
A Combination of Rescoring and Refinement Significantly
Improves Protein Docking Performance

Brian Pierce1 and Zhiping Weng1,2,*

1Bioinformatics Program, Boston University, 44 Cummington Street, Boston, MA 02215, USA

2Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA

Abstract
To determine the structures of protein-protein interactions, protein docking is a valuable tool that
complements experimental methods to characterize protein complexes. While protein docking can
often produce a near-native solution within a set of global docking predictions, there are sometimes
predictions that require refinement to elucidate correct contacts and conformation. Previously, we
developed the ZRANK algorithm to rerank initial docking predictions from ZDOCK, a docking
program developed by our lab. In this study, we have applied the ZRANK algorithm toward
refinement of protein docking models, in conjunction with the protein docking program RosettaDock.
This was performed by reranking global docking predictions from ZDOCK, performing local side
chain and rigid-body refinement using RosettaDock, and selecting the refined model based on
ZRANK score. For comparison, we examined using RosettaDock score instead of ZRANK score,
and a larger perturbation size for the RosettaDock search, and determined that the larger RosettaDock
perturbation size with ZRANK scoring was optimal. This method was validated on a protein-protein
docking benchmark. For refining docking benchmark predictions from the newest ZDOCK version,
this led to improved structures of top-ranked hits in 20 of 27 cases, and an increase from 23 to 27
cases with hits in the top 20 predictions. Finally, we optimized the ZRANK energy function using
refined models, which provides a significant improvement over the original ZRANK energy function.
Using this optimized function and the refinement protocol, the numbers of cases with hits ranked at
number one increased from 12 to 19 and from 7 to 15 for two different ZDOCK versions. This shows
the effective combination of independently developed docking protocols (ZDOCK/ZRANK, and
RosettaDock), indicating that using diverse search and scoring functions can improve protein docking
results.

Introduction
Protein-protein interactions are key to the functioning of all cells and many biological
processes. To understand the mechanism of a protein-protein interaction, the structure of a
protein complex is essential. While many high-resolution (x-ray) structures of protein
complexes are available in the Protein Data Bank (PDB1), a vast number of protein complex
structures are not yet determined. Meanwhile, structural genomics projects are underway,2
producing new structures of proteins, many of them monomeric. With the crystal structures
(or modeled structures) of the component monomers, protein-protein docking (referred to as
protein docking for brevity) can be used to predict the structures of the protein complex when
no protein complex structure is available. Recent developments in protein docking allow for
atomic-scale protein complex predictions,3 yet work needs to be done to refine these methods
so that they can be quickly and reliably applied to unknown protein complexes.
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Many protein docking algorithms are divided into several steps: the initial global search and
subsequent steps to improve these initial predictions.4 The global search is a full search of the
orientations of the two proteins, typically keeping the larger protein (referred to as the receptor)
fixed, while moving the smaller protein (the ligand). This is often a rigid-body search in 6
dimensions, utilizing a Fast Fourier Transform (FFT) for efficiency and softness for small
overlaps,5-7 but other methods such as Monte Carlo with side chain searching have also been
successful.8,9 The following steps can include clustering,10,11 reranking,12 and structural
refinement13 of the initial set of predictions. Structural refinement is useful in that it can
improve the contacts and the accuracy of initial predictions that are close to the correct
conformation but also have room for improvement.

Previously we have implemented several algorithms for initial-stage docking and refinement:
ZDOCK, RDOCK, and ZRANK. The program ZDOCK performs a grid-based docking search
using Fast Fourier Transform (FFT), and its scoring includes desolvation, electrostatics, and a
novel shape complementarity function.14 It has performed consistently among the top
algorithms during the CAPRI docking experiment;15 using ZDOCK to perform docking led
to 5 of 6 recent targets with at least one prediction rated Acceptable or higher16 (the highest
number among all participants). ZDOCK was also found to compare favorably to other FFT-
based docking algorithms in a recent study on clustering initial-stage docking predictions.17
While ZDOCK produces many near-native predictions (hits), they are often not ranked in the
top 10. To improve the rank of the hits, RDOCK performs docking refinement by reranking
the top 2000 ZDOCK predictions using energy minimization followed by scoring using
electrostatics and desolvation.18 Although RDOCK has been shown to improve the success
rate of ZDOCK predictions, it lacks the ability to quickly process all 54,000 predictions from
a ZDOCK run.

To account for this, we developed the ZRANK program; it uses a weighted energy function
with van der Waals, electrostatics and desolvation terms to quickly and effectively rerank the
ZDOCK predictions without energy minimization.19 It was tested on protein docking
Benchmark 2.0,20 using predictions from two versions of ZDOCK: ZDOCK 2.1 (which
employs shape complementarity alone) and ZDOCK 2.3 (which employs shape
complementarity, desolvation, and electrostatics). In both cases there was significant
improvement in docking performance when using ZRANK to rescore the rigid-body
predictions; the number of cases with top-ranked hits increased from 2 to 11 for ZDOCK 2.1
and from 6 to 12 for ZDOCK 2.3.

It was noted that ZRANK could be followed with structural refinement to further improve the
docking success rate.19 To examine this possibility, we have combined the initial-stage
docking of ZDOCK and scoring of ZRANK with the structural refinement of RosettaDock.
8The local refinement of RosettaDock includes side chain repacking and a Monte Carlo search
of the local rigid-body space of the ligand. While RosettaDock can be highly successful in
obtaining atomically accurate models through its refinement, it is sometimes unsuccessful in
locating near-native structures in its initial (Monte Carlo based) global search due to the large
size of the search space, particularly for larger proteins.21 On the other hand, ZDOCK is not
as limited by size of the protein structures, as it utilizes the FFT to scan the entire protein
translational space quickly.

In this study, we tested the effectiveness of refining the initial-stage docking structures from
ZDOCK and ZRANK using RosettaDock, and selecting refined models using either
RosettaDock score or ZRANK score. Also we explored using a larger perturbation size in the
RosettaDock refinement search, to determine whether this can allow for successful refinement
of models that are more distant from native. Finally, we optimized the ZRANK scoring function
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specifically to evaluate refined structures, which leads to a significant improvement in
accuracy.

Materials and Methods
In this study, hits are defined as predictions with Cα root-mean-square distance (RMSD) of
less or equal to than 2.5 Å after superposition with the interface atoms in the crystal structure,
as described by Chen et al.14 Near-hits are defined as having interface Cα RMSD greater than
2.5 Å and less than or equal to 4.0 Å.

The initial-stage docking models were generated by ZDOCK versions 2.314 and 3.0.22 For
the ZDOCK runs, 6° rotational sampling was used, with different initial rotations for each test
case to avoid bias. The 76 rigid-body and medium unbound Benchmark 2.0 cases were used
for docking. This was to provide as large a test set as possible, without including the difficult
cases which would require explicit modeling of the large interface conformational changes to
produce near-native predictions.20 For the antibody test cases, the search was restricted to the
complementarity determining regions for the antibody cases, as described by Chen and Weng.
6

ZRANK was used to rerank the ZDOCK models as described previously,19 with polar
hydrogens added to the unbound proteins using RosettaDock prior to scoring. For the refined
structures, hydrogens were already in the structures from RosettaDock. The non-polar
hydrogens (which were also added by RosettaDock) were ignored by ZRANK.

For the docking refinement protocol, the Monte Carlo refinement method of RosettaDock 2.0
was used,8 with ZDOCK predictions as starting structures. Non-standard amino acids and non-
protein atoms were removed prior to refinement, with exceptions where substitutions were
possible (for example modeling MSE as MET). During refinement, extra chi1 rotamers and
chi2 aromatic rotamers were included in the side chain searching. Unbound rotamers were also
used, as described by Wang et al.,23 with the exception of the cases with bound antibody
structures. Filtering was turned off, as it was found to lead to no output for many ZDOCK
predictions, due to the filter rejecting the models because of small clashes. Three hundred
refined models were generated for each starting structure, similar to (but slightly smaller than)
the 500−1000 structures generated by Schueler-Furman et al.24

The Large Perturbation RosettaDock searching (Large Pert) was achieved through
modification of the RosettaDock code and setting Monte Carlo perturbations to 0.4 Å and 0.2°,
rather than the default perturbation (Default Pert) size of 0.1 Å and 0.05°.8

To optimize the weights of the ZRANK terms for scoring refined models, a downhill simplex
was used to determine the weights, as was used for the original ZRANK.19 To generate the
docking models for training, all three initial docking protocols used in this study (ZD2.3ZR,
ZD3.0, ZD3.0ZR) were utilized. This provided 37 Benchmark 2.0 cases with near-hits in the
top 20 predictions. For all of these cases, the top 20 models for each protocol were refined by
RosettaDock to produce 300 refined models. The downhill simplex was then used to maximize
the number of hits per test case, selecting the top-scoring prediction (using the candidate
weights) from the 300 refined structures for each of the 20 models. The simplex optimized the
weights for the seven terms from the original ZRANK, as well as a term for the IFACE
potential.22 To avoid missing the global minimum, 30 different simplex starting points were
used as well as five random restarts from each minimum. For the success rate calculation, five-
fold cross validation was used. We divided the test cases into five non-overlapping sets, training
the weights with four sets and testing on the remaining set. This was performed five times so
that each set was tested using weights from the remaining sets.
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Results
ZDOCK and ZRANK Success Rates for Hits and Near-hits

To produce initial sets of structures for refinement, ZDOCK versions 2.314 and 3.022 were
run on all rigid-body and medium difficulty cases from Benchmark 2.0,20 and ZRANK19 was
then used to rerank all 54,000 of the initial-stage docking predictions for each ZDOCK run.
ZDOCK 3.0 is a newly developed version of ZDOCK that uses a pairwise interface statistical
potential (IFACE) based on improved atom-typing,25 and has been shown to have significantly
improved success on a docking benchmark. We did not use ZDOCK 2.126 as its shape
complementarity scoring function is contained within ZDOCK 2.3 and ZDOCK 3.0, and its
performance is approximately the same or less than that of ZDOCK 2.3.14

The success rate for each docking/scoring method for the 63 rigid-body cases is given in Figure
1. For each number of Np predictions allowed, the success rate denotes the percentage of cases
with a hit (or near-hit) ranked within that set of predictions. As defined in the Methods, hits
are predictions with interface root-mean-square distance (RMSD) of less than or equal to 2.5
Å from structure of the complex, and near-hits are predictions with interface RMSD greater
than 2.5 Å and less than or equal to 4.0 Å from the structure of the complex.

While the success rates of ZDOCK 2.3 and ZRANK have already been investigated,19 Figure
1 provides a basis for examining how ZRANK performs when reranking ZDOCK 3.0 models,
and also how near-hit success compares with hit success for these protocols. The hit success
rate for ZDOCK 2.3 and ZRANK (ZD2.3ZR) versus the original ZDOCK 2.3 (ZD2.3)
predictions represents a strong improvement, as has already been noted.19 For ZDOCK 3.0
followed by ZRANK (ZD3.0ZR), the success rate is slightly lower than that of ZDOCK 3.0
(ZD3.0) for the top few predictions (Np < 4). After this point, the hit success rate of ZD3.0ZR
is better than for ZD3.0 alone, and surpasses that of ZD2.3ZR at Np = 20.

The near-hit success rates (Figure 1, bottom) are shifted up from those of the hits, reflecting
the more lenient cutoff. In general, the near-hit success rates follow the same trends as the hit
success rates. The top near-hit success rates at Np = 100 are highest for the ZRANK protocols
(ZD2.3ZR and ZD3.0ZR), both above 60%. In addition, ZD3.0 gives a relatively high near-
hit success rate, particularly for the top predictions.

Testing of RosettaDock Sampling and ZRANK Scoring
Based on the success rates for ZRANK and ZDOCK to produce initial hit and near-hit
structures, we chose to refine models generated by ZD2.3ZR, ZD3.0, and ZD3.0ZR sets. The
ZD2.3ZR, ZD3.0, and ZD3.0ZR sets have 26, 27, and 27 cases, respectively, with hits or near-
hits in the top 20 predictions.

The schematic showing the basic steps we employed for docking and refinement is given in
Figure 2; the focus of this study is the last two steps. For each test case, the top 20 models from
ZDOCK and ZRANK were refined using RosettaDock to generate 300 models per prediction.
ZRANK was then used to score all 300 models for each prediction, and the best scoring model
of the 300 was selected for that prediction. Finally, these 20 refined structures were reranked
by ZRANK score. For comparison, we consider two alternatives: the use of the top ZDOCK
models for the input to refinement (rather than ZDOCK and ZRANK) as illustrated by the top
dotted line (which was performed for the ZD3.0 set), and the use of RosettaDock scores to
select the refined structures and rerank them (thus skipping the second ZRANK step) as shown
by the lower dotted line.

In addition to testing RosettaDock scores instead of ZRANK scores to evaluate the structures,
we also explored using a larger rigid-body perturbation size in the RosettaDock structural
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refinement (as described in the Methods section), referred to as large perturbation (Large Pert)
versus default perturbation (Default Pert). This was performed primarily to determine whether
increasing the search space would successfully refine the more distant hits and near-hits. The
evaluation of these refinement protocols was performed via several metrics, and is given below.

Amount of Structural Improvement—To determine the degree of structural improvement
resulting from the refinement and reranking, we calculated the interface RMSD of the refined
structure and compared it with the initial interface RMSD of the prediction for all models that
were initially near-hits (from the three docking protocols ZD2.3ZR, ZD3.0 and ZD3.0ZR).
The histogram of these RMSD changes is given in Figure 3.

For the RosettaDock scoring, the Default Pert searching performed better than the Large Pert.
In particular, the Large Pert had a significant amount of models that were worse than input by
> 0.8 Å. This can be explained by the fact that the RosettaDock scoring function and search
function were developed together, and the default search size may be optimized for its scoring
scheme.

Also in Figure 3 the improvement from ZRANK scoring can be seen, resulting in significant
differences in the distributions from RosettaDock scoring. Using the Wilcoxon rank sum test,
the P-values for similarity between the RosettaDock and ZRANK scoring RMSD distributions
are 2.7*10−8 and < 2.2*10−16 for Default Pert and Large Pert, respectively. For all bins
representing structural improvement, the ZRANK scoring had more predictions than for
RosettaDock scoring. Comparing the perturbation sizes for ZRANK scoring, they are
approximately equal for the larger improvement bins, while the Large Pert+ZRANK improved
more predictions than Default Pert+ZRANK for the under 0.4 Å range. The Default Pert then
had more predictions become slightly and moderately worse, and Large Pert had some
predictions worsen by 0.8 Å or more while default had none. Overall, the large perturbation
performed better than default perturbation for the ZRANK scoring.

Improved Structures versus Initial RMSD—To further examine the structural
improvement from refinement using these methods, we binned the predictions based on their
initial RMSDs and calculated percentage of cases with structural improvement for each bin
(Figure 4). This indicates which methods perform well for the more distant initial predictions.
The dotted line indicates 50% of cases improving; however, it should be noted that random
movement of the proteins might not necessarily yield this high a rate of improvement.

It can be seen in Figure 4 that the RosettaDock Large Pert+ZRANK gives the greatest overall
performance in structural improvement. In four of the six bins it has the highest percentage
improved, and in five out of six of the bins it is above 60% improved (all of them are above
50%). The highest percentage improvement is for the bin of 2.5 Å to 3.0 Å, which represents
the most proximal near-hits. Following this method in terms of performance is default
perturbation plus ZRANK and default perturbation plus RosettaDock scoring.

Hits After Refinement versus Initial RMSD—In addition to the structural improvement,
we also measured the performance for hits after refinement for the same refinement schemes
(Figure 5). It should be noted that performing no refinement at all would yield 100% hits in
the first three bins, and 0% hits in the latter three bins.

In this case, the default perturbation with ZRANK performed slightly better than the large
perturbation with ZRANK for the bins with the smallest initial RMSDs. Interestingly, the large
perturbation with ZRANK has the most hits for the bin from 3.5 Å to 4.0 Å starting RMSD,
in agreement with that the larger perturbation allowed for more sampling in hit range for those
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distant predictions than default perturbation. RosettaDock with default perturbation also
performed well, but not as high as the ZRANK scoring with either perturbation size.

Score versus RMSD Examples—One means to understand the effectiveness of a scoring
function is to plot the scores of the docking models versus the RMSD to see if there is a trend
or funnel toward the native structure. Such funnels are considered to be part of the physical
binding process,27-29 thus an accurate energy function should be able to replicate this. Plots
of score versus RMSD for three test cases are shown in Figure 6, using RosettaDock Large
Pert for searching and RosettaDock (top) and ZRANK (bottom) scoring. For each test case,
the top 10 model refinements are shown, to illustrate how the scores and funnels appear for
both the near-native structures and those that are far from native for that test case (the top 10
rather than the top 20 were shown to simplify the plots).

In all three cases, there is a hit after refinement when using the ZRANK scoring, and the energy
funnels can be seen for the near-hits and hits. This is not as evident when using the RosettaDock
scoring for these predictions, as can be expected based on the overall results described above
(Figure 3-5). Although it is not the top-ranked prediction, the near-hit for 1MLC is refined to
0.98 Å using ZRANK scoring to select the top model, close to the minimum rigid-body RMSD
for this case (0.6 Å). Also using ZRANK scoring, the top-ranked model for 1RLB is a hit with
1.38 Å RMSD, and for 1CGI the near-hit model is refined from the initial 3.4 Å RMSD to 2.33
Å RMSD, thus producing a hit from a near-hit. In the case of 1CGI, the interface RMSD
between the superposed unbound and bound structures is 2.02 Å, making this one of the more
difficult of the rigid-body Benchmark 2.0 cases.20

Detailed Results: ZD3.0ZR + RosettaDock Large perturbation + ZRANK
Based on the analysis of the four different refinement sampling and scoring schemes (Figures
3, 4, and 5), we chose to utilize the ZRANK scoring and large perturbation of RosettaDock for
the remainder of this study.

Numbers of Refined Structures—While we selected to use sets of 300 refined structures
for this study, we examined the success rates for using fewer than 300 refined structures from
RosettaDock as input to the scoring. In this case, the success rate is out of all hit and near-hit
cases from ZD3.0ZR selected as input to refinement. This is provided in Figure 7. Random
subsets of predictions were selected from the RosettaDock refined structures to determine the
success from sets of fewer than 300 predictions. The success rates increase upon using more
predictions from RosettaDock, with 300 predictions showing the highest overall success rate,
in particular for Np > 6. At 20 predictions, using 300 refined structures and ZRANK has a
100% success rate, indicating that all 27 cases that had hits or near-hits in the top 20 prior to
refinement had hits after refinement. Based on this analysis, it is possible that greater than 300
refined structures would provide even greater success rate, however this was not tested due to
computational limitations.

Hit Statistics—To provide an illustration of the specific improvements from this refinement,
the detailed results for the refinement of ZD3.0ZR models are given in Table 1. As was noted
above regarding the success rate (Figure 7), all 27 cases had hits after refinement, with four
cases becoming hits from near-hits. The number of cases with hits ranked at #1 increased from
7 to 10 after refinement. For 20 of the 27 cases, the RMSD of the top hit was improved indicating
the structural improvement resulting from the refinement.

Refined Structure Example—In some cases, there were significant improvements of
RMSD, for example 1IQD (Factor VIII/Fab) for the ZD3.0ZR set, which is shown in Figure
8. The original model from ZDOCK, which had an interface RMSD of 4.18 Å, was refined by
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RosettaDock to produce 300 structures, and these models were scored by ZRANK to select
the structure shown, with 1.46 Å interface RMSD. Figure 8 shows how the ligand in the final
structure is both shifted and rotated from the initial prediction to be positioned more correctly
on the receptor. Though it is not the typical degree of RMSD improvement (as indicated by
Figure 3), this demonstrates that it is possible to sample adequately large space in the Rosetta
refinement to achieve significantly improved structures from the initial rigid-body prediction,
and such structures can be identified by ZRANK. Interestingly, there were several predictions
for this case with initial RMSD less than 4.0 Å, and none of these became hits; this is possibly
due to the initial positioning having some hindrance preventing the Monte Carlo algorithm
from correctly positioning the ligand and its side chains for those predictions.

Retraining Weights for Refinement
Based on the success of using the ZRANK scoring function to rescore refined models, we
retrained the ZRANK weights to determine whether this would further improve the refinement
performance, in particular to rank refined hits at #1. For several instances (such as 1MLC and
1CGI in Figure 6) the near-hit structures were refined well using RosettaDock and ZRANK
scoring, but the hit predictions were not ranked at #1 among the top 20. This is possibly because
the original ZRANK weights were determined using rigid-body models from ZDOCK, and
though they are effective they may not be optimal for discriminating refined predictions that
should have less clash and better side chain positions. For instance, the van der Waals repulsive
weight in ZRANK is significantly smaller than the van der Waals attractive to provide softness
for the scoring of the rigid-body predictions; for the refined predictions this softness may not
be as necessary.

Weights were retrained as described in the Methods section, using five-fold cross validation
with the original ZRANK terms and also incorporating a term for the pairwise IFACE potential.
22 The cross-validation results using these new weights are provided in Table 2, along with
the initial results for comparison. The number of cases with hits ranked at #1 is significantly
higher compared with the original predictions, and also compared with the original ZRANK
for refinement scoring. The best performance for the retrained function is seen for the ZD2.3ZR
and ZD3.0ZR sets. Comparing the results using the new weighted refinement to before
refinement, the number of cases with hits ranked at #1 increased from 12 initially to 19 (the
ZD2.3ZR set) and from 7 initially to 15 (the ZD3.0ZR set). For the ZD2.3ZR set, the 19 cases
with hits at #1 comprise over 79% of the 25 cases with hits in the top 20. Both refinement with
the ZRANK weights and refinement with the new weights led to significant improvements in
the number of cases with hits in the top 20 versus the original unrefined models.

The weights obtained when training using the entire set of cases are:

vdW attractive: 1.0

vdW_repulsive: 0.23

electrostatics short-range attractive: 0.57

electrostatics short-range repulsive: 0.56

electrostatics long-range attractive: 1.09

electrostatics long-range repulsive: 0.29

ACE: 0.7

IFACE: 0.38

As anticipated, the repulsive van der Waals weight is higher than for the original ZRANK
weights, which was 0.009, representing less softness in the refinement scoring function. As
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before, the electrostatics short-range terms are similar to one another. The ACE and IFACE
terms both have significant weights and the sum of their weights is approximately the same as
the ACE weight for the original ZRANK, where no IFACE term was present. Both IFACE and
ACE are contact potentials representing solvent exclusion. ACE was parameterized based on
atomic contacts within chains of protein crystal structures.30 In contrast, the IFACE function
was developed using structures of transient protein-protein interfaces, and has 12 atom types
rather than the 18 atom types of ACE.22,25 Ideally, IFACE should replace ACE entirely when
evaluating protein-protein interfaces; however, the amount of available training data is
substantially less for IFACE than for ACE, hence some energy terms may be better estimated
in ACE. As the weights and results indicate, these terms complement each other well and help
to improve the accuracy of discriminating refined hits from non-hits.

CAPRI Experiment
The Critical Assessment of PRedicted Interactions (CAPRI) is an international experiment for
testing protein docking methods where participants make blind predictions of protein complex
structures.31 Recently, the CAPRI experiment has featured a scoring sub-round where a set of
initial docking models from several groups (approximately 1000−2000) are rescored and
refined by participants, and the top 10 models are submitted for evaluation.

We have used the CAPRI scoring experiment as an opportunity to test the combination of
ZRANK and RosettaDock, with positive results (Table 3). The CAPRI evaluation classifies
docking predictions as acceptable (*), medium (**) and high (***) accuracy. Our definition
of “hits” is approximately between the criteria for “acceptable” and “medium” for CAPRI. Our
general protocol for CAPRI scoring was to rescore input models with ZRANK, filter false-
positive models using known biological data (e.g., if a C-term is known not to interact then
predictions involving an interface C-term are removed), refine using RosettaDock, and rerank
the refined structures using ZRANK.

For all three targets, we submitted at least one acceptable prediction, and for two targets we
submitted medium predictions.16 For Target 26, where we utilized ZRANK and Rosetta with
default perturbation (selecting models based on RosettaDock score) because we had not
investigated large perturbation at that time, we achieved 3 medium and 1 acceptable
predictions. In the case of Target 27 (the second interface evaluated), we achieved 7 acceptable
predictions, and for Target 29, for which the protocol matches that of the present study with
large perturbation and ZRANK, we submitted two medium and one acceptable predictions for
the scoring sub-round. For Target 28 (results not shown), no near-hits were provided to the
scorers so as a result there were no acceptable predictions from any scorers.

It should be noted that the input predictions for the CAPRI scoring are not necessarily from
ZDOCK; in fact as several groups are involved in producing initial structures some scoring
structures are certainly not and may include refined models or more clash than ZDOCK
predictions, which was the original intent of ZRANK. However success in the context of the
CAPRI scoring helps to highlight the effectiveness of this algorithm.

Computational Performance
The computational time of the Rosetta refinement protocol on a 2.2 GHz Linux machine was
on average 9 hours to produce 300 refined structures from the input model. Scoring the 300
refined structures with ZRANK took an average of 4 minutes.
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Discussion
Protein docking often requires the effective usage of several steps to produce accurate
predictions.4 In this study, we have explored an efficient global search with rescoring and
refinement, by combining the tools ZDOCK, ZRANK and RosettaDock. The combination of
these techniques has led to increased success on a docking benchmark and suggests that this
is a promising avenue for further improving protein complex prediction success.

One interesting result from this study is the improvement of using ZRANK scoring over
RosettaDock scoring when selecting refined docking models. It has been shown that
RosettaDock scoring, when used in the context of the RosettaDock global search, is effective
on a docking benchmark.8 One major difference in this study is that the models being refined
are from rigid-body docking using ZDOCK, rather than from the Rosetta global search. The
softness in the scoring function of ZDOCK allows for slight side chain overlaps in the
predictions; Rosetta is most likely not as tolerant of these as ZRANK. This also explains the
need for removal of the filter when running the RosettaDock refinement, as discussed in the
Methods section. On the other hand, the ZRANK scoring function was parameterized to allow
it to effectively score rigid-body predictions.

The success rates and refinement RMSD changes (Figures 3, 4, and 5) highlight the
performance differences between the scoring functions and search strategies explored in this
study. It is particularly clear from the success rates in Figure 4 that the RosettaDock with large
perturbation combined with ZRANK scoring performs well for structural refinement. While
RosettaDock scoring does perform well when rescoring the refined models using RosettaDock
default perturbations, it is not as high a success rate as that for either perturbation size with
ZRANK.

The success rates of the refinement procedure described here are further improved by re-
optimization of the scoring function for refined docking models. The vast improvement in
success of cases with hits ranked at #1 is highly encouraging. Also informative are the weights
themselves resulting from the training; indicating that the van der Waals repulsive provides
more discrimination after refinement, where models (including hits) no longer have clash that
is inherent in rigid-body docking. The IFACE term also helps the scoring function. Though its
weight is roughly similar to that obtained for ACE, training the scoring function without the
IFACE term yields lower success rates, though higher than those from the original ZRANK
weights (data not shown).

There have been several recent studies that have utilized scoring functions specifically for
protein docking refinement. The program FireDock32 employs two different weighted
functions (one for enzyme/inhibitor systems, and one for antibody-antigen systems), each with
11 terms to score refined predictions (after rigid-body and side chain refinement).

Compared with this, the scoring function of ZRANK is simpler and does not use separate
weights for different types of protein complexes. Another recently developed scoring function,
EMPIRE,33 uses an eight term scoring function and a separate side chain energy function, in
conjunction with rotamer modeling and CHARMM energy minimization.34 In that case, the
structural improvement of the predictions was more limited than used in this study as it employs
CHARMM energy minimization rather than the RosettaDock 6D search.

Future work includes incorporating backbone movements into the refinement search, to
overcome limitations imposed by backbone conformational change at the binding interface.
Also, the RosettaDock refinement algorithm can possibly be modified to search more quickly
and just a subset of mobile side chains, so that more predictions can be effectively processed.
This way the remaining cases from the docking benchmark can conceivably be included (those
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with hits and near-hits ranked greater than 20) to improve the docking performance on these
cases.

In summary, we have shown that it is possible to combine the protein docking tools ZDOCK,
RosettaDock, and ZRANK in a systematic manner to improve the success across a set of cases
from a docking benchmark. In this approach, the ZRANK algorithm was found to be effective
at rescoring the refined models from RosettaDock, in particular when utilizing a function
specifically trained for refined models.
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Figure 1.
Hit success rate (top) and hit and near-hit success rate (bottom) for ZDOCK 2.3 and ZDOCK
3.0 with and without ZRANK for the rigid-body cases of Benchmark 2.0, versus number of
predictions allowed (Np). Hits are defined as having interface RMSD less than or equal to 2.5
Å from the complex structure determined by x-ray crystallography, and for near-hits the RMSD
is between 2.5 Å and 4.0 Å.
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Figure 2.
Protocol employed for docking and refinement (alternative protocols employed in this study
are indicated with dashed lines). The initial stage, which produces 20 rigid-body models,
includes ZDOCK followed by ZRANK (alternatively the top 20 ZDOCK models are used).
The model refinement, which is the focus of this study, employs RosettaDock to refine each
model to generate 300 structures per rigid body prediction. These structures are rescored by
ZRANK and the top scoring model is selected from each set of 300. The resultant 20 predictions
are reranked using ZRANK score (alternatively RosettaDock score is used to select and rerank
the structures).
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Figure 3.
Histogram of interface RMSD change for all hit and near-hit models after refinement using
several search/scoring strategies. Each bin represents the interface RMSD after refinement
minus the interface RMSD of the model before refinement. Default Pert = RosettaDock
refinement with default perturbation size, Large Pert = RosettaDock refinement with large
perturbation size, Rosetta = RosettaDock score used to select the predictions, ZRANK =
ZRANK score used to select the predictions.
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Figure 4.
Percent of models with RMSD improvement for several search/scoring strategies, binned by
initial interface RMSD of the models. The dotted line represents 50% success rate. Protocols
and abbreviations are the same as Figure 3.
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Figure 5.
Percent of models with hits after refinement for several search/scoring strategies. binned by
initial interface RMSD of the models. Protocols and abbreviations are the same as Figure 3.
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Figure 6.
Refinement of three test cases, 1MLC, 1RLB, and 1CGI, with Rosetta scores (top) and ZRANK
scores (bottom) versus interface RMSD of the predictions. For each case, 300 refinement
models were generated for each of 10 input structures from ZD2.3ZR (1MLC), ZD3.0ZR
(1RLB), and 1CGI (ZD3.0), using the large perturbation size for RosettaDock refinement. Each
point represents the score for one refinement model, and each point type represents refinement
models for one input prediction. For each input model, the top scoring refined model was
retained for evaluation.
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Figure 7.
Success rates of refinement for ZD3.0ZR predictions for hit and near-hit cases for various
numbers of RosettaDock refinement models. Success is defined as the number of cases (out of
27 hit and near-hit cases from this set) that have a hit in a given number of top-ranked
predictions (Np). The large perturbation size was used for RosettaDock, and ZRANK scoring
was used to select and rerank the refined model. Random subsets of RosettaDock refined
models were selected from a total of 300 for the smaller numbers of models.
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Figure 8.
Refinement of ZD3.0ZR prediction #12 for test case 1IQD (Factor VIII/Fab), with input ligand
(red), refined ligand (green) and bound ligand (blue). The bound receptor is colored gray. The
refined structure was chosen by ZRANK score of the 300 refined models from Rosetta. Figure
generated with Pymol.35
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Table 3
CAPRI scoring results for using ZRANK and RosettaDock, with numbers of Acceptable and Medium predictions
submitted in the 10 predictions for each target.

Target Protein Acceptable Medium

T26 TolB/Pal 1 3

T27.2 E2−25K/Ubc9 7 0

T29 Trm8/Trm82 1 2
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