001;155(3):230–233.
- Kemmler G, Hummer M, Widschwendter C, Fleischhacker WW. Dropout rates in placebo-controlled and activecontrol clinical trials of antipsychotic drugs: a meta-analysis. *Arch Gen Psychiatry*. 2005;62(12):1305–1312.
- 4. Labelle A, Boulay LJ, Lapierre YD. Retention rates in placebo- and nonplacebo-controlled clinical trials of schizo-phrenia. *Can J Psychiatry*. 1999;44(9):887–892.
- Geddes J, Freemantle N, Harrison P, Bebbington P. Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. *BMJ*. 2000; 321(7273):1371–1376.
- 6. Martin JL, Perez V, Sacristan M, Rodriguez-Artalejo F, Martinez C, Alvarez E. Meta-analysis of drop-out rates in randomised clinical trials, comparing typical and atypical antipsychotics in the treatment of schizophrenia. *Eur Psychiatry*. 2006;21(1):11–20.
- Woods SW, Gueorguieva RV, Baker CB, Makuch RW. Control group bias in randomized atypical antipsychotic medication trials for schizophrenia. *Arch Gen Psychiatry*. 2005;62(9):961–970.

- Cochrane Library. Available at http://www3.interscience. wiley.com/cgi-bin/mrwhome/106568753/HOME. Accessed January 9, 2008.
- Colonna L, Saleem P, Dondey-Nouvel L, Rein W. Longterm safety and efficacy of amisulpride in subchronic or chronic schizophrenia. Amisulpride Study Group. *Int clin psychopharmacol.* 2000;15(1):13–22.
- Copolov DL, Link CG, Kowalcyk B. A multicentre, doubleblind, randomized comparison of quetiapine (ICI 204,636, 'Seroquel') and haloperidol in schizophrenia. *Psychol Med.* 2000;30(1):95–105.
- 11. Csernansky JG, Mahmoud R, Brenner R. A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. *N Engl J Med.* 2002;346(1): 16–22.
- 12. Daniel DG, Wozniak P, Mack RJ, McCarthy BG. Longterm efficacy and safety comparison of sertindole and haloperidol in the treatment of schizophrenia. The Sertindole Study Group. *Psychopharmacol Bull.* 1998;34(1): 61–69.
- Emsley RA, Raniwalla J, Bailey PJ, Jones AM. A comparison of the effects of quetiapine ('seroquel') and haloperidol in schizophrenic patients with a history of and a demonstrated, partial response to conventional antipsychotic treatment. PRIZE Study Group. *Int clin psychopharmacol.* 2000;15(3):121–131.
- Hirsch SR, Kissling W, Bauml J, Power A, O'Connor R. A 28-week comparison of ziprasidone and haloperidol in outpatients with stable schizophrenia. J Clin Psychiatry. 2002;63(6):516–523.
- 15. Kane J, Carson W, Kujawa M, Stringfellow J, Marcus R, Sanchez R. Aripiprazole vs. perphenazine in treatment-resistant schizophrenia. *Annual Meeting of the American Psychiatric Association.* San Francisco; 2003.
- Kane JM, Eerdekens M, Lindenmayer JP, Keith SJ, Lesem M, Karcher K. Long-acting injectable risperidone: efficacy and safety of the first long-acting atypical antipsychotic. *Am J Psychiatry*. 2003;160(6):1125–1132.
- 17. Kane JM, Carson WH, Saha AR, et al. Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. *J Clin Psychiatry*. 2002;63(9):763–771.
- Kasper S, Lerman MN, McQuade RD, et al. Efficacy and safety of aripiprazole vs. haloperidol for long-term maintenance treatment following acute relapse of schizophrenia. *Int J neuropsychopharmacol.* 2003;6(4):325–337.
- Lieberman JA, Tollefson G, Tohen M, et al. Comparative efficacy and safety of atypical and conventional antipsychotic drugs in first-episode psychosis: a randomized, double-blind trial of olanzapine versus haloperidol. *Am J Psychiatry*. 2003;160(8):1396–1404.
- Lieberman JA, Phillips M, Gu H, et al. Atypical and conventional antipsychotic drugs in treatment-naive firstepisode schizophrenia: a 52-week randomized trial of clozapine vs chlorpromazine. *Neuropsychopharmacology*. 2003;28(5):995–1003.
- Peuskens J. Risperidone in the treatment of patients with chronic schizophrenia: a multi-national, multi-centre, doubleblind, parallel-group study versus haloperidol. Risperidone Study Group. Br J Psychiatry. 1995;166(6):712–726; discussion 727–733.
- 22. Rosenheck R, Cramer J, Xu W, et al. A comparison of clozapine and haloperidol in hospitalized patients with refractory schizophrenia. Department of Veterans Affairs

Cooperative Study Group on Clozapine in Refractory Schizophrenia. N Engl J Med. 1997;337(12):809–815.

- 23. Rosenheck R, Perlick D, Bingham S, et al. Effectiveness and cost of olanzapine and haloperidol in the treatment of schizophrenia: a randomized controlled trial. *JAMA*. 2003;290(20):2693–2702.
- 24. Schooler N, Rabinowitz J, Davidson M, et al. Risperidone and haloperidol in first-episode psychosis: a long-term randomized trial. *The American journal of psychiatry*. 2005; 162(5):947–953.
- 25. Tollefson GD, Beasley CM, Jr., Tran PV, et al. Olanzapine versus haloperidol in the treatment of schizophrenia and schizoaffective and schizophreniform disorders: results of an international collaborative trial. *Am J psychiatry*. 1997;154(4):457–465.
- Tollefson GD, Sanger TM. Negative symptoms: a path analytic approach to a double-blind, placebo- and haloperidol-controlled clinical trial with olanzapine. Am J psychiatry. 1997;154(4):466–474.
- Arvanitis LA, Miller BG. Multiple fixed doses of "Seroquel" (quetiapine) in patients with acute exacerbation of schizophrenia: a comparison with haloperidol and placebo. The Seroquel Trial 13 Study Group. *Biol Psychiatry*. 1997;42(4): 233–246.
- Beasley CM, Jr, Sanger T, Satterlee W, Tollefson G, Tran P, Hamilton S. Olanzapine versus placebo: results of a doubleblind, fixed-dose olanzapine trial. *Psychopharmacology* (*Berl*). 1996;124(1–2):159–167.
- 29. Beasley CM, Jr, Tollefson G, Tran P, Satterlee W, Sanger T, Hamilton S. Olanzapine versus placebo and haloperidol: acute phase results of the North American double-blind olanzapine trial. *Neuropsychopharmacology*. 1996;14(2):111–123.
- Beasley CM, Jr, Sutton VK, Hamilton SH, et al. A doubleblind, randomized, placebo-controlled trial of olanzapine in the prevention of psychotic relapse. *J Clin Psychopharmacol*. 2003;23(6):582–594.
- Borison RL, Arvanitis LA. Miller BG. ICI 204,636, an atypical antipsychotic: efficacy and safety in a multicenter, placebo-controlled trial in patients with schizophrenia. U.S. SEROQUEL Study Group. J Clin Psychopharmacol. 1996;16(2):158–169.
- 32. Boyer P, Lecrubier Y, Puech AJ, Dewailly J, Aubin F. Treatment of negative symptoms in schizophrenia with amisulpride. *Br J Psychiatry*. 1995;166(1):68–72.
- 33. Chouinard G, Jones B, Remington G, et al. A Canadian multicenter placebo-controlled study of fixed doses of risperidone and haloperidol in the treatment of chronic schizophrenic patients. J Clin Psychopharmacol. 1993;13(1):25–40.
- 34. Cooper S, Tweed J, Raniwalla J, Welch C. A placebocontrolled comparison of zotepine versus chlorpromazine in patients with acute exacerbation of schizophrenia: cochrane Colloboration; 1999.
- 35. Cooper SJ, Tweed J, Raniwalla J, Butler A, Welch C. A placebo-controlled comparison of zotepine versus chlorpromazine in patients with acute exacerbation of schizophrenia. *Acta psychiatr Scand*. 2000;101(3):218–225.
- Corrigan MH, Gallen CC, Bonura ML, Merchant KM. Effectiveness of the selective D4 antagonist sonepiprazole in schizophrenia: a placebo-controlled trial. *Biol Psychiatry*. 2004;55(5):445–451.
- 37. Daniel DG, Zimbroff DL, Potkin SG, Reeves KR, Harrigan EP, Lakshminarayanan M. Ziprasidone 80 mg/day and 160 mg/ day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 6-week placebo-controlled trial. Ziprasi-

done Study Group. *Neuropsychopharmacology*. 1999;20(5): 491–505.

- Danion JM, Rein W, Fleurot O. Improvement of schizophrenic patients with primary negative symptoms treated with amisulpride. Amisulpride Study Group. *Am J Psychiatry*. 1999;156(4):610–616.
- 39. Keck P, Jr, Buffenstein A, Ferguson J, et al. Ziprasidone 40 and 120 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 4-week placebo-controlled trial. *Psychopharmacology (Berl)*. 1998;140(2):173–184.
- 40. Lecrubier Y, Quintin P, Bouhassira M, Perrin E, Lancrenon S. The treatment of negative symptoms and deficit states of chronic schizophrenia: olanzapine compared to amisulpride and placebo in a 6-month double-blind controlled clinical trial. *Acta psychiatr Scand.* 2006;114(5):319–327.
- 41. Loo H, Poirier-Littre MF, Theron M, Rein W, Fleurot O. Amisulpride versus placebo in the medium-term treatment of the negative symptoms of schizophrenia. *Br J Psychiatry*. 1997;170:18–22.
- 42. Marder SR, Meibach RC. Risperidone in the treatment of schizophrenia. *Am J Psychiatry*. 1994;151(6):825–835.
- 43. Meltzer HY, Arvanitis L, Bauer D, Rein W. Placebocontrolled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. *Am J Psychiatry*. 2004;161(6):975–984.
- 44. Pigott TA, Carson WH, Saha AR, Torbeyns AF, Stock EG, Ingenito GG. Aripiprazole for the prevention of relapse in stabilized patients with chronic schizophrenia: a placebocontrolled 26-week study. J Clin Psychiatry. 2003;64(9): 1048–1056.
- 45. Pigott TA, Carson WH, Saha AR, Torbeyns AF, Stock EG, Ingenito GG. Aripiprazole for the prevention of relapse in stabilized patients with chronic schizophrenia: a placebo-controlled 26-week study. *J Clinical Psychiatry*. 2003;64(9):1048–1056.
- 46. Potkin SG, Saha AR, Kujawa MJ, et al. Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. *Arch Gen Psychiatry*. 2003;60(7):681–690.
- 47. Small JG, Hirsch SR, Arvanitis LA, Miller BG, Link CG. Quetiapine in patients with schizophrenia. A high- and low-dose double-blind comparison with placebo. Seroquel Study Group. *Arch Gen Psychiatry*. 1997;54(6):549–557.
- Tollefson GD, Dellva MA, Mattler CA, Kane JM, Wirshing DA, Kinon BJ. Controlled, double-blind investigation of the clozapine discontinuation symptoms with conversion to either olanzapine or placebo. The Collaborative Crossover Study Group. J Clin psychopharmacol. 1999; 19(5):435–443.
- 49. van Kammen DP, McEvoy JP, Targum SD, Kardatzke D, Sebree TB. A randomized, controlled, dose-ranging trial of sertindole in patients with schizophrenia. *Psychopharmacology* (*Berl*). 1996;124(1–2):168–175.
- Arato M, O'Connor R, Meltzer HY. A 1-year, double-blind, placebo-controlled trial of ziprasidone 40, 80 and 160 mg/day in chronic schizophrenia: the Ziprasidone Extended Use in Schizophrenia (ZEUS) study. *Int Clin Psychopharmacol*. 2002;17(5):207–215.
- Woods SW, Breier A, Zipursky RB, et al. Randomized trial of olanzapine versus placebo in the symptomatic acute treatment of the schizophrenic prodrome. *Biological Psychiatry*. 2003;54(4):453–464.
- 52. Team RDC. R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. 2006.

- 53. Schwarzer G. http://cran.r-project.org/doc/packages/meta.pdf.
- Davis JM, Chen N. Dose response and dose equivalence of antipsychotics. J Clin Psychopharmacol. 2004;24(2):192–208.
- 55. Viechtbauer W. MiMa: an S-Plus/R function to fit metaanalytic mixed-, random-, and fixed-effects models [computer program]. Version 2006. Available from http:// www.wvbauer.com.
- 56. Addington DE, Pantelis C, Dineen M, Benattia I, Romano SJ. Efficacy and tolerability of ziprasidone versus risperidone in patients with acute exacerbation of schizophrenia or schizoaffective disorder: an 8-week, double-blind, multicenter trial. *J Clin Psychiatry*. 2004;65(12):1624–1633.
- 57. Azorin JM, Spiegel R, Remington G, et al. A double-blind comparative study of clozapine and risperidone in the management of severe chronic schizophrenia. *Am J Psychiatry*. 2001;158(8):1305–1313.
- Beasley CM, Jr., Hamilton SH, Crawford AM, et al. Olanzapine versus haloperidol: acute phase results of the international double-blind olanzapine trial. *Eur Neuropsychopharmacol.* 1997;7(2):125–137.
- 59. Bitter I, Dossenbach MR, Brook S, et al. Olanzapine versus clozapine in treatment-resistant or treatment-intolerant schizophrenia. *Prog Neuropsychopharmacol Biol Psychiatry*. 2004;28(1):173–180.
- 60. Brook S, Krams M, Gunn KP. Ziprasidone_IM_Study_ Group. The efficacy and tolerability of intramuscular (IM) ziprasidone versus IM haloperidol in patients with acute, non-organic psychosis. 151st American Psychiatric Association Meeting. 1998.
- Buchanan RW, Ball MP, Weiner E, et al. Olanzapine treatment of residual positive and negative symptoms. *Am J Psychiatry*. 2005;162(1):124–129.
- 62. Buchanan RW, Breier A, Kirkpatrick B, Ball P, Carpenter WT, Jr. Positive and negative symptom response to clozapine in schizophrenic patients with and without the deficit syndrome. *Am J Psychiatry*. 1998;155(6):751–760.
- 63. Carriere P, Bonhomme D, Lemperiere T. Amisulpride has a superior benefit/risk profile to haloperidol in schizophrenia: results of a multicentre, double-blind study (the Amisulpride Study Group). *Eur Psychiatry*. 2000;15(5):321–329.
- 64. Casey DE, Carson WH, Saha AR, et al. Switching patients to aripiprazole from other antipsychotic agents: a multicenter randomized study. *Psychopharmacology (Berl)*. 2003; 166(4):391–399.
- 65. Chan H, Chen C, Chen J, Sun H, Chiu H-J, Chang C. A comparison of olanzapine and risperidone for the schizophrenic patients intolerance of neuroleptic-induced extrapyramidal syndromes (eps). *J Eur Coll Neuropsychopharmacol*. 2003;13(4):S316.
- Chang Fw, Wang CH, Zhao Z. Clinical effects of olanzapine vs chlorpromazine in treating positive symptoms of schizophrenia. *Chin J New Drugs and Clin Remedies*. 2003;22(6):357–359.
- 67. Chue P, Eerdekens M, Augustyns I, et al. Comparative efficacy and safety of long-acting risperidone and risperidone oral tablets. *Eur Neuropsychopharmacol.* 2005;15(1): 111–117.
- Conley RR, Kelly DL, Nelson MW, et al. Risperidone, quetiapine, and fluphenazine in the treatment of patients with therapy-refractory schizophrenia. *Clin Neuropharmacol.* 2005;28(4):163–168.
- 69. Conley RR, Mahmoud R. A randomized double-blind study of risperidone and olanzapine in the treatment of schizo-

phrenia or schizoaffective disorder. Am J Psychiatry. 2001;158(5):765–774.

- Conley RR, Tamminga CA, Bartko JJ, et al. Olanzapine compared with chlorpromazine in treatment-resistant schizophrenia. Am J Psychiatry. 1998;155(7):914–920.
- Emsley RA. Risperidone in the treatment of first-episode psychotic patients: a double-blind multicenter study. Risperidone Working Group. *Schizophr Bull.* 1999;25(4): 721–729.
- 72. Gureje O, Miles W, Keks N, et al. Olanzapine vs risperidone in the management of schizophrenia: a randomized doubleblind trial in Australia and New Zealand. *Schizophr Res.* 2003;61(2–3):303–314.
- Heck AH, Haffmans PM, de Groot IW, Hoencamp E. Risperidone versus haloperidol in psychotic patients with disturbing neuroleptic-induced extrapyramidal symptoms: a double-blind, multi-center trial. *Schizophr Res.* 2000; 46(2–3):97–105.
- 74. HGFH_Korea.HGFH Korea. Data on file: Cochrane Schizophrenia Group. 1989.
- 75. Hoyberg OJ, Fensbo C, Remvig J, Lingjaerde O, Sloth-Nielsen M, Salvesen I. Risperidone versus perphenazine in the treatment of chronic schizophrenic patients with acute exacerbations. *Acta psychiatr Scand.* 1993;88(6):395–402.
- 76. Huttunen MO, Piepponen T, Rantanen H, Larmo I, Nyholm R, Raitasuo V. Risperidone versus zuclopenthixol in the treatment of acute schizophrenic episodes: a doubleblind parallel-group trial. *Acta psychiatr Scand*. 1995;91(4): 271–277.
- 77. Ishigooka J, Inada T, Miura S. Olanzapine versus haloperidol in the treatment of patients with chronic schizophrenia: results of the Japan multicenter, double-blind olanzapine trial. *Psychiatry Clin Neurosci.* 2001;55(4):403–414.
- Jakovljevic M, Dossenbach M. Olanzapine versus fluphenazine in the acute (six-week) treatment of schizophrenia. *Psychiatr Danub*. 1999;11(1–2):3–10.
- 79. Jeste DV, Barak Y, Madhusoodanan S, Grossman F, Gharabawi G. International multisite double-blind trial of the atypical antipsychotics risperidone and olanzapine in 175 elderly patients with chronic schizophrenia. *Am J Geriatr Psychiatry*. 2003;11(6):638–647.
- Kane JM, Marder SR, Schooler NR, et al. Clozapine and haloperidol in moderately refractory schizophrenia: a 6-month randomized and double-blind comparison. *Arch Gen Psychiatry*. 2001;58(10):965–972.
- Kennedy JS, Jeste D, Kaiser CJ, et al. Olanzapine vs haloperidol in geriatric schizophrenia: analysis of data from a double-blind controlled trial. *Int J Geriatr Psychiatry*. 2003;18(11):1013–1020.
- 82. Kudo Y NJ, Ikawa G, Nakajima T, et al. Clinical trial of quetiapine in schizophrenia - efficacy and tolerability of quetiapine: a comparative double-blind study with masopramine in schizophrenic patients. *Annual Meeting of the World Psychiatric Association*. Hamburg, Germany; 1999.
- Lee CT, Conde BJ, Mazlan M, et al. Switching to olanzapine from previous antipsychotics: a regional collaborative multicenter trial assessing 2 switching techniques in Asia Pacific. J Clinical Psychiatry. 2002;63(7):569–576.
- 84. Lieberman JA, Tollefson G, Tohen M, et al. Comparative efficacy and safety of atypical and conventional antipsychotic drugs in first-episode psychosis: a randomized, double-blind trial of olanzapine versus haloperidol. *Am J Psychiatry*. 2003;160(8):1396–1404.

- 85. Martin S, Ljo H, Peuskens J, et al. A double-blind, randomised comparative trial of amisulpride versus olanzapine in the treatment of schizophrenia: short-term results at two months. *Curr Med Res Opin*. 2002;18(6):355–362.
- McQuade R, Jody D, Kujawa M, Carson W, Iwamoto T, Archibald D. Long-term weight effects of aripiprazole vs. olanzapine. 156th Annual Meeting of the American Psychiatric Association. San Francisco; 2003.
- 87. Messotten F. Risperidone versus haloperidol in the teatment of chronic psychotic patients: a multicentre double-blind study. Unpublished data on file from Janssen: Cochrane Colloboration. 1991.
- Moller HJ, Boyer P, Fleurot O, Rein W. Improvement of acute exacerbations of schizophrenia with amisulpride: a comparison with haloperidol. PROD-ASLP Study Group. *Psychopharmacology (Berl)*. 1997;132(4):396–401.
- Mortimer A, Martin S, Loo H, Peuskens J. A double-blind, randomized comparative trial of amisulpride versus olanzapine for 6 months in the treatment of schizophrenia. *Int Clin Psychopharmacology*. 2004;19(2):63–69.
- 90. Mullen J, Jibson MD, Sweitzer D. A comparison of the relative safety, efficacy, and tolerability of quetiapine and risperidone in outpatients with schizophrenia and other psychotic disorders: the quetiapine experience with safety and tolerability (QUEST) study. *Clin Ther.* 2001;23(11): 1839–1854.
- Naber D, Riedel M, Klimke A, et al. Randomized double blind comparison of olanzapine vs. clozapine on subjective well-being and clinical outcome in patients with schizophrenia. *Acta Psychiatr Scand*. 2005;111(2):106–115.
- Peuskens J, Bech P, Moller HJ, Bale R, Fleurot O, Rein W. Amisulpride vs. risperidone in the treatment of acute exacerbations of schizophrenia. Amisulpride study group. *Psychiatry Res.* 1999;88(2):107–117.
- 93. Peuskens J, Link CG. A comparison of quetiapine and chlorpromazine in the treatment of schizophrenia. *Acta Psychiatr Scand*. 1997;96(4):265–273.
- 94. Puech A, Fleurot O, Rein W. Amisulpride, and atypical antipsychotic, in the treatment of acute episodes of schizophrenia: a dose-ranging study vs. haloperidol. The Amisulpride Study Group. Acta Psychiatr Scand. 1998;98(1):65–72.
- 95. Purdon SE, Jones BD, Stip E, et al. Neuropsychological change in early phase schizophrenia during 12 months of treatment with olanzapine, risperidone, or haloperidol. The Canadian Collaborative Group for research in schizophrenia. *Arch Genl Psychiatry*. 2000;57(3):249–258.
- 96. Ritchie CW, Chiu E, Harrigan S, et al. The impact upon extra-pyramidal side effects, clinical symptoms and quality of life of a switch from conventional to atypical antipsy-

chotics (risperidone or olanzapine) in elderly patients with schizophrenia. *Int J Geriatr Psychiatry*. 2003;18(5): 432–440.

- Sanger TM, Lieberman JA, Tohen M, Grundy S, Beasley C, Jr., Tollefson GD. Olanzapine versus haloperidol treatment in first-episode psychosis. *Am J Psychiatry*. 1999;156(1): 79–87.
- Sechter D, Peuskens J, Fleurot O, Rein W, Lecrubier Y. Amisulpride vs. risperidone in chronic schizophrenia: results of a 6-month double-blind study. *Neuropsychopharmacol*ogy. 2002;27(6):1071–1081.
- 99. Simpson GM, Glick ID, Weiden PJ, Romano SJ, Siu CO. Randomized, controlled, double-blind multicenter comparison of the efficacy and tolerability of ziprasidone and olanzapine in acutely ill inpatients with schizophrenia or schizoaffective disorder. *Am J Psychiatry*. 2004;161(10): 1837–1847.
- 100. Speller JC, Barnes TR, Curson DA, Pantelis C, Alberts JL. One-year, low-dose neuroleptic study of in-patients with chronic schizophrenia characterised by persistent negative symptoms. Amisulpride v. haloperidol. Br J Psychiatry. 1997;171:564–568.
- 101. Tran PV, Dellva MA, Tollefson GD, Wentley AL, Beasley CM, Jr. Oral olanzapine versus oral haloperidol in the maintenance treatment of schizophrenia and related psychoses. *Br J Psychiatry*. 1998;172:499–505.
- 102. Tran PV, Hamilton SH, Kuntz AJ, et al. Double-blind comparison of olanzapine versus risperidone in the treatment of schizophrenia and other psychotic disorders. *J Clin Psychopharmacol.* 1997;17(5):407–418.
- 103. Volavka J, Czobor P, Sheitman B, et al. Clozapine, olanzapine, risperidone, and haloperidol in the treatment of patients with chronic schizophrenia and schizoaffective disorder. *Am J Psychiatry*. 2002;159(2):255–262.
- 104. Wetzel H, Grunder G, Hillert A, et al. Amisulpride versus flupentixol in schizophrenia with predominantly positive symptomatology – a double-blind controlled study comparing a selective D2-like antagonist to a mixed D1-/ D2-like antagonist. The Amisulpride Study Group. *Psychopharmacology (Berl)*. 1998;137(3):223–232.
- 105. Wirshing DA, Marshall BD, Jr., Green MF, Mintz J, Marder SR, Wirshing WC. Risperidone in treatmentrefractory schizophrenia. Am J Psychiatry. 1999;156(9): 1374–1379.
- 106. Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC. Risperidone versus haloperidol in the treatment of acute exacerbations of chronic inpatients with schizophrenia: a randomized double-blind study. *Int Clin Psychopharmacol.* 2001;16(6):325–330.