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Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction
of the trypomastigote form of the parasite with host receptors. This review highlights recent
observations concerning these interactions. Some of the key receptors considered are those for
thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as
galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology
and cell biology of host receptors for T. cruzi may provide novel therapeutic targets.

Chagas disease caused by the parasite Trypanosoma cruzi remains an important cause of
morbidity and mortality in endemic areas of Mexico and Central and South America. Although
there are still areas where acute infection remains a public health problem, the greatest human
burdens are due to the consequences of chronic infection including cardiomyopathy and the
gastrointestinal megasyndromes (Tanowitz et al. 1992). T. cruzi infection has gained notoriety
because of its association with immunosuppressive states such as HIV/AIDS (Vaidian et al.
2004) and because of the threat of being transmitted by blood transfusion and organ
transplantation.

A critical event in infection with T. cruzi is the initial interaction of the trypomastigote form
of the parasite with the host cell. These interactions result in the activation of signal transduction
pathways important in the pathogenesis of Chagas disease. Over the years, there have been
many important studies on the interaction of this parasite and receptors on host cells. We have
chosen to highlight some recent aspects of this important relationship.

Trypanosoma cruzi–thromboxane receptor interactions
Chagas disease is characterized by intense inflammation and fibrosis (Tanowitz et al. 2005;
Petkova et al. 2000) associated with alterations in cardiovascular function, vascular tone
(Factor et al. 1985, Tanowitz et al. 1996), hemostasis (Tanowitz et al. 1992; Petkova et al.
2001), and platelet reactivity. An agent that displays some of these pathophysiological
properties is the bioactive lipid thromboxane A2 (TXA2). Systemic elevation in TXA2 levels
(measured as the stable hydrolytic product TXB2) is observed in mice infected with T. cruzi
(Tanowitz et al. 1990; Cardoni and Antunez 2004) suggesting that TXA2 may be important in
Chagas disease. The assumption has been that the host was the source of the elevated TXA2
observed in the circulation. However, it was recently reported that the parasite is another source
of this mediator (Ashton et al. 2007). TXA2 has a complicated role in the pathophysiology of
Chagas disease; however, parasite-derived TXA2 alone is sufficient to mediate disease
progression as deletion of TXA2 synthase from the host genome does not influence
pathogenesis (Ashton et al. 2007). Conversely, appropriate host response to parasite-derived
TXA2 is essential for maintaining host viability and disease pathogenesis. Employing TXA2
receptor (TP)-null mice, it was determined that a failure of the host to respond to parasite-
derived TXA2 resulted in a higher parasitemia, increased tissue parasitism, and shorter survival
time after infection (Ashton et al. 2007).

The TP is a member of the serpentine family of G-protein-coupled receptors. The coupling of
this receptor is complicated involving multiple heterotrimeric G-proteins as well as a number
of other signaling intermediates. The key signal from TP that appears to regulate the growth
phenotype of the amastigote is linked to the activation of Gαq-containing heterotrimeric G-
proteins (Ashton et al. 2007) although the specific mediator involved has yet to be confirmed.
These may include phospholipase C β and inositol phosphates (Garg et al. 1997) and
extracellular signal-regulated kinase (Leal et al. 2007) or protein kinase C (PKC; Einicker-
Lamas et al. 2007) activation. Many of these have been previously identified as mediators of
experimental Chagas disease. The commonality between these pathways and the host receptors
that activate them (such as those for endothelin, TXA2 and bradykinin) indicates that G-αq
signaling from the host may contribute to the pathogenesis of Chagas disease.
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In addition to mediating the symptomatic aspects of the disease, there are a number of suggested
roles for TP activation in the development of Chagas disease. The first is a means by which
the parasite manipulates the responses of the host during infection. The intracellular amastigote
produces TXA2 in substantial quantities (about half as much as platelets). Parasite-derived
TXA2 acts on putative receptors in somatic cells of the host to regulate parasite growth and
differentiation. This signaling loop ensures that the parasite does not overwhelm the host too
quickly increasing the likelihood of further transmission to a new host. These data may explain
differences in the susceptibility to experimental T. cruzi infection (Cardoni and Antunez
2004). The higher the TXA2 production, the earlier this regulatory system would be established
which would slow the rate of parasite growth.

Similarly, the response of the host to parasite-derived TXA2 appears to be largely anti-
inflammatory. TP-null mice show significant areas of inflammation while wild-type (WT) mice
display minimal pathology (Ashton et al. 2007). Despite being considered a pro-inflammatory
mediator, the anti-inflammatory effects of TXA2 may result from the suppression of NFκB
activation by other inflammatory mediators in the more complex setting of T. cruzi infection
in vivo as previously indicated (Ashton et al. 2003). Moreover, the secretion of TXA2 also
prevents the initiation of an adaptive immune response by the host (Kabashima et al. 2003).
Thus, TXA2 release by the parasite would severely compromise the adaptive and innate
immune responses of the host to infection, allowing continued parasite survival and progression
to the chronic phase of the disease. Collectively, these events produce some of the diverse
pathophysiological changes that result in the complicated phenotype of acute and chronic
Chagas disease.

Eicosanoids are produced by several parasitic organisms (Liu and Weller 1990; Belley and
Chadee 1995; Kubata et al. 2000). While the contribution of these modulators to disease
pathogenesis remains largely unexplored, they represent ideal modulators of infection. If
parasite-derived eicosanoids act as immunoregulatory agents for the host, similar to TXA2,
then this mechanism may represent a common mechanism used by intracellular parasites to
affect host response. This hypothesis is supported by data indicating enhanced mortality rates
in Chagas patients (Celentano et al. 1995; Sterin-Borda et al. 1996) and T.-cruzi-infected mice
(Celentano et al. 1995; Hideko-Tatakihara et al. 2008) with cyclooxygenase inhibitor use. Thus,
TXA2 appears to be one of a few parasite-derived molecules shown to be essential for host
survival and disease progression.

Parasite–bradykinin receptor interaction
The term “kinin” refers to a small group of vasoactive metabolites structurally related to the
nonapeptide bradykinin (BK), which are released from an internal moiety of high (HK) or low
(LK) molecular weight kininogens by the action of plasma or tissue kallikrein (Bhoola et al.
1992). In the settings of infection, kinins can be liberated from the kininogens by the action of
microbial cysteine proteases, such as those expressed by T. cruzi (Del Nery et al. 1997; Lima
et al. 2002; Scharfstein et al. 2000). Once released, the short-lived kinins (half life of <15 s in
the plasma) bind to a wide range of cells through distinct subtypes of heterotrimeric G-protein-
coupled receptors: bradykinin B2 receptors (B2R), which are constitutively expressed by
cardiovascular cells; B1R, whose expression is upregulated in injured tissues (Leeb-Lundberg
et al. 2005; Marceau and Bachvarov 1998). The effects of BK on the vascular endothelium are
prevented by the action of kinin-degrading peptidases, such as the angiotensin converting
enzyme (ACE)/kininase II (Skidgel and Erdos 2004). While intact kinins such as BK or lysyl-
BK (LBK) are the agonists for B2R, the proteolytic excision of the C-terminal Arg of BK/LBK
by carboxypeptidase N/M (kininase I) generates high-affinity ligands for B1R(des-Arg-BK or
des-Arg-LBK; Marceau and Bachvarov 1998).
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Cruzipain (CZ), the major lysosomal-like cysteine protease of T. cruzi, was characterized as a
potential therapeutic target for the treatment of this infection (McGrath et al. 1995). Initial
studies conducted with first-generation CZ inhibitors indicated that trypomastigotes rely on
the enzymatic activity of CZ to invade and multiply in cardiac myocytes (Meirelles et al.
1992). The elucidation of the X-ray structure of the catalytic domain of CZ (McGrath et al.
1995) led to development of potent and selective irreversible inhibitors of CZ, some of which
were able to protect mice from lethal infection (Engel et al. 1998).

Clues to understanding the functional roles of CZ came from studies demonstrating that this
papain-like cysteine protease resembles tissue kallikrein, i.e., both enzymes efficiently cleave
HK at the flanking sites of the internal kinin moiety, liberating lysyl-BK (Del Nery et al.
1997). Subsequently, it was demonstrated that HK interactions with heparan sulfate reduced
the cysteine inhibitory activity of the cystatin-like domains of HK (Lima et al. 2002). In
addition, this sulfated proteoglycan re-directed the substrate specificity of CZ, generating
multiple HK breakdown products, including kinin peptides (Lima et al. 2002). These studies
suggested that tissue culture trypomastigotes generate kinins through mechanisms that involve
cooperative interactions between CZ, HK, and heparan sulfate proteoglycans (Lima et al.
2002).

When Chinese hamster ovary (CHO) cells were transfected with the rat-B2 receptor (B2R) gene
(Scharfstein et al. 2000; CHO-B2R) and subsequently infected, there was an induction of IP3-
mediated influx of intracellular calcium in transfected cells. Similarly, activated CZ elicited
potent intracellular calcium responses in transfected cells which were blocked by HOE-140, a
specific antagonist of the B2R subtype (Scharfstein et al. 2000). Monoclonal antibodies directed
to the BK epitope of kininogens blocked invasion into CHO-B2R without interfering with the
baseline levels of mock infection of CHO cells. Furthermore, parasite uptake by CHO-B2R
was increased upon addition of purified HK or, alternatively, by increasing physiological
concentrations of the B2R peptide agonist, while showing negligible affects on mock-
transfected CHO cells. These observations suggest that CZ liberates the B2R peptide agonist
from kininogen molecules docked to cell surfaces of mammalian cells. It is possible that the
kinin-releasing reaction occurs within compartmentalized areas of the host cell plasma
membrane. This possibility was supported by the observations that membrane-permeable CZ
inhibitors efficiently reduced parasite invasion of endothelial cells via the B2R pathway, while
addition of soluble inhibitors such as cystatin C or E-64 did not interfere with cell invasion.

Since trypomastigotes are poorly endocytic and accumulate CZ in the flagellar pocket, the
failure of hydrophilic inhibitors in preventing cellular invasion was interpreted as evidence
that the kinin-releasing reaction most likely occurs in enclosed areas formed by juxtaposition
of host cell and parasite plasma membranes. Thus, Scharfstein et al. (2002) proposed a
mechanistic model whereby active CZ molecules diffuse from the flagellar pocket of the
parasite into this intercellular space. In this secluded microenvironment, CZ may cleave
surface-bound kininogens while being spared from physiological inactivation by soluble forms
of plasma protease inhibitors (e.g., cystatins, kininogens, α2-macroglobulin).

Importantly, there is significant residual infection in cultures (CHO-B2R), endothelial cells or
neonatal cardiac myocytes maintained in the presence of HOE-140 (B2R antagonist), indicating
that the kinin signaling pathway is not the only pathway driving infectivity. However,
interaction assays performed with endothelial cells that had been pre-activated by
lipopolysaccharide via toll-like receptor (TLR)-4, or with primary murine cardiac myocytes,
revealed that the parasites can invade these activated host cells via the upregulated B1R
pathway (Todorov et al. 2003). These effects were canceled after the addition of inhibitors of
carboxypeptidase N/M (kininase I) to the cultures, suggesting that the B1R ligand [des-Arg]-
BK/LBK is generated by kininase I. The authors noted that, unlike the effects on B2R signaling,
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addition of ACE inhibitors is not required for parasite invasion via the upregulated B1R
pathway. Additional work is required to determine if the parasites may take advantage of
upregulated expression of B1R in the chronically inflamed myocardium to infect macrophages,
fibroblasts, endothelial cells, and/or cardiac myocytes.

After demonstrating that tissue-culture-derived trypomastigotes released kinins while
interacting with cultured mammalian cells, additional studies were performed to verify if the
parasites were able to activate B2R at early stages of infection in vivo. Indeed, studies in a
mouse subcutaneous infection model demonstrated that tissue-culture-derived trypomastigotes
(but not epimastigotes) evoked paw edema through the sequential activation of B2R and B1R
(Monteiro et al. 2006). Intravital microscopy (Monteiro et al. 2006) demonstrated that signals
leading to plasma leakage at early stages of infection allow for the accumulation of kininogens
(i.e., substrates for the kinin-releasing cruzipain enzyme) in interstitial spaces. The dissection
of the signaling pathways that initiate edematogenic inflammation was performed in the mouse
model. These studies demonstrated that tissue-culture-derived trypomastigotes initiate
inflammation by triggering Toll-like receptor (TLR) 2-dependent secretion of CXC
chemokines by macrophages (Schmitz et al. 2009). Following endothelium/neutrophil
activation, there is a discrete extravasation of plasma proteins into interstitial spaces. Acting
further downstream, the blood-borne kininogens undergo proteolysis by CZ thus generating
high levels of bioactive kinins in the peripheral tissues. The extent of B2R signaling by the
short-lived kinins is tightly regulated by the action of ACE/kininase II, a kinin-degrading
metallopeptidase that is highly expressed in subcutaneous tissues (Monteiro et al. 2006). Thus,
the intensity of edematogenic inflammation in infected peripheral tissues is controlled by an
intricate interplay of TLR2, B2R, and ACE.

Analysis of the outcome of kinin system activation in the subcutaneous infection model
revealed that kinins released in peripheral tissues activate antigen-loaded dendritic cells (DCs)
via B2R and switch their maturation program. After migrating to the T-cell-rich areas of
draining lymph nodes, the mature DCs stimulate adaptive (type-1) immunity. As noted, the
extent of DC activation by kinins in vivo is tightly regulated by ACE, a kinin-degrading
metallopeptidase expressed in subcutaneous tissues. Consistent with this, mice pretreated with
ACE inhibitors developed vigorous innate responses via B2R, and these effects translated into
upregulated Th1 responses (Marceau and Bachvarov 1998). These studies suggest that TLR2
and ACE play opposite roles in the regulation of pathways linking innate immunity (via the
kinin/B2R pathway) to adaptive immunity (Monteiro et al. 2006; Aliberti et al. 2003;
Scharfstein et al. 2007).

A recent development was the description of the consequences of infection in B2R-null mice
(Monteiro et al. 2007). Infection of these mice results in increased parasitemia, mortality, and
myocardial parasitism. The susceptible B2R-null mice initially developed fairly potent type-1
responses in the spleen, but the number of intracardiac interferon (IFN)-γ-producing CD4+ and
CD8+ effector T cells was already reduced at relatively early stages of infection. Furthermore,
as the infection progressed, there was a sharp decline in the frequency of type-1 effector cells
in B2R-null mice, both in lymphoid and cardiac tissues. Notably, the decayed TH1 response of
B2R-deficient mice was accompanied by a rise in the pro-inflammatory TH17 subset (Monteiro
et al. 2007).

The hypothesis that DC signaling via B2R is required for induction of protective effector T
cells was underscored by adoptive cell transfer of WT DCs into B2R-null mice. This procedure
not only rescued the resistant phenotype in the recipient B2KR-null mice but also restored the
development of protective IFN-γ-producing CD4+ CD44+ and CD8+ CD44+ effector T cells
in the recipient mutant mice, while dampening the potentially detrimental TH17 (CD4+ subset)
responses (Monteiro et al. 2007). The analysis of CD11c+ DC interaction with tissue-culture-
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derived trypomastigotes demonstrated that interleukin (IL)-12 and co-stimulatory molecules
(CD86, CD80, CD40) were upregulated in wild-type DCs but not in B2R-null DCs (Monteiro
et al. 2007) and tissue-derived trypomastigotes pre-treated with irreversible inhibitors of CZ
failed to induce overt DC maturation. These observations support the notion that T. cruzi relies
on CZ to enzymatically generate the B2R agonist while interacting with immature DCs.
Although it is not known if conventional DCs are the primary or even unique in vivo targets
of T. cruzi in the spleen, these results support the idea that kinin-releasing pathogens convert
immature DCs into drivers of type-1 adaptive responses through the activation of B2R, a G-
protein-coupled receptor, that acts as a sensor of danger to tissue integrity. Additional studies
are required to evaluate if myocardial DCs (Andrade et al. 2000) sense the parasite via the
B2R.

Parasite–host cell interactions with other receptors
Mucins are the major T. cruzi surface glycoproteins and their sugar residues interact with
invasive trypomastigotes and mammalian cells (Villalta and Kierszenbaum 1984, 1985;
Yoshida et al. 1989). The monoclonal antibody B5, recognizing a critical T. cruzi 45-kDa mucin
epitope, inhibits trypomastigote attachment to heart myoblasts, which prevents parasite entry
suggesting that the 45-kDa mucin is used by trypomastigotes to adhere to heart myoblasts
(Turner et al. 2002). Others have also implicated mucins in mammalian cell infection (Yoshida
et al. 1989;Di Noia et al. 1995; Buscaglia et al. 2006). Mucins function as ligands (Schenkman
et al. 1991). For example, mucins bind to galectin-3 (Moody et al. 2000), a β-galactosyl-binding
lectin, and the binding has been suggested to mediate parasite attachment and entry (Moody
et al. 2000; Kleshchenko et al. 2004). Lipid tail in the GPI-anchor of mucins and other T.
cruzi ligands interact with the TLRs (Campos and Gazzinelli 2004) and T. cruzi infection of
cardiac myocytes results in IL-1β-dependent myocyte hypertrophy mediated by TLR-2
(Petersen et al. 2005). These parasite–TLR interactions may promote B2R signaling by
kininogens, which is balanced by ACE signaling as discussed earlier.

Trans-sialidase and enzymatically inactive members of the trans-sialidase superfamily are also
present on the parasite surface, but in much lower abundance compared with mucins. Trans-
sialidases transfer sialic acid residues from host glycoconjugates to parasite mucins (Previato
et al. 1985). Trans-sialidases, independent of its trans-sialidase activity, bind to surface
receptors on neurons and glial cells such as Schwann cells, leading to the activation of survival
signaling pathways such as mitogen-activated protein kinase (MAPK) and
phosphatidylinositol 3 kinase (PI3K)/Akt kinase signaling (Chuenkova and Pereira 2000;
Chuenkova et al. 2001). Trans-sialidase binding to neuronal cells leads to survival and
differentiation and an enhancement in the synthesis and activity of tyrosine hydroxylase, a rate-
limiting enzyme of dopamine and other catecholamine neurotransmitters. A trans-sialidase has
also been termed a parasite-derived neurotrophic factor (Chuenkova and PereiraPerrin 2006)
and the binding of this trans-sialidase to the nerve growth factor receptor TrkA leads to T.
cruzi invasion of neuronal and dendritic cells in vitro and in the murine model of this infection
(Chuenkova and PereiraPerrin 2004; de Melo-Jorge and PereiraPerrin 2007). Trans-sialidase
superfamily members bind to mammalian cell receptors to mediate trypanosome binding and
entry (Frasch 2000; Lima and Villalta 1988, 1989; Villalta and Lima 1990; Villalta et al.
1992, 1996, 1998, 1999, 2001; Nde et al. 2006). Although the crystal structure of a T. cruzi
trans-sialidase has been elucidated (Buschiazzo et al. 2002), its validation as a target for the
development of new interventions to block infection appears complex (Agusti et al. 2004).
Trans-sialidase and trans-sialidase-like super-family members are shed into the bloodstream
and upregulate early infection in phagocytic and nonphagocytic cells (Villalta et al. 1998,
1999, 2001) and exert other biological effects on several cell types.
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Gp83 is a ligand expressed in all T. cruzi strains and employed by the parasite to attach and
enter macrophages as well as nonphagocytic cells (Lima and Villalta 1988; Villalta et al.
1998, 1999, 2001, 2008). Notably, it is expressed only in invasive trypomastigotes (Villalta et
al. 1992) and is more highly expressed in highly infective trypomastigote clones (Lima and
Villalta 1989). Monovalent Fab fragments of the monoclonal antibody 4A4 specific for gp83
inhibit gp83 binding to myoblasts, fibroblasts, and macrophages, block trypanosomes from
attaching to and entering these cells, and neutralize T. cruzi infection in vivo (Villalta et al.
2001). A subset of the trans-sialidase super gene family, Tc-85, has been implicated in cell
infection since antibodies to Tc-85 partially block parasite internalization (Alves et al. 1986);
Tc-85 binds to laminin (Giordano et al. 1999) and cytokeratin 18 (Magdesian et al. 2001).
Trypomastigotes release gp83 via parasite glycosylphosphatidylinositol–phospholipase C
(PLC) cleavage to activate the host MAPK pathway and PKC in order to promote parasite
infection (Villalta et al. 1998, 1999; Nde et al. 2006).

A surface casein kinase II (CKII) substrate (Tc-1) of trypomastigotes participates in early cell
infection (Augustine et al. 2006). Exogenous human CKII phosphorylates serine residues on
recombinant and trypomastigote Tc-1 and this phosphorylation is inhibited by CKII inhibitors
(Augustine et al. 2006). Antibodies to Tc-1 or CKII inhibitors block the invasion of host cells
by trypomastigotes and reduce parasite load in cells. Tc-1 is phosphorylated by human CKII,
and whether the latter functions as a Tc-1 receptor is unknown. Since there are no human
homologs of Tc-1, the gene and encoded protein could provide targets for drug discovery. Since
Tc-1 is highly immunogenic and antibodies directed against Tc-1 neutralize T. cruzi infection
of mammalian cells, Tc-1 could also be a candidate for vaccine development.

The LYT1 T. cruzi protein is required for efficient in vitro infection (Manning-Cela et al.
2001). The LYT1 gene product was characterized and is involved in parasite lysis and therefore
affects its infectivity. Other parasite proteins of unknown molecular structure have been
implicated in the invasion process since antibodies to these molecules partially inhibit cellular
infection. These include penetrin (Ortega-Barria and Pereira 1991), a secreted peptidyl-prolyl
cis-trans isomerase (Pereira et al. 2002) and a lectin-like 67-kDa glycoprotein (Silber et al.
2002).

T. cruzi proteases have been implicated in the infection process. Thus, an inhibitor of the T.
cruzi prolyloligopeptidase Tc80, a member of the serine protease family that hydrolyses
fibronectin, reduces trypomastigote entry into nonphagocytic cells (Grellier et al. 2001; Bastos
et al. 2005). This suggests that prolyloligopeptidase Tc80 may be important for the parasite's
transit through the extracellular matrix (ECM) towards target cells. The parasite secretes
oligopeptidase B, a cytosolic serine endopeptidase, which triggers calcium release in host cells
(Burleigh and Andrews 1995) required for trypanosome entry and antibodies directed against
T. cruzi surface metalloproteases partially reduce cell invasion (Cuevas et al. 2003).

Several other candidate host cell receptors mediating the first step of infection have been
suggested; however, validation of these candidate receptors at the molecular genetics level is
needed in vitro and in vivo. Interestingly, another heterotrimeric G-protein-coupled receptor,
the cannabinoid receptor CB1, is present at parasite host cell junction (parasite synapse).
Ligation of this receptor induces Gi/o signaling and actually prevents parasite infection of
cultured myocytes although use of cannabinoids in mice models did not improve outcome
presumably because of their well-characterized immunosuppressive effects (Croxford et al.
2005). Cytokeratin 18, a cytoskeletal protein of Vero cells, was suggested to function as a T.
cruzi receptor (Magdesian et al. 2001). However, recently, it has been shown that it does not
function as a receptor for T. cruzi since silencing of cytokeratin 18 expression by RNAi does
not affect trypomastigote binding to host cells nor its entry (Claser et al. 2009). Furthermore,
a p74 heart myoblast surface protein has also been suggested to function as a T. cruzi receptor
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mediating attachment leading to entry since it binds to the trypomastigote surface and p74
antibodies block parasite attachment to mammalian cells (Villalta et al. 1993). The ECM,
human lectins, and parasite mucins have been shown to play an important role in the early
process of T. cruzi infection. Accordingly, human galectin-3 binds to a trypomastigote surface
mucin (Turner et al. 2002; Moody et al. 2000)and to human coronary artery smooth muscle
cells in a lectin-like manner (Kleshchenko et al. 2004) to significantly increase the adhesion
of trypomastigotes to human coronary artery smooth muscle cells. Silencing galectin-3
expression in mammalian cells by antisense approach significantly reduces trypomastigote
adhesion to cells. Galectin-3 molecules interact with T. cruzi 45- (mucin), 32-, and 30-kDa
surface proteins on one hand and with laminin on the other, via their carbohydrate recognition
domains and are joined together using the R-domains (Moody et al. 2000). In this way,
galectin-3 binds to laminin and trypomastigotes to recruit them to the extracellular matrix thus
facilitating initial infection. Thus, galectin-3 provides a bridge between parasite and host cell
thereby enhancing infection. Some ECM proteins play critical roles in early T. cruzi infection
and the parasite regulates them to facilitate infection. Interestingly, silencing laminin γ-1 and
thrombospondin 1 expression in human cells by stable RNAi significantly reduced T. cruzi
binding to mammalian cells leading to infection (Nde et al. 2006; Simmons et al. 2006). T.
cruzi gp83 ligand upregulates the expression of laminin γ-1 to facilitate entry (Nde et al.
2006). Additionally, T. cruzi surface antigens bind to laminin (Giordano et al. 1999) and
fibronectin (Ouaissi et al. 1986) and have been postulated to participate in the infection process.
Thus, the parasite modulates some ECM components and interacts with them to facilitate
infection by exploiting these molecules to recruit parasites in the early process of infection.

The completion of the T. cruzi genome project highlighted the need to extend the range of
techniques available to study gene function of trypanosome attachment and entry. The inability
to use RNAi in T. cruzi to rapidly study gene function in T. cruzi during early infection and
pathogenesis poses significant limitations. However, a recent development has been described
(Taylor and Kelly 2006) to overcome this problem. The pTcINDEX expression vector for T.
cruzi (Taylor and Kelly 2006) may facilitate studies of inducible expression of tagged proteins,
the generation of conditional knockout trypanosome cell lines, and dominant-negative
approaches to validate the role of candidate invasive genes in the process of parasite infection
of heart and other cells. Microarray platforms containing the whole human genome and the
whole T. cruzi genome may facilitate the rapid identification of host and parasite genes involved
in the process of early infection and the molecular signature induced by T. cruzi in host cells
during attachment and entry of cardiac and other cells. Microarray studies have been reported
using only partial host and parasite genomes. Silencing cellular host gene expression by RNAi
has been an important method to validate candidate host genes implicated in the early process
of infection of cardiac and other cells.

T. cruzi induces calcium-triggered recruitment of lysosomes and lysosome fusion with the
plasma membrane. This process is dependent on subversion of host cell microtubule dynamics
by the parasite (Tyler et al. 2005) as part of as a strategy to form a vacuole, through which they
gain entry to the host cells (Burleigh and Andrews 1998; Andrade and Andrews 2005). While
lysosome-dependent entry was initially considered to be the primary mechanism by which the
parasite gains access to nonprofessional phagocytic cells, it now appears that trypomastigotes
can penetrate cells utilizing a PI3K-mediated mechanism which induces invagination of the
host cell plasma membrane and is independent of host cell micro-filaments (Woolsey et al.
2003; Burleigh 2005). There are several reviews that deal with host–parasite interaction and
cellular response (Burleigh and Andrews 1998; Andrade and Andrews 2005; Woolsey et al.
2003) and molecular analysis of early infection (Villalta et al. 2008).

T. cruzi activates several signal transduction events during entry for its initial establishment in
cells (Burleigh and Andrews 1998; Andrade and Andrews 2005; Burleigh 2005). T. cruzi
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induces calcium mobilization in cardiac myocytes and other cells, mediated by IP3, which is
generated upon PLC activation. PI3K, other protein kinases, and phosphatases are also
implicated in the mechanisms of T. cruzi invasion of phagocytic and nonphagocytic cells
(Chuenkova and Pereira 2000; Chuenkova and PereiraPerrin 2004; de Melo-Jorge and
PereiraPerrin 2007). The T. cruzi gp83 activates the MAPK pathway and PKC to enhance
infection of macrophages (Villalta et al. 1998, 1999) and infection of endothelial vascular
smooth muscle cells activates the MAPK pathway (Mukherjee et al. 2004, Hassan et al.
2006)

Activation of parasite protein tyrosine phosphorylation is involved in trypomastigote entry into
nonphagocytic cells (Favoreto et al. 1998). Trypomastigotes induce tyrosine
dephosphorylation of heart myoblast proteins (Favoreto et al. 1998) and the transcription
growth factor beta pathway is required for T. cruzi invasion of epithelial cells (Ming et al.
1995).

Global gene expression profiling of host responses to T. cruzi and to critical surface molecules
involved in the initial cellular infection has not been performed in detail. Only partial genome
was used for evaluating gene profiling of host responses to T. cruzi (Vaena de Avalos et al.
2002; Garg et al. 2003; Mukherjee et al. 2003, 2008). Is the molecular signature caused by
early infection the same, similar, or different across various cell types? What are the molecular
signatures induced by trans-sialidases, transsialidase-like molecules, mucins, CKII substrate,
and other molecules involved in the process of infection of cardiac myocytes and other cells?
Since T. cruzi infects all human cells except red blood cells, it is important to investigate if the
same types of surface receptors are used in all cells or does the parasite use different classes
of receptors depending on the host cell type? Research in this area is in infancy. We know very
little about the T. cruzi genes that may be important in the molecular pathogenesis of cardiac
and other cells, contributing to chagasic cardiovascular disease. The recent completion of the
T. cruzi genome project and the generation of microchip platforms containing the whole T.
cruzi genome may facilitate these studies. No global gene networking analysis of the parasite
and host cells during the invasion process has been achieved. Functional genomics and systems
biology of early infection of cardiac and other cells by T. cruzi has not been fully explored.
Future progress in this area will facilitate the full understanding of the participation of the
parasite and the host during early infection. The structural and atomic analysis of validated T.
cruzi surface ligands and the co-crystallization of these ligands and their validated host
receptors that mediate trypanosome attachment leading to entry are required to understand this
interaction at the molecular and atomic levels and to develop small inhibitors to block the first
steps of infection. High-throughput drug screening based on specific trypanosome target
molecules is not fully developed.

The nature of the host–parasite interaction continues to be an area of great interest not only in
Chagas disease but in other types of infection. Understanding these interactions may provide
novel targets for therapy.
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