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Toxic alcohol effects on pancreatic acinar cells, causing the often
fatal human disease acute pancreatitis, are principally mediated by
fatty acid ethyl esters (non-oxidative products of alcohol and fatty
acids), emptying internal stores of Ca2*. This excessive Ca2™ liber-
ation induces Ca2*-dependent necrosis due to intracellular trypsin
activation. Our aim was to identify the specific source of the Ca2*
release linked to the fatal intracellular protease activation. In
2-photon permeabilized mouse pancreatic acinar cells, we moni-
tored changes in the Ca?* concentration in the thapsigargin-
sensitive endoplasmic reticulum (ER) as well as in a bafilomycin-
sensitive acid compartment, localized exclusively in the apical
granular pole. We also assessed trypsin activity in the apical
granular region. Palmitoleic acid ethyl ester (POAEE) elicited Ca2*
release from both the ER as well as the acid pool, but trypsin
activation depended predominantly on Ca2* release from the acid
pool, that was mainly mediated by functional inositol 1,4,5-
trisphosphate receptors (IPsRs) of types 2 and 3. POAEE evoked
very little Ca2* release and trypsin activation when IP3Rs of both
types 2 and 3 were knocked out. Antibodies against IPsRs of types 2
and 3, but not type 1, markedly inhibited POAEE-elicited Ca2* release
and trypsin activation. We conclude that Ca?* release through IP3Rs
of types 2 and 3 in the acid granular Ca2* store induces intracellular
protease activation, and propose that this is a critical process in the
initiation of alcohol-related acute pancreatitis.
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he pancreatic acinar cell is potentially dangerous because it

produces a range of precursor digestive enzymes (zymogens)
that, if inappropriately activated inside the cells, cause autodi-
gestion resulting in the often fatal human disease acute pancre-
atitis (1, 2).

Exocytotic secretion of zymogens is controlled by local cyto-
solic Ca?* spikes in the apical granular region, generated by
small quantities of Ca?* released from internal stores (3, 4). In
contrast, prolonged global cytosolic [Ca%*] elevations—
associated with emptying the Ca?* stores—cause intracellular
trypsin activation and transform the normally electron dense
zymogen granules (ZGs) into empty looking vacuoles (2, 5-7).
The vacuoles are post-exocytotic, endocytic structures, and it is
in these vacuoles that trypsin activation occurs (8).

The association between alcohol abuse and acute pancreatitis
is well known (1, 2, 9), but the exact mechanism by which alcohol
initiates the disease is unclear. Hypertriglyceridemia is also a
recognized cause of pancreatitis (10) and the presence of high
concentrations of fatty acid ethyl esters [FAEEs, non-oxidative
products of alcohol and fatty acids (FAs)], particularly in the
pancreas, was reported in a postmortem study of subjects
intoxicated by alcohol at the time of death (11). FAEEs induce
trypsin activation and vacuole formation (12) and also elicit
global sustained [Ca®"]; elevations, due to emptying of intracel-
lular Ca?* stores, causing Ca?*-dependent necrosis (9, 13, 14).
Although FAs alone can also—but rather slowly—release intra-
cellular Ca?" and elicit necrosis (13), they do not, unlike FAEES,
primarily liberate Ca?* from internal stores, but act by inhibiting
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mitochondrial ATP synthesis. The reduced intracellular ATP
level prevents Ca?>™ pump function in both intracellular stores
and the plasma membrane (9, 14).

Although the endoplasmic reticulum (ER) is the principal source
of Ca?* released from internal stores in response to neurotrans-
mitter or hormonal stimulation (3, 15, 16), Ca>* can also be
liberated from acid stores (3, 15, 17-22). Several Ca®*-liberating
agents release Ca?" from both thapsigargin (TG)-sensitive and
bafilomycin (Baf)-sensitive acidic stores (21, 22).

The purpose of this study was to test the hypothesis that the
toxic FAEE action is due to trypsin activation linked to Ca?*
release from the acid store. Using 2-photon permeabilized acinar
cells (21, 22), we show that palmitoleic acid ethyl ester (POAEE)
releases Ca’?* from both the TG-sensitive ER and the Baf-
sensitive acid store in the granular apical region. POAEE
activates trypsin in pathophysiologically relevant concentrations
and this activation depends on Ca?* release from the apical acid
store, mainly through functional IP; receptors (IPsRs) of types
2 and 3. Inhibition of IP3Rs of types 2 and 3, but not type 1, with
specific antibodies reduces markedly POAEE-elicited Ca’* re-
lease as well as trypsin activation, and there are only very small
Ca’" release and trypsin activation responses to POAEE when
IPsRs of type 2 and 3 are knocked out.

Results

Mechanism by which POAEE Induces Ca2* Release. POAEE released
Ca?* from intracellular stores (Fig. 1). Fig. 14 shows the action of
100 uM POAEE, which elicits a sustained cytosolic [Ca>*] eleva-
tion in intact acinar cells (13, 14). POAEE (100 uM) elicited a
marked reduction in [Ca’*gore [AF/Fy = 23.0 = 2.3% (SEM),
n = 9] (Fig. 1 A and F). The POAEE-elicited reduction in
[Ca?*Jsore Was concentration-dependent in the range of 10-100 uM
(Fig. 1E), which is relevant pathophysiologically (11-13).

The principal Ca’* release channels are IP;Rs and ryanodine
receptors (RyRs) (3, 15, 16), and we investigated whether
inhibitors of these channels influence the POAEE-elicited Ca?*
liberation (Fig. 1). The IPs;R inhibitor 2-aminoethyldiphenyl
borate (2-APB) (23) diminished markedly the POAEE-induced
Ca?* release (average response: 8.0 = 2.6%, n = 5; Fig. 1 B and
F). 2-APB also blocks store-operated Ca’?* channels in the
plasma membrane (24). Although this is not a major concern in
studies on permeabilized cells, we tested another IP5R inhibitor,
heparin, which also reduced markedly the POAEE-induced
Ca?* release (7.7 = 1.5%, n = 6; Fig. 1F). We blocked RyRs by
preincubation with ruthenium red (RR) and this also reduced
the POAEE-induced Ca?* liberation (12.8 + 1.7%, n = 5; Fig.
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Fig. 1.
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IP3Rs and RyRs play major roles in POAEE- induced Ca®" release from intracellular stores. (A) POAEE (100 uM) evoked a marked reduction in [Ca?*store

in a Fluo-5N AM loaded permeabilized cell. (B) Inhibition of IP3Rs with 100 uM 2-APB reduced amplitude of POAEE-elicited reduction in [Ca2*]sore. (C) The RyR
antagonist ruthenium red (RR) (10 M) also reduced the POAEE effect. (D) Combination of 2-APB (100 uM) and RR (10 uM) very markedly diminished the
amplitude of the POAEE-elicited reduction in [CaZ*]store. (E and F) Comparisons of means of averaged amplitudes of POAEE-elicited reductions in [Ca2*]store
measured 200 s after POAEE (100 uM in F) application. Error bars show S.E.M; P values (relating to results summarized in F) were calculated with 1-way ANOVA
test in comparison to POAEE control (first black column in F), **, P < 0.01; ***, P < 0.001.

1 C and F), indicating a role for RyRs. Combined application of
2-APB and RR almost abolished the POAEE responses (2.4 =

Na*/H* antiporter monensin (5 uM). This caused a more acute
reduction in [Ca?*sore (14.5% = 0.9; n = 6), which occurred
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0.7%, n = 8) (Fig. 1 D and F).

Localizations and Characteristics of 2 Different Ca?* Stores. Our
previous studies of 2-photon permeabilized acinar cells (21, 22)
showed the existence of 2 separate Ca?* stores, namely the ER
and an acidic store. The ER maintains a high Ca?>* concentration
by action of a Ca?>* pump, which can be specifically inhibited by
TG (25) thereby depleting the ER of Ca* due to leaks in the ER
membrane (3, 26). The acidic store does not possess this pump,
but depends on a vacuolar-type H* pump, which can be inhibited
specifically by Baf (27). This store is exclusively present in the
apical granular pole of the acinar cells (21, 22).

Fig. 2 illustrates the protocol used to investigate the POAEE
action on the acid store. The ER was first emptied of Ca?>* by TG.
Thereafter POAEE (100 uM) evoked a further reduction in
[Ca?*]sore in the granular, but not the basal, region (Fig. 24;n =
5). Because TG reduced [Ca’*]sore in both basal and apical
areas, whereas after TG treatment POAEE only reduced
[Ca®"]sore in the apical granular pole, the functional ER seems
to be present throughout the cell (28) whereas the acid TG-
insensitive store seems to be confined to the apical part (21).
Accumulation of Ca’* into the acid store may depend on a
Ca?*-H™" exchanger (3), because Baf reduces slowly [Ca®*]siore in
the apical granular pole (21). We re-investigated the action of
Baf (100 nM) and found slowly developing reductions in
[Ca?*sore restricted to the granular pole (n = 8). To speed up
the responses, we used a combination of Baf (100 nM) and the
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exclusively in the granular region (Fig. S1). The TG-induced
reduction in [Ca?* Jsore in the granular area was 25.4% + 3.2 (n =
10). We tested whether the POAEE-elicited Ca?" release in the
granular pole, after emptying the ER elements of Ca?* with TG,
was from a Baf-sensitive store. When POAEE was added after
TG treatment following a 30-min preincubation with Baf (100
nM), it failed to reduce [Ca®*]sore in the granular region (Fig.
2B;n = 6). POAEE also released Ca?* from ER elements in the
apical pole. After preincubation with Baf, but without TG
treatment, POAEE elicited a clear (but significantly smaller than
without Baf, P < 0.02) reduction in [Ca2+]apica1 store (9.5 = 0.7%,
n = 5). We conclude that POAEE is capable of releasing Ca*
from both the ER and an acid store in the apical pole.

POAEE-elicited Ca?* Release from the Acid Store Depends on Func-
tional IPsRs and RyRs. In these experiments (Fig. S2), we investi-
gated specifically the actions of Ca?* release channel blockers on
the effect of POAEE on the acid (non-TG-sensitive) Ca?* stores.
In control experiments, after TG treatment, POAEE evoked a
marked reduction in [Ca?*]acid store (12 = 0.7%, n = 5; Fig. S2D).
After application of TG + the IPsR inhibitor 2-APB, POAEE
only evoked a very minor reduction in [Ca?* Jacid store (2.3 = 0.2%,
n = 5; Fig. S2 A and D ) and a very similar result was obtained
with another IP;R inhibitor, heparin (2.3 = 3%, n = 6; Fig. S2D).
RR also inhibited Ca?* release markedly (4.0 = 0.6%, n = 4; Fig.
S2B and D). When TG was combined with both 2-APB and RR,
subsequent POAEE stimulation failed to elicit any Ca?* release
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Fig. 2. POAEE releases Ca2* from TG-insensitive, acidic store. (A) Panel (a)
Fluorescent and transmitted light images of a permeabilized cell loaded with
Fluo-5N AM. Two regions of interest from which measurements shown in b
and c were obtained are outlined in blue (granular area) and red (baso-lateral
area). Panel (b) The blue trace shows first that TG reduced [Ca2*]store to a lower
stable level. Thereafter POAEE (100 uM) evoked a further reduction in
[CaZ*]store in the granular area. Panel (c) Red trace shows that POAEE was
unable to evoke further CaZ* release in basal area after TG had reduced
[CaZ*store. (B) After preincubation with Baf (100 nM, 30 min), TG could still
reduce [Ca2"]sore, but thereafter POAEE failed to induce any further Ca2*
release in the granular area.

(0.1 = 0.05%, n = 6; Fig. S2 C and D). This was not due to the
acid Ca?* stores being empty, because subsequent addition of a
Ca?* ionophore and a protonophore elicited substantial further
Ca?* release (Fig. S2C) (n = 5). The complete inhibition of Ca?*
liberation by blockade of Ca?* release channels indicates that
POAEE does not release Ca?* from the acid granular store by
causing unspecific membrane permeabilization.

POAEE-elicited Ca2* Release from Acidic Store Does Not Require
Phospholipase C Activation. Because the POAEE-elicited Ca?*
release from the acidic store is particularly dependent on
functional IP;Rs, we tested whether POAEE acts by stimulating
IP; production. The most widely used inhibitor of phospholipase
C (PLC) is the aminosteroid compound U73122 (29). U73122 is
a powerful PLC inhibitor, but other effects—including release of
Ca?* from IPs-sensitive stores—have been noted (29, 30). We
used U73122 at a concentration (10 uM) that abolishes cytosolic
Ca?* signal generation evoked by muscarinic receptor activation
in many systems (29), including pancreatic acinar cells (31). The
PLC inhibitor itself caused a reduction in [Ca?*acid store (4.2 =
0.3%, n = 4) and the subsequent POAEE-e¢licited reduction in
[Ca?*acid store Was significantly diminished (6.6 = 0.9%; n = 9)
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Fig.3. POAEE activates trypsin in granular area. (A) Transmitted light image
of 2 cells. Left cell is permeabilized and granular area is clearly visible in the
right part [for scale bar (12.27 um) see (C)]. (B) Virtual absence of BZiPAR
fluorescence in permeabilized, but unstimulated, cell shown in A. (C) POAEE
(100 M) has evoked trypsin activation in granular region as seen by BZiPAR
fluorescence (green). (D—F) Fluorescence traces showing time courses of tryp-
sin activation evoked by POAEE (10, 50, and 100 uM). (G) Summary of the
results of POAEE-induced trypsin activation, at 3 different concentrations
(mean =+ SEM, n = 5-8 for each column).

compared with normal control POAEE responses (12.0 = 0.7%;
n = 8) (P < 0.0003) (Fig. S3 A and B). Importantly, U73122 did
not abolish the POAEE-evoked Ca®* release in any of the 8
experiments carried out. The reduced POAEE response in the
presence of U73122 is most likely explained by the fact that
U73122 had already itself reduced [Ca?*] in the store.

POAEE induces Trypsin Activation. Intra-acinar activation of zymo-
gens is a key event in the initiation of acute pancreatitis (1, 2) and
we therefore tested whether POAEE could elicit trypsin activa-
tion. We monitored, in real time, trypsin activation using a probe
(BZiPAR) that becomes fluorescent when trypsin cleaves the 2
oligopeptide side chains (32). POAEE activated trypsin in the
apical granular pole (Fig. 3 A-G). Before POAEE application,
there was virtually no fluorescence, whereas after POAEE, the
substrate had been cleaved preferentially in the granular area
(Fig. 3 B and C). POAEE caused trypsin activation in a
concentration-dependent manner, within a range (10-100 uM)
(Fig. 3 D-F) that is pathophysiologically relevant (11-13). These
data are summarized in Fig. 3G.
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Fig. 4. POAEE-induced trypsin activation is inhibited by agents interfering
with Ca2* transport functions. (A) Emptying ER Ca2* store by TG did not inhibit
POAEE-induced trypsin activation. (B) Preincubation with 100 nM Baf reduced
very markedly POAEE-induced trypsin activation. (C) Summary of results con-
cerning the effects of RR, 2-APB, heparin, BAPTA, TG, and Baf on POAEE-
induced trypsin activation (mean = SEM; n = 5-8 in each case).

Trypsin activation may, at least in part, be mediated by the
lysosomal cysteine protease cathepsin B (8, 9, 33). We therefore
tested the effect of the cathepsin B inhibitor CA74Me (8, 34)
which, at a concentration of 50 uM, markedly reduced POAEE
(100 uM)-elicited trypsin activation from the control level of
~70% (Fig. 3G) to 14.8 = 2.1% (n = 6).

POAEE-induced Trypsin Activation Depends on Ca2* Release from the
Acid Store via IPsRs. We tested the effects of inhibiting the
POAEE-elicited Ca?" release on the ability of POAEE to
activate trypsin (Fig. 4 4-C). Inhibition of RyRs with 10 uM RR
reduced POAEE-elicited trypsin activation (Fig. 4C), but stron-
ger inhibitions were observed with the IP3R inhibitors 2-APB or
heparin (Fig. 4C). When inhibitors of both IP;Rs and RyRs were
combined, POAEE failed to evoke trypsin activation (Fig. 4C).
These data indicate that POAEE cannot activate trypsin without
releasing Ca?* from internal stores and points to IP3Rs as the
most important elements, although RyRs also play a role.

Depletion of intracellular stores may be important, but a local
rise in the cytosolic [Ca?"] could also be significant. To test this,
we clamped the cytosolic (bath) [Ca?*] at the physiological
resting level by incubating the permeabilized cells in a solution
containing a high concentration of a Ca?*/BAPTA (Ca?" che-
lator) mixture. Under this condition, POAEE failed to induce
trypsin activation (Fig. 4C).

Finally, we tested whether any particular Ca* store was of
special importance for trypsin activation, using TG and Baf as
tools to discriminate between the ER and the acid stores (Fig. 4
A-C). Emptying the ER store using TG—using a protocol
designed to minimize the risk of Ca?*-induced Ca?" release (Fig.
44) —had virtually no effect on the POAEE-induced trypsin
activation, which remained very similar to what was obtained
under control conditions (Fig. 4 A and C). On the other hand,
preincubation with Baf, which empties slowly the acid store of
Ca?* (21), reduced markedly the subsequent POAEE-induced
trypsin activation (Fig. 4 B and C). Combining TG and Baf
abolished the POAEE response (Fig. 4C).

Procedures other than POAEE stimulation, which releases

Gerasimenko et al.

Ca?* from the granular store, might also be expected to evoke
trypsin activation. As already mentioned, Baf does reduce
[Ca?"Jacid store, but only slowly. We therefore tested the effect of
Baf (100 nM) and found that trypsin activation did occur (13.7 =
1.1%, n = 6).

POAEE-induced Ca2* Release Depends Mainly on IP3Rs of types 2 and
3: Studies with IP3R Antibodies. The physiologically most important
IPsRs in the pancreas are types 2 and 3 (35). To test which types
are involved in the POAEE-elicited Ca’" release from the
critical acid stores, we used antibodies against different IP;R
types (Fig. S4 A and B). First, we tested whether IPs-elicited Ca?*
release in our preparation was blocked by antibodies against type
2 and 3 IP5;Rs. When both antibodies were combined, IP5 did not
evoke any Ca’* release (Fig. S4B), whereas in the presence of an
antibody against type 3 alone, there was a markedly diminished
IPs-¢licited reduction of [Ca?"] in the acid store (Fig. S4B).

Antibodies against type 2 and 3 IP3Rs markedly reduced the
Ca?* release evoked by POAEE (Fig. S44). Further addition of
antibodies against type 1 IP3Rs did not produce any stronger
inhibition [Fig. S4B, no significant difference (n.s.) between the
degree of inhibition produced by antibodies against types 2 and
3 and the extent of inhibition caused by antibodies to all 3
subtypes], suggesting that types 2 and 3 are the main IP;Rs
involved in the POAEE-induced Ca?* release from the acidic
stores. Antibodies against type 3 IP;Rs reduced the Ca’* release
responses more than antibodies against type 2 receptors (P <
0.02), but the difference was minor (Fig. S4B). Antibodies
against type 1 IP;Rs did not inhibit the POAEE-induced Ca?*
release; the response in the presence of the type 1 antibody was
not significantly different from control (Fig. S4B). Fig. S4B
summarizes all of the data using single antibodies, combinations
of antibodies as well as controls.

POAEE-induced Trypsin Activation Depends on IP3Rs of types 2 and 3:
Studies with IP3R Antibodies. To investigate which types of IP3Rs
are involved in the POAEE-elicited trypsin activation, we used
antibodies against different types of IP3Rs. Antibodies against
type 1 IPsRs did not reduce the extent of trypsin activation
evoked by POAEE (Fig. S5 4 and E). Antibodies against type 2
IP;Rs partially inhibited trypsin activation by POAEE (Fig.
SSE), but antibodies against type 3 IP3;Rs inhibited trypsin
activation more markedly (Fig. S5 B and E). The inhibition by
type 3 antibodies was significantly stronger (P < 0.02) than that
exerted by the type 2 antibodies.

When antibodies against IP3Rs of both types 2 and 3 were used
together, the POAEE-elicited trypsin activation was reduced to
a low level (Fig. S5 C and E), but no further inhibition was
observed by a combination of antibodies against all IP3R types
(1, 2, and 3) (Fig. S5 D and E). The absence of any significant
difference between these 2 data sets suggests that it is mainly
IP3Rs of types 2 and 3 that are involved in the POAEE-induced
trypsin activation. Control antibodies did not change signifi-
cantly trypsin activation induced by POAEE (Fig. S5E).

POAEE-elicited Ca2* Release from the Acid Store and Trypsin Activa-
tion Depend on Functional IP;Rs of Types 2 and 3: Knock Out of Type
2 and 3 IPsRs. The most direct approach to determining which
types of IP;Rs are involved in POAEE-elicited Ca?* release and
trypsin activation is to compare the results from mice in which
specific types of IP;Rs have been knocked out with those from
the appropriate wild-type controls (35). As seen in Fig. 5 A-C,
POAEE evoked a much reduced Ca?" release from the acidic
store in acinar cells from IP3R27/~ mice (5.0 = 0.4%; n = 7)
compared with wild-type controls (11.1 = 0.6%; n = 6). A
stronger reduction in the POAEE-elicited Ca?* release from the
TG-insensitive store was observed in acinar cells isolated from
mice in which both the type 2 and the type 3 IP3;Rs had been
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Fig. 5. Inhibition of POAEE-elicited Ca?* release and trypsin activation in
pancreatic acinar cells in which the type 2 IP3R has been knocked out (IPsR27/)
and in which both types 2 and 3 IPsRs have been knocked out (IPsR2~/~,IPsR37/7).
(A) Diminished POAEE-elicited reduction in [Ca2*],cd store in permeabilized cells
from IP3R2~/~ mice. (B) POAEE only elicited a tiny reduction in [Ca2*]cid store from
IP3R27/~-37/~ double knockout mice. (C) Summary of results concerning effects of
IP3R subtypes 2 and 3 knockouts (in comparison with experiments on cells
isolated from wild-type mice) on POAEE-elicited reductions in [Ca2"l,cid store
(mean = SEM, n = 6-8 in each case). (D) Summary of data concerning effects
of knocking out IP3R subtypes 2 and 3 on POAEE-elicited trypsin activation as
compared to control data from wild-type mice (mean = SEM, n = 4 in each
case).

knocked out (2.3 = 0.1%; n = 8) (Fig. 5 B and C). The Ca%*
release response from the double KO (IP3R27/"IP3R37/7) mice
was significantly smaller (P < 0.0001) than from the single KO
(IP;R27/7) mice.

In a separate series of experiments, the POAEE-elicited
trypsin activation was tested in permeabilized pancreatic acinar
cells from wild type, IP;R27/~ and IP3R2~/~,IP3R3~/~ mice (Fig.
5D). The POAEE-elicited trypsin activation was markedly re-
duced in the experiments on acinar cells from IP;R27/~ mice
(19.1 = 0.6%; n = 4) as compared to controls (59.9 = 3.5%;n =
4) and even more reduced in the experiments on cells from the
double KO (IP3;R27/7,IP3R37/7) mice (10.9 = 0.9%, n = 4).
POAEE-¢licited trypsin activation was significantly lower in the
double KO experiments compared with the single KOs (P <
0.004) (Fig. 5D).

Discussion

Our results show that the fatal intracellular trypsin activation,
which initiates acute pancreatitis (1, 2), depends mainly on
intracellular Ca?* release through IP;Rs of types 2 and 3 from
an acid granular store.

ZGs constitute a major Ca?* store in the apical granular pole
with a high [Ca?"] (17, 28). IP; releases Ca>" from isolated ZGs,
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as well as ZGs in intact cells, whereas specific ER Ca?*
pump inhibition with TG cannot liberate Ca’>" from these or-
ganelles (17, 36).

ZGs are not the only acid Ca®" stores. Important stores, from
which Ca2* can be mobilized, have also been demonstrated in
lysosomes and endosomes (17-21, 36-39). Trypsin activation
takes place in acid Baf-sensitive postexocytotic endocytic struc-
tures, which are, at least partially, co-localized with lysosomes
(8). This may be an important part of the acid Ca?* store
involved in the Ca?* release and trypsin activation responses to
POAEE characterized in this study. Our result showing that
inhibition of the lysosomal enzyme cathepsin B markedly re-
duces POAEE-e¢licited trypsin activation is in agreement with
this hypothesis.

How could Ca’>* release from intracellular stores promote
trypsin activation? Our data indicate that POAEE-elicited Ca?*
release from the acid granular pool is more important for
zymogen activation than Ca?" liberation from the ER. However,
our results also show that clamping the cytosolic [Ca?"] at the
normal resting level prevents zymogen activation. Most likely,
zymogen activation depends both on a reduction in
[Ca®"]acid store and an increase in [Ca?*] in the apical cytosolic
environment. This would agree with the ion exchange concept of
Verdugo (19, 39) in which replacement of Ca?>" in the matrix of
secretory granules by K* causes matrix disaggregation. In the
case of ZGs or post-exocytotic vacuoles, this would favor toxic
enzyme activation. Ca*-activated opening of K* channels in the
ZG could play an important role in this process (2, 19, 39).

How does POAEE, and presumably other FAEES, activate Ca?™
release? POAEE stimulation could activate PLC and thereby
generate IPs, but our results with the PLC inhibitor U73122 do not
provide evidence for this and furthermore indicate that even if this
process did occur it may not be essential for POAEE-evoked Ca?*
release. POAEE clearly does not act specifically to open type 2 and
3 IP;Rs in the acid pool, because Ca* release can also be activated
from the ER and via both IP;Rs and RyRs. Most likely, the
functionally dominant Ca* release channels in the membranes of
the acid stores are mainly IP3Rs of types 2 and 3, and these
molecules would therefore be the principal mediators of the quan-
titatively important Ca?* release that appears to be chiefly respon-
sible for trypsin activation.

Coffee drinking (caffeine) has some protective effect against
alcohol-related pancreatitis (40), and we have previously shown
that caffeine reduces POAEE-induced Ca®* signal generation
(14). Our finding, that specific inhibition or knock out of type 2
and 3 IP3Rs very markedly reduces POAEE-elicited trypsin
activation, provides fresh evidence indicating that such inhibi-
tion could be of potential benefit. Therefore, the inhibitory
effect of caffeine on IP3Rs (41, 42) could be a useful starting
point for therapeutic considerations. Unfortunately, other caf-
feine effects, for example activation of RyRs mediating Ca?*
release from the sarcoplasmic reticulum in the heart, potentially
causing serious cardiac arrhythmias (43), limit the usefulness of
caffeine itself as a drug for pancreatitis treatment.

Our results provide direct evidence at the molecular level
demonstrating that reduced IP3R operation can protect against
alcohol-related, and probably also hypertriglyceridemic, pancre-
atitis. This should encourage development of membrane-
permeable agents, possibly related to caffeine, with specific
inhibitory actions on IP;Rs of types 2 and 3.

Materials and Methods

Isolation of Pancreatic Acinar Cells. Single pancreatic acinar cells and clusters
of 2 or 3 acinar cells were isolated from the pancreas of adult mice by
collagenase digestion and mechanical disruption as described previously (21,
22). We mostly used CD 1 male mice, but in the IP3R knock-out experiments,
control or mutant male or female mice with C57BL/6JJmsSIc origin were used.
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All experiments were carried out with freshly isolated cells, attached to the
coverslip of the perfusion chamber at room temperature (23 °C).

[Ca?*]store and Trypsin Measurements in Permeabilized Cells. Cells to be per-
meabilized were loaded with 5-7.5 uM Fluo-5N AM, for 45 min at 36.5 °C, and
then transferred to polyL-lysine coated coverslips in a flow chamber. Cells
were first washed with an intracellular solution based on K-Hepes, containing
(mM): KCl, 127; NaCl, 20; Hepes KOH, 10; ATP, 2; MgCl,, 1; EGTA, 0.1; CaCl,
0.05; pH 7.2; 291 mosmol/L. Thereafter, cells were permeabilized using a
2-photon microscope, as previously described (21). We used the intracellular
K-Hepes-based solution already described, except in the [Ca2*] clamp exper-
iments when 10 mM BAPTA and 2 mM CaCl; were included. Cells were
observed using a Leica SP2 MP dual 2-photon microscope. Fluo-5N AM was
excited at 476 nm, and emission at 500-600 nm wavelengths was collected.
For trypsin measurements, the trypsin substrate BZiPAR [rhodamine 110, bis
(CBZ-L-isoleucyl-L-prolyl-L-arginine amide)] (10 M) was added to the exper-
imental chamber after permeabilization for the duration of the experiment.
Antibodies to IPsRs were applied after permeabilization (dilution 1:100) and
incubated for 30 min before measurements.
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were purchased from Tocris Biosciences. Palmitoleic acid ethyl ester
(POAEE) was from MP Biomedicals. All fluorescent dyes including BZiPAR
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from TEF Labs. Antibodies against IPsRs and control antibodies were from
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technology (sc-28614).

Transgenic Mice. IP3R2 knockout mice, IP3R2/IP3R3 double knockout mice and
wild-type control mice were generated in the Laboratory of Developmental
Neurobiology (Brain Science Institute, RIKEN, Japan) (35).
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