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Schizophrenia is a chronic brain disorder that affects about
1.1% of the adult US population annually. Hallucinations,
delusions, and impaired reality testing are prominent symp-
toms of the disorder. Modeling these symptoms is difficult
because it is unclear how to assess impaired reality testing
in animals. Animals cannot discuss their beliefs; however,
a century of learning experiments has shown us that they,
like us, construct complex internal representations of their
world. Presumably, these representations can become con-
fused with reality for animals in much the same way that
they do for schizophrenic patients. Indeed, there is evidence
from studies of Pavlovian conditioning that this happens
even in normal animals. For example, early in training
a cue that has been paired with reward elicits a highly re-
alistic, sensory representation of that reward, which is to
some extent indistinguishable from reality. With further
training, this sensory hallucination of reward is replaced
by a more abstract representation, termed a reward expec-
tancy. Reward expectancies reflect the sensory and other
qualities of the impending reward but are distinguishable
from the actual reward. Notably, the hallucinatory represen-
tations depend on subcortical regions, such as amygdala,
whereas reward expectancies require the progressive in-
volvement of prefrontal areas, such as orbitofrontal cortex.
Abnormal prefrontal function is associated with schizophre-
nia; impaired reality testing may result from a failure of the
normal shift from highly realistic, sensory representations to
more abstract, prefrontal expectancies. The Pavlovian pro-
cedures discussed here could be applied to animal models and
schizophrenic patients to test this hypothesis.
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Introduction

Consider a simple situation in which a hungry rat is
placed in an experimental chamber. A tone is presented,
and, following its termination, a sweet, sugar solution is
delivered. The rat will learn after only a few trials that the
tone predicts sugar. This is evident in the rat’s behavior,
which changes during the tone to reflect the impending
sugar delivery. Yet, what is the rat ‘‘thinking’’ during
the tone? It turns out that the tone evokes specific prop-
erties of the sugar, and the nature of these evoked prop-
erties changes in important ways from the earliest stages
of training to later stages. As we will show, these changes
reflect a shift or transition from a highly realistic, sensory
representation of the reward, which the rat has trouble
distinguishing from reality, to a more abstract represen-
tation of the expected reward, which the rat can readily
distinguish from reality.
The evidence for this shift comes from studies done by

Holland and colleagues using nausea to manipulate the
value of the reward. It is well established that if one pairs
a reward, such as a sugar solution, with nausea, rats will
reduce consumption of the reward thereafter. The reward
has been devalued. Amazingly, Holland found that if rats
were presented with pairings of a tone and sugar and then
made nauseous in the presence of the tone alone, the rats
subsequently reduced their consumption of the sugar so-
lution.1 This effect is referred to as ‘‘mediated devalua-
tion’’ because it is observed even though the sugar is
not present during the nausea. Rather devaluation was
mediated by the representation of sugar evoked by the
tone. This tone-evoked representation was so realistic
that the rat mistook it for actual sugar.
This inability to distinguish between a sensory repre-

sentation and the presence of sugar is conceptually some-
what similar to the impaired reality testing that
characterizes hallucinations and delusions in schizo-
phrenic patients. Like schizophrenic patients, who misin-
terpret cues and other input from their environment to
support simple and complex beliefs that are at odds
with reality, the rats have misinterpreted the tone as
reflecting the presence of reward, even though the reward
is not present. Notably, in normal rats, this effect is only
found very early in training; with further pairings of the
tone and sugar solution, the tone rapidly loses its ability
to mediate devaluation of the sugar solution (figure 1).
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Thus, the representation of the sugar reward evoked by
the tone cue becomes less real or somehow more distin-
guishable from that evoked by actual sugar reward.
Interestingly, the loss of the tone’s ability to support

mediated devaluation is paralleled by the development
of the tone’s ability to evoke what have been called re-
ward expectancies—predictions that sugar is about to
be received.2 The operation of these expectancies can
be demonstrated with reward devaluation. In reward de-
valuation, many pairings of tone and sugar are given.
Following extensive training, an aversion is formed by
pairing the sugar directly with nausea. Finally responding
to the tone alone is tested. Normal rats exhibit a sponta-
neous decrease in responding to the tone following deval-
uation of the reward.3,4 This result would only occur if
the rats had formed an expectancy of sugar in the pres-
ence of the tone. Thus, the early sensory hallucination of
sugar is replaced by a more abstract representation of the
expected sugar delivery; this representation is no longer
confused with actual sugar and can still be used to guide
behavior appropriately (figure 1).

Neural Mechanisms Underlying Hallucinations and Ex-
pectancies

The underlying associative processes that support sen-
sory hallucinations and reward expectancies appear to
depend, in part, on different neural substrates. Dwyer
andKillcross 5 have shown that the basolateral amygdala
(BLA) is critical to the ability of cues to support mediated
devaluation. They found that when rats were exposed to

a context predictive of a specific reward and thenmade ill,
consumption of that specific reward was later reduced.
This was not true for rats with bilateral, neurotoxic
BLA lesions. The deficit of BLA-lesioned rats cannot
be attributed to deficits in forming taste aversions; the
BLA is not involved in forming taste aversions to familiar
reward.6,7 Rather, the deficit seems to stem from an in-
ability of the BLA-lesioned rats to experience the sensory
hallucination of the reward in its predictive context. It is
likely that the BLA is producing this sensory hallucina-
tion through connections with gustatory cortex8,9 and
possibly gustatory thalamus.10 Unfortunately, we
know of no other studies that have examined the neural
mechanisms underlying mediated devaluation. Clearly
much work remains to be done in this area.
By contrast, many studies have been performed on re-

ward expectancy and its underlying neural mechanisms.
It has been demonstrated many times that the BLA and
orbitofrontal cortex (OFC) are critical to acquiring and
using reward expectancies to guide behavior. Neurotoxic
lesions of the BLA or OFC prevent changes in condi-
tioned responding following reward devaluation in
rats6,11–13 and monkeys,14–16 as does disconnection of
these structures, via contralateral or crossed lesions.17

When reward devaluation procedures are employed in
humans, functional magnetic resonance imaging reveals
that cue-evoked blood oxygen level–dependent response
in BLA and OFC changes to reflect the current value of
predicted reward.18 Thus, across rats, monkeys, and
humans reward devaluation studies reveal the BLA
and OFC to be critical for signaling reward expectancies.

Fig. 1.ACartoonDepicts SensoryHallucinations andRewardExpectanciesOver theCourse ofPavlovianConditioning inNormalRats and
OurHypothesis for RatsWith Prefrontal Dysfunction. Here, training consists of a tone that predicts cheese (left panel). In normal rats (top
right panel) early in training presentation of the tone alone will produce a sensory hallucination of cheese that, to some extent, is not
distinguished from cheese itself. Late in training, the representation evoked by the tone becomes distinguishable from that evoked by cheese,
corresponding to an expectancy of cheese. That is, the tone does not mean cheese is present but will soon be delivered. If this transition from
sensoryhallucination to rewardexpectationdependsonprefrontal control then ratswithprefrontal dysfunctionmight shownormalbehavior
early in learning (bottom right panel). However, as training continues there will be no transition to expectancy, resulting in a persistent
hallucination of cheese after normal rats have begun to generate an expectancy of cheese.
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Relevance of Pavlovian Models to Schizophrenia

Early in training, it is normal for a cue to elicit a highly
realistic, sensory representation of the reward it predicts.
We have suggested that this process is similar in some
ways to a hallucination: perceiving the presence of a re-
ward that is not really there. Later in training, the rat’s
behavior reflects the reality that the predicted reward is
not actually present but rather that it is expected in the
near future. Sensory hallucinations are replaced with re-
ward expectancies.

Although the underlying data are certainly incomplete,
the pattern of results described above suggests a model in
which prefrontal areas, such as the OFC, are essential for
modifying sensory representations acquired by other
brain areas. This would be consistent with the general
proposal that prefrontal areas are essential for working
memory, executive function, abstract representation,
and manipulation of information that is entailed in these
processes. Of course, prefrontal and even orbitofrontal
dysfunction has been well documented in patients with
schizophrenia.19–24 If our proposal is correct, then dys-
function of these prefrontal areas would disrupt the nor-
mal transition from sensory hallucinations to reward
expectancies, thereby resulting in impaired reality testing
(figure 1).

Importantly, the simple Pavlovian procedures de-
scribed here provide a way to test this hypothesis. Of
particular interest would be the performance of schizo-
phrenic patients in reward devaluation and mediated
devaluation tasks. Schizophrenic patients should fail to
show reduced behavioral responding to cues predicting
devalued rewards. Further, we would expect to find per-
sistent mediated devaluation even after extended training
in schizophrenic patients and also in animal models,
such as neonatal ventral hippocampus lesion-lesioned
rats.25 This pattern of results would mirror the persistent
hallucinations that characterize schizophrenia and pro-
vide a potential animal model in which to assess the ef-
ficacy of treatment.
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