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Abstract
T cell receptors (TCRs) are proteins that recognize peptides from foreign proteins bound to the Major
Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. This interaction
enables the T cells to initiate a cell-mediated immune response to terminate cells displaying the
foreign peptide on their MHC. Naturally occurring TCRs have high specificity but low affinity toward
the peptide-MHC (pepMHC) complex. This prevents the usage of solubilized TCRs for diagnosis
and treatment of viral infections or cancers. Efforts to enhance the binding affinity of several TCRs
have been reported in recent years, through randomized libraries and in vitro selection. However,
there have been no reported efforts to enhance the affinity via structure-based design, which allows
more control and understanding of the mechanism of improvement. Here we have applied structure-
based design to a human TCR to improve its pepMHC binding. Our design method evolved based
on iterative steps of prediction, testing and generating more predictions based on the new data. The
final design function, named ZAFFI, has a correlation of 0.77 and average error of 0.35 kcal/mol
with the binding free energies of 26 point mutations for this system that we measured by surface
plasmon resonance. Applying the filter we developed to remove non-binding predictions, this
correlation increases to 0.85 and the average error decreases to 0.3 kcal/mol. Using this algorithm,
we predicted and tested several point mutations that improved binding, with one giving over 6-fold
binding improvement. Four of the point mutations that improved binding were then combined to give
a mutant TCR that binds the pepMHC 99 times more strongly than the wild-type TCR.
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Introduction
T cell receptors (TCRs) are heterodimeric proteins that play a critical role in the cellular
immune response. By binding to the complex of a foreign peptide and the Major
Histocompatibility Complex protein (pepMHC), they initiate an immune response against this
cell, protecting the host from foreign invasion.1 The interaction between TCR and pepMHC
is highly specific, but of low affinity, making this system an attractive target for protein design.
By utilizing protein engineering methods, the binding of TCRs can be increased while
maintaining their specificity, thus making them useful agents for targeting cancers and
pathogens. These designed TCRs should have immense therapeutic potential, for instance to
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detect and treat virally infected cells. This is complementary to and has distinct advantages
over monoclonal antibody-based therapy, which recognizes the surface epitopes of intact virus.
Viruses rapidly mutate the surfaces of their coat proteins to evade host immune response.
Because TCRs target peptides, some of which are generated from the functional sites of viral
proteins and hence cannot be easily mutated, TCRs may be more effective than antibodies in
treating viral infection. Additionally, some TCRs recognize pepMHC complexes on cancerous
cells and be applied to cancer therapy.

Efforts to improve protein-protein interactions by protein engineering have generally fallen
into two categories: directed evolution and structure-based design. Directed evolution involves
using randomized libraries of mutant proteins (displayed on the surface of phage or yeast, or
directly attached to ribosome in a cell-free manner) to select strong-binding clones. In the
context of TCR engineering, there have been several directed evolution efforts, improving
binding by approximately 100 fold for a mouse TCR,2 and up to 1,000,000 fold for human
TCRs.3-5 However, such technologies can have limitations, such as inadequate library size,
and problems with displaying certain mutants due to inefficient protein folding in the
expression system.6

Structure-based methods to enhance protein-protein interactions have become more widely
used over recent years, with more crystal structures of protein complexes available, greater
computational processing power, and more advanced algorithms to compute binding energy
changes. Selzer et al. enhanced the association rate of the TEM-BLIP enzyme-inhibitor system
by over 200-fold, by producing point mutations on the BLIP protein near the TEM interface
predicted to enhance electrostatic attraction.7 While the association rate (kon) and dissociation
equilibrium constant (KD) were significantly affected, the dissociation rate (koff) did not change
significantly. Another study used several in silico methods to optimize the ICAM-1 protein to
bind to LFA-1 protein, resulting in a mutant ICAM-1 with 22-fold binding affinity
improvement over the wild-type.8 Structure-based design has also been used to alter the
specificity of several protein-protein interactions.9,10 Structure-based design efforts to
enhance the affinities of immunoglobulin proteins (the superfamily to which both antibodies
and TCRs belong) have led to four times affinity improvement for a CD8-HLA complex11
and over seven times affinity improvement for an antibody-antigen system.12 A recent study
performed computational redesign of two antibodies via point mutations; combining five of
the tested point mutations led to a 140-fold improvement over wild-type affinity for an antibody
to lysozyme.13 There are currently no studies that have utilized structure-based design to
improve the TCR-pepMHC interaction.

We have chosen to engineer the human A6 TCR for enhanced affinity toward its in vivo binding
partner, the Tax peptide/HLA-A2 MHC complex. HLA-A2 is the most abundant Class I MHC
allele, possessed by nearly half of the human population. The peptide is a 9-mer from the Tax
protein of the human T cell lymphotrophic virus (HTLV-1). In addition to being characterized
biophysically,14,15 the wild-type structure for this complex has been crystallized.16 As with
other TCR-pepMHC complexes, this system has a relatively low binding affinity (KD in the
micromolar range).

In this study, we predicted point mutations of the TCR based on the crystal structure of the
complex, and tested their binding affinities for pepMHC using surface plasmon resonance
(SPR). We chose to focus on the A6 TCR alpha chain, as it has a large number of contacts with
both peptide and MHC, and the beta chain has been engineered in another study using phage
display.3 Based on our initial experimental results, we developed a new protein design
algorithm named ZAFFI (Zlab AFFInity enhancement) that yielded point mutations with up
to 6 times binding improvement. We then combined several point mutations with improved
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binding to create a single TCR with 99 times improved affinity for the tax/MHC, which was
then tested for specificity with several other peptides bound to the HLA-A2 protein.

Materials and Methods
Modeling of Initial Point Mutations

Initial mutation predictions were produced using molecular modeling of the point mutations
using CONGEN,17-19 followed by scoring using electrostatics and solvation, with a van der
Waals filter. Mutations were tested if they exhibited improved electrostatics and solvation
energies, and passed the van der Waals filter for no severe clashes.

Structural Modeling of Point Mutations Using Rosetta
For this study, structures of point mutations were simulated by Rosetta's interface mutagenesis
module,20 using a fixed protein backbone, and the wild-type protein crystal structures as input.
Only the mutant side chain was packed by Rosetta, except when exploring repacking
neighboring residues. In that case the “-repack_neighbors” flag was passed to Rosetta, which
caused residues in the vicinity of the mutation to be repacked. For side chain packing, standard
rotamers were augmented with extra chi1, chi2, and chi3 rotamers for all residues with at least
12 neighbors within 10 Å.

Parameterization of ZAFFI Scoring Function
Based on the experimental results from this method, we proceeded to develop the ZAFFI
function that ultimately performed the predictions of the mutations. Training of the energy
function was performed using a dataset of systematic point mutations at 10 positions on the
ovomucoid turkey inhibitor (OMTKY) molecule in four enzyme-inhibitor complexes (from
Professor Michael Laskowski, personal communication to Zhiping Weng). Specifically, the
OMTKY mutations were at positions p6, p5, p4, p2, p1, p1’, p2’, p3’, p14’ and p18’ on the
protein, with wild-type residue identities lysine, proline, alanine, threonine, leucine, glutamic
acid, tyrosine, arginine, glycine, and asparagine, respectively. For each OMTKY position, the
binding affinities of all 19 amino acid variants were measured, giving 10*19*4 = 760
experimentally characterized point mutations. Thus this set provided a broad set of mutations,
on a system different from the TCR, to train candidate scoring function weights.

To model these point mutations, the structures of the wild-type complexes (PDB IDs: 1CHO,
1PPF, 1YU6, and 3SGB) were used as input for Rosetta structural modeling, as described
above. For each mutant, the score was obtained by subtracting the score of the wild-type
complex from that of the mutant structure. We filtered some of the mutations prior to training
due to excessive clash as measured by the van der Waals repulsive term, leaving 648 OMTKY
mutations out of the original 760 for training. The 112 structural models that were removed
before training most likely required further side chain or backbone packing to accommodate
the clash and were considered false negatives, which were not of interest as we sought to reduce
false positives. Inclusion of these mutations in the training set led to excessively low van der
Waals repulsive weights (data not shown).

The scoring terms explored were:

1. van der Waals attractive (vdW_atr)

2. van der Waals repulsive (vdW_rep)

3. Lazaridis-Karplus solvation (solv)

4. hydrogen bonding (HB)
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5. intra-residue clash (intra)

6. short-range electrostatics (SR elec)

7. long-range electrostatics (LR elec)

8. amino acid backbone probability (BB prob)

9. ACE

10. IFACE

11. DFIRE

Terms 1, 2, 6, 7, and 9 are from the ZRANK scoring function;21 as with the original ZRANK
implementation, these terms are calculated across the interface, using all atoms except nonpolar
hydrogens. The van der Waals and electrostatics terms are calculated based on the parameters
in the CHARMM 19 potential.22 For the van der Waals terms, a short-range linearization is
used (based on Gray et al.23), and the upper limit for inter-atom distances is 8.0 Å. The
electrostatics terms are calculated using a dielectric that is directly proportional to the distance,
and short-range and long-range electrostatics determined by the inter-atom distance: 0 Å < r
< 5 Å (short-range) or 5 Å ≤ r < 12 Å (long-range). For inter-atom distances less than the sum
of the atomic radii, the distance is approximated by the sum of the atomic radii to avoid large
values due to clash. The ACE (Atomic Contact Energy) function is a statistical contact potential
developed by Zhang et al.;24 for all (non-hydrogen) atom pairs less than 6 Å apart, the ACE
score is incremented by a value based on the identity of the atom pair. It was originally
parameterized based on intra-chain contact propensities seen in the Protein Data Bank (PDB),
25 and has since been successfully utilized to analyze protein docking predictions.26,27

Terms 3, 4, 5, and 8 are from Rosetta; to obtain them, we modified the Rosetta code to set their
weights to 1.0 and output the numbers with higher precision than the default. The Lazaridis-
Karplus term uses Gaussian solvent exclusion between the (non-hydrogen) atoms to model the
solvation free energy of the system.28

IFACE is a protein interface atomic level statistical potential,29, similar to ACE but
parameterized using protein interfaces rather than protein monomers. DFIRE is a distance-
dependent statistical potential,30 the numbers for which were obtained from the dcomplex
program.

Using the above terms, we combined all possible sets of sizes 0 to 5 for terms 4−11 with terms
1, 2, and 3. This led to 219 candidate sets of scoring terms. For each set of scoring terms,
multilinear regression was applied, using the GNU Scientific Library
(http://www.gnu.org/software/gsl/) and the filtered mutations for the OMTKY data set
described above. This determined a set of weights for the terms that was optimized to fit the
energies of the OMTKY point mutants. Each weighted function from the multilinear regression
was then tested using the data set of our measured point mutations for the T cell receptor
(simulating the point mutants using Rosetta as described above), and evaluated based on
correlation.

These are the optimal terms and weights obtained from training on the OMTKY data and then
applied to our T cell receptor mutations:

van der Waals attractive: 0.24

van der Waals repulsive: 0.017

Lazaridis-Karplus solvation: 0.24

intra-residue clash: 0.073
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ACE: 0.32

ZAFFI Energy Score = 0.24*vdW_atr + 0.017*vdW_rep + 0.24*solv + 0.073*intra +
0.32*ACE

Results for this weighted function applied to the OMTKY dataset (along with the results using
the original Rosetta scores) are given in Figure S1.

Parameterization of ZAFFI Filter
We developed the ZAFFI filter to remove non-binding TCR mutants that were not detected by
the ZAFFI scoring function. This function was developed using all point mutants described in
Tables 1 and S1, except for the following, which were produced after filter development:

α chain: D26V, D26W, D26M, R27F, G28M, G28T, G28R, Q30M, Q30H, Q30E, S51M,
K68H, T93Q, T98E, G102D, G102S

β chain: I54R, R95F, G100I

To train the ZAFFI filter, a Monte Carlo algorithm was used to generate candidate weights for
pairs of scoring terms. All possible pairs of terms used in ZAFFI energy function development
(described in the previous section) were tested. For each set of weighted terms, the function
was judged based on the Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve. This was computed using all mutants with ZAFFI energy score less than 0.0,
separating the mutants found to bind form those that did not bind, thus separating true positives
from false positives from the ZAFFI energy function.

Based on the above training, the ZAFFI filter function was determined, with these terms and
weights:

ZAFFI Filter Score = 1.0*HB + 0.01*LR elec

This function had an AUC of 0.93 using the test data. A filter score cutoff of 0.05 was used to
filter the predictions. Filter scores for all measured data points can be seen in Table 4.

Application of ZAFFI Function to A6 TCR Dataset
For ZAFFI, the simulation of the point mutations was performed using Rosetta's interface
mutagenesis module20 as described above and the crystal structure of the wild-type TCR
complex.16 All 26 interface residues (within a 5 Å cutoff of pepMHC) were systematically
mutated, generating structural models for 494 point mutations. Rosetta output included
predicted energies of the mutations (using its own weighted energy function20), as well as
structures of the mutants. The ZAFFI energetic and filter scores were then calculated from
these models using the functions described above.

Protein Expression and Purification
Wild-type HLA-A2, β2M, TCRα and TCRβ, and mutant TCRα and TCRβ proteins were
expressed separately as inclusion bodies in E. coli. Mutations were introduced to the constructs
via site-directed mutagenesis using standard PCR protocols. The inclusion bodies were
refolded using protocols based on those of Garboczi et al.31,32 However, fast protein liquid
chromatography (FPLC) using a size exclusion column (rather than dialysis and ion exchange)
was used to purify the refolded proteins from the aggregates; this resulted in much faster
purification of the proteins than the previously published method.31
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Measurement of Binding Kinetics
Binding of wild-type and mutant A6 TCR to the Tax-HLA-A2 complex was tested at 25°C
using Biacore 3000 surface plasmon resonance (SPR) biosensor. Approximately 400 response
units of each TCR were immobilized on the CM5 chip using the standard amine coupling
procedure. The Tax-HLA-A2 complex was injected over the immobilized TCRs at a flow rate
of 100 μl/min. In order to correct for non-specific binding of the Tax-HLA-A2 to the chip
surface, Tax-HLA-A2 was also injected over a surface on which no TCR was bound; this signal
was subtracted from those of the TCR-bound cells. After the binding dissociation phase, the
baseline was regenerated with a 2 min injection of 0.01 M HEPES (pH 7.4) 1 M NaCl over all
channels. HBS-EP (0.01 M HEPES (pH 7.4), 0.15 mM NaCl and 3 mM EDTA, 0.005% v/v
Surfactant P20) was used as a running buffer during binding affinity measurements.

BIAevaluation (Biacore) was used to determine the kon and koff of the complex formation by
simultaneous global fitting of the data to a 1:1 Langmuir model. When kinetics were not
measurable, steady-state analysis was used to obtain the KD. Steady-state analysis was also
used to verify the KD values obtained by kinetics analysis whenever possible, and the
differences were within the range of uncertainty seen from the kinetics replicates (in the ΔΔG
column in Table 1). For all mutants tested, three different Tax-HLA-A2 concentration gradients
were used to compute the kinetic and equilibrium parameters.

Results
Identification of T Cell Receptor Point Mutations with Enhanced Binding to pepMHC

We used several prediction methods to generate point mutations to test experimentally. These
included our original method using the CONGEN program 18, Rosetta's “interface” module,
20 and ZAFFI. ZAFFI uses an optimized energy-based scoring function and Rosetta for side
chain packing. These algorithms are described in more detail in the Materials and Methods
section. In addition, four point mutations comprising the quadruple β chain mutant produced
in the study of Li et al.3 were included in the training set for ZAFFI. All mutants were expressed,
folded, and measured for binding using the protocol described in the Materials and Methods
section. Kinetics and binding results for mutations with measurable binding to pepMHC are
shown in Table 1.

In addition to the mutations that showed measurable binding, we also found that several
mutations exhibited loss of binding or unmeasurable binding; these are listed in Table 2. These
represent a large proportion of our initial data set and indicate that the A6 TCR is highly
sensitive to interface point mutations. This was also seen in an alanine-scanning study of
another human TCR, where 14 of the 39 tested mutations (36%) resulted in binding below the
threshold of reliable surface plasmon resonance measurement.33 While such tendencies can
help to modulate TCR cross-reactivity (and may be a result of the low wild-type binding
affinity), it indicates that this system presents a major challenge for structure-based design,
because a naïve algorithm would have little success in predicting affinity-enhancing mutations.

Table 1 indicates improved performance in moving from our initial algorithm to Rosetta to our
final ZAFFI algorithm. Our initial predictions (“I”) had three mutations with improved binding,
seven worse, and one approximately the same (αS100A), while using Rosetta scoring to
produce mutations (“R”), one improved binding and three became worse. When utilizing these
results and developing the ZAFFI function (“Z”), our success improved so that we had four
mutations with improved binding (in bold in Table 1) and three with worse binding. It should
be noted that some of the points with worse binding were intentionally produced to verify the
ZAFFI function during its development, so its success rate is in fact higher than indicated in
Table 1 (its performance on all points is discussed in the next section). Among the mutations
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identified by ZAFFI were αD26W (the highest affinity point mutation identified by all three
methods) and αG28T, which improved binding by 6.2 and 3.6 times, respectively.

ZAFFI Scoring Function
As shown above, ZAFFI was clearly able to identify mutations that improved binding. We then
examined whether it was able to model the energetics of the measured mutations accurately.
Figure 1 provides the predicted scores versus experimentally measured values for the 26
measured point mutation energies in Table 1, for Rosetta scoring (top) and ZAFFI scoring
(bottom). For ZAFFI, the correlation coefficient is 0.77 (P-value < 10−5) and the average error
from the fit is 0.35 kcal/mol, while for Rosetta the correlation is 0.42. We also tested repacking
nearby interface residues to model the structures (Figure 1, middle); this was found to lead to
a lower correlation than ZAFFI scoring without repacking (correlation = 0.55), due to increased
outliers and false positives. It was suggested by Kortemme and Baker that repacking
neighboring residues aided predictions for some systems but not others.20 Our results indicate
that it is best not to repack for this T cell receptor system.

As discussed in the Materials and Methods section, the ZAFFI scoring function contains five
terms: van der Waals attractive and repulsive (calculated by the protein docking scoring
function ZRANK21), Lazaridis-Karplus solvation,28 intra-residue clash (calculated by
Rosetta20), and atomic contact energy (ACE, a statistical potential24). The weights for these
terms were obtained using multilinear regression on a large set of measured enzyme-inhibitor
mutations (Materials and Methods and Figure S1). Supplemental Table 1 provides the weighted
values of these terms for all of the 26 TCR point mutations in this study. To explore the specific
ZAFFI terms that contributed the most to the correlation and the binding improvements, we
calculated the correlations of the individual terms alone with the measured binding energies;
these are shown in Table 3. Also presented in Table 3 are the individual correlations for the
other six terms utilized when testing candidate scoring functions.

Although the scoring terms were ultimately utilized together in the ZAFFI weighted scoring
function, the values in Table 3 provide insights into which terms are more valuable. It can be
seen that the Lazaridis-Karplus solvation (“solv”) and ACE terms yield the highest correlations
with the measured binding energies. In addition, although the van der Waals attractive term
does not give a high correlation alone, removing this term from the ZAFFI scoring function
causes a loss of 0.28 from the correlation. Therefore, the improvements in binding affinity are
largely due to improved contacts, as measured by van der Waals, solvation, and contact
energies. In contrast, other terms can be seen to provide less precise discrimination of binding
affinities (as measured by the correlation), such as the hydrogen bonding and the electrostatics
terms.

To further illustrate this point, plots of several terms (van der Waals attractive, ACE, hydrogen
bonding, and short-range electrostatics) alone versus measured ΔΔG are given in Figure S2.
Interestingly, the hydrogen bonding term plot (lower left) contains false positive predictions
for point mutations βI54R and αG28R, as does the Rosetta scoring function (Figure 1, top).
Therefore it seems that this term, which is part of the Rosetta scoring function, is at least partly
responsible for those false positive predictions, and by removing it in the ZAFFI function those
false positive predictions have been avoided.

ZAFFI Filter Function
The ZAFFI filter complements the energetic scores by removing non-binding false positive
predictions. The filter uses a weighted sum of two energy terms: hydrogen bonding and long-
range electrostatics, which are not utilized directly in the ZAFFI scoring function. The
predictive improvements due to the ZAFFI filter can be seen by comparison of the binding
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mutations in Table 1 with the non-binding mutations in Table 2. Prior to developing the filter
(corresponding to “I” in Table 1), 36 point mutations were tested, of which 26 (72%) ablated
binding to the pepMHC (in Roman font in Table 2). During and after development of the filter
(corresponding to “R” and “Z” in Table 1; in italics in Table 2), 19 point mutations were tested,
of which 8 (42%) did not bind. It should be noted that as with the scoring function, while
developing the filter several points were produced to test candidate filter functions. The final
filter function has much higher success on the tested point mutations.

The scoring of all experimentally tested point mutations (binding and non-binding) from this
filter function can be seen in Table 4, which is sorted by ZAFFI score. By ZAFFI scores alone,
the top scoring mutations were mutations at residue αQ30 that did not bind; thus the filtering
is necessary to remove such false-positives. Using a ZAFFI score cutoff of −0.4 to select
predictions, 12 points pass the filter, 9 of which are better binders, out of a total of 11 found
in this study (αS100A does not bind significantly better than the wild-type and is not counted
as a better binder).

Even though the filter was trained only to remove non-binding mutations, it also removes false
positive predictions for the mutations with measured binding. Using just the points that passed
the filter (Figure 1, bottom, solid points) gives an even greater correlation of 0.85, and a lower
average error of 0.30 kcal/mol (versus correlation of 0.77 and average error of 0.35 for all
points). This indicates that the two terms in the filter prove useful as a binary classifier to
indicate mutations that may lose crucial electrostatics contacts, thereby reducing binding below
what is expected by the ZAFFI score.

Kinetics and Structures of A6 TCR Point Mutations
For the mutations that improved binding, it can be seen in Table 1 that the improvements are
largely due to a decrease in the dissociation rates. This is further shown in Figure 2, which
divides the ΔΔGs into kon and koff components and compares with the total ΔΔG. Exceptions
include αR27F and αG28M, with the former showing significant kon improvement and the
latter showing improvements in both kon and koff.

As examples of the structural mechanisms of binding affinity improvement, we show models
for two of these mutations, αD26W and αG28T, in Figure 3. The mutation αD26W (Figure 3a
and 3b) is on the periphery of the interface, near MHC residues E61 and R65. The substitution
of a neutral residue (tryptophan; W) for a negatively charged one (D; aspartic acid) in this
position of the TCR is electrostatically permitted because the position is closer to the negative
E61 than to the positively charged R65 (3.3 Å versus 6.1 Å). Furthermore, the mutant
tryptophan residue is predicted to make extensive hydrophobic contacts with the MHC, as can
be seen in Figure 1b. The model for the mutation αG28T (Figure 3c and 3d) shows the contacts
made by the T (threonine) residue with the peptide residue 1 (leucine) and several hydrophobic
MHC residues. Although several mutations at this position bound the pepMHC, αG28T was
the strongest binding mutation. These structural models give further evidence that the affinity
gains are through improved contacts and desolvation, as seen earlier with the specific scoring
terms in Table 3.

Cooperativity of Multiple Point Mutations
Point mutations on the TCR α chain that improved binding to pepMHC were then combined
to determine if it was possible to further improve the affinity beyond those of the single point
mutations. By comparing with the results for the measured energies with the sums of the
component single point mutants, we determined whether the combinations were additive, or
exhibited positive or negative cooperativity. Results for binding kinetics and cooperativity are
given in Table 5.

Haidar et al. Page 8

Proteins. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The combination of the top binding mutations at five positions on the α chain (WFTMT) had
significantly less binding than expected from additivity (negative cooperativity of 1.64 kcal/
mol), suggesting that some of the mutations were interfering with one another. Based on
analysis of the structural models of the mutations, we determined that interference between the
αD26W and αG28T mutations was most likely the cause due to possible clash between their
side chains. The mutations WFMMT, WFLMT, and WFIMT did not fold, indicating that
mutations of αG28 to larger hydrophobic residues in combination with the other four mutations
destabilize the folding of the TCR. We then restored α chain residue 28 to glycine to create the
WFGMT mutant; this resulted in some positive cooperativity (−0.56 kcal/mol) and a 99 fold
KD improvement over the wild-type TCR.

As with most of the single point mutations, the kinetics for the WFGMT mutant had a marked
decrease in koff responsible for the majority of the affinity improvement. Figure 4 shows the
sensorgram for this mutant, compared with the A6 wild-type and the αD26W point mutation.
More detailed kinetics data for the wild-type and WFGMT TCRs are given in Figure S3.

Mutant T Cell Receptor Specificity
To determine whether the engineered TCRs in this study have cross-reactivity with peptides
other than Tax, we displayed three 9-mer peptides on HLA-A2 and tested the binding of these
complexes to the wild-type A6 and WFGMT mutant TCR using Biacore. The peptides are
known epitopes from the human immunodeficiency virus (HIV), with sequences
SLYNTVATL, ILKEPVHGV, and VIYQYMDDL. None were found to bind either the wild-
type or WFGMT TCR (sensorgrams not shown).

We additionally displayed the V7R point mutant of the Tax peptide (sequence, with mutation
in bold, is LLFGYPRYV) on the HLA-A2 and tested its binding to the WFGMT TCR mutant
using SPR (Table 6). The binding affinity of the wild-type A6 TCR for this peptide variant has
already been characterized by SPR in another study, and found to be approximately 9.9-fold
less than for the Tax peptide.34 Inspection of the crystal structure of the HLA-A2/TaxV7R/
A6 TCR complex34 indicates that there are no significant changes in the interface of the TCR
α chain with the MHC (though the TCR β chain has considerable movement on the CDR3
loop), thus the specificity for this peptide would not be expected to change significantly for
the WFGMT mutant. Our measured specificity of the WFGMT mutant for the Tax peptide
with respect to the V7R variant (Table 6) is 9.3-fold, close to that of the wild-type A6 TCR.

Discussion
This study shows the use of structure-based design to significantly enhance the affinity of a T
cell receptor for its peptide-MHC. The final design protocol, named ZAFFI, combines the
structural modeling of Rosetta with a novel scoring function that includes shape
complementarity and desolvation terms. These terms were found to be optimal after a
systematic evaluation of many possible sets of terms, including electrostatics, hydrogen
bonding, and several statistical potentials. We successfully utilized this function, which was
selected based on initial data from this system, to predict new mutations that improved binding
affinity.

To complement the scoring function, ZAFFI also uses a filter that includes hydrogen bonding
and electrostatics terms to remove false positive non-binders. As with the scoring function
terms, these terms were found to be optimal after systematic evaluation of possible filter terms
on an initial of TCR mutations. An earlier protein design study also used satisfaction of
hydrogen bonds as a filter, as part of a design function to engineer receptor proteins.35
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We chose a conservative approach toward structural modeling of point mutations. We repacked
the mutant side chain using Rosetta, without moving the backbone or neighboring side chains.
It is possible that this led to some overlooked substitutions that improve binding (false
negatives), of which the conformations require side chain and/or backbone rearrangement.
However, the focus of this study was to limit false positive predictions while reliably predicting
some true positives, and it can be seen in Table 1 that we were still able to identify many
candidate mutations that improved binding.

The mutations that improved TCR binding affinity in this study were hydrophobic substitutions
that increased interface complementarity without losing crucial electrostatic contacts. The
improvement of complementarity and hydrophobic packing can be seen in Table 3, with the
Lazaridis-Karplus solvation and ACE terms, which both reward hydrophobic packing, having
the highest correlations with measured energies among all terms considered (including
electrostatics). This is also seen when analyzing the individual energetic terms for the mutants
(Supplemental Table 1); of 11 mutations with significant measured affinity improvements, all
of them featured improvements in both the van der Waals attractive and ACE terms. To
complement the scoring function, the filter function ensured no loss of significant electrostatic
interactions, by including the hydrogen bonding and long-range electrostatics terms.

One recent study has found that the hydrophobic residues tryptophan, methionine, and
phenylalanine (W, M, and F) are the most highly conserved of all residues in protein-protein
binding sites,36 thus are key components in naturally evolved binding interfaces. A phage
display-derived TCR mutant against another pepMHC also had hydrophobic substitutions,
including a CDR2α substitution of QSS to PFW.4 These highlight the usefulness of
hydrophobic substitutions in protein interfaces, in particular for T cell receptors where
electrostatics may not the major contributor to the affinity (versus, for instance, the barnase-
barstar complex which is highly electrostatic in nature37). In our structure-based design
approach, we are able to select the hydrophobic substitutions that improve binding with a high
specificity. For instance, αQ30W, αS100Y, and αG28V all bind with lower affinity than wild-
type and are correctly identified by ZAFFI as poor binders by either the filter or scoring
function.

In contrast with the ZAFFI scoring function, the study of Lippow et al. found that electrostatics
was the most useful term in their computational design of antibodies.13 They additionally
found that “problematic designs were at the binding site periphery”, in particular for large
residue substitutions with favorable van der Waals. They explored a more advanced
formulation of the solvation using a continuum van der Waals model38 reducing the
“magnitude of favorable prediction” for some false positives but still yielding incorrect
predictions. In our case, we identified two mutations of large residues, αD26W and αR27F,
near the periphery that improved binding significantly (both are part of the quadruple mutation
WFGMT). However, we failed to identify mutations that significantly improved the
electrostatics (based on our scoring terms and also the relative lack of experimental association
rate changes). The differences between the successful residue substitutions seen in these two
studies may reflect the computational accuracies of their scoring functions for the terms of
interest, or the structural and physicochemical differences between the systems being designed
(antibodies and the T cell receptor).

Interestingly, during preparation of this manuscript, another structure-based design study was
published that focused on substitutions from polar to nonpolar residues while not losing
electrostatics contacts.39 This protocol was utilized to predict single residue substitutions for
two (non-immunoglobulin) systems, Gαi1-RGS14 and UBCH7-E6AP, with successful results
when tested experimentally. Our scoring function, developed for optimization of a very
different interface, employs a similar overall scoring strategy; the independent development
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of such strategies for such different systems highlights the effectiveness of such a design
method. However, clear differences in the studies exist: our current study, for instance, uses
the statistical potential ACE, and estimates the ΔΔG (resulting in a strong correlation with
measured values) rather than making binary predictions for whether the mutation will improve
binding.

Consistent with the hydrophobic substitutions, the binding improvements seen in this study
are largely due to decreases in the off-rate. The correlation between the energy contribution
from off-rate and total energy change is 0.87, while this correlation for the on-rate is 0.15
(Figure 2). Decreased off-rate has also been seen as the means of TCR affinity improvement
via randomized libraries.3,4 The off-rate, which is directly related to the half life of the TCR
binding, is known to be related to the functional importance of the TCR signaling.40

The results from combining point mutations indicate the complex nature of affinity
improvement and protein binding energetics. We observed dramatic negative cooperativity in
the case of WFTMT (likely due to intra-chain van der Waals clash), and some positive
cooperativity in the case of WFGMT. Another study noted significant cooperativity when
mutating another TCR (based on a phage display mutant), both within and between clusters of
residues (referred to as “hot regions”).41 We also observed that the β chain point mutations
that we tested indicate that the phage display derived mutations for the A6 TCR from Li et al.
have significant positive cooperativity. In our case, it is unclear whether the cooperativity of
−0.56 kcal/mol for the WFGMT mutant arises from within a hot region (residues 26−27) or
between regions (involving the more distant residues 51 and 100) on the alpha chain. Although
the structural modeling indicated possible clash leading to the WFTMT negative cooperativity,
the modeling protocol did not predict the positive cooperativity of WFGMT (it predicted
energetic additivity). It should be noted that the cooperativity of −0.56 kcal/mol is less than
the cutoff for being labeled “cooperative” in other studies,13,41 thus, given that its magnitude
is relatively small, the structural and energetic factors underlying this may be somewhat subtle.
Further experimental testing of combinations of mutations at these positions should provide
more insight and can aid in adapting the modeling procedure to explain these mutants.

To complement our testing of affinity improvement for the Tax peptide, we also tested whether
the structure-based design against the Tax peptide structure would reduce or eliminate
specificity for several HLA-A2 binding peptides. As the mutants D26W, R27F, and S51M
primarily contact the MHC in the structural models, it was important to confirm that the
WFGMT mutant would still preferentially bind the Tax peptide over peptide variants. Notably,
the specificity of the WFGMT TCR for the V7R Tax variant was found to be approximately
the same as what is measured for the A6 wild-type, and there was no binding to other peptides
tested for either wild-type or WFGMT TCRs. TCR mutants that have been optimized by phage
display have been shown to maintain some peptide specificity as well.5 This includes the A6
TCR CDR3β variant from Li et al.3 which was tested for binding two HLA-A2/peptide
complexes known to cross-react with the A6 TCR and found to have somewhat greater
specificity than the wild-type.42 Based on the crystal structure of the wild-type A6 TCR
complex with HLA-A2/Tax,16 the specificity increase in that case may have been due to
contacts between mutant CDR3β residues and the peptide at positions where peptide residues
varied from Tax.

Future work includes application of the ZAFFI algorithm for specificity enhancement and
application to other systems. This includes designing the A6 TCR against other peptides bound
to the HLA-A2 MHC, using either crystal structures (e.g. the complexes with Tax mutants
described by Ding et al.34) or in silico modeling of peptides based on existing structures.
Additionally, crystallization of the complexes of the TCR combination mutants described in
Table 5 would yield information on detailed structural changes in these high affinity mutations
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(as has been performed for in vitro matured TCRs4,43,44), and could explain the basis of the
cooperativity and noncooperativity observed in our tested mutations. Structure-based design
of other protein receptors using approaches similar to our study can yield more effective
therapeutics than the wild-type molecules, and can also be used to further improve interfaces
that have been optimized using in vitro selection methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Scores versus experimentally measured binding energy changes for three different modeling
protocols for 26 measured point mutations of the A6 TCR/tax-MHC complex. Shown are:
Rosetta scoring (top; correlation = 0.42), ZAFFI with repacking of neighbor residues (middle;
correlation = 0.55), and ZAFFI (bottom; correlation = 0.77). The linear regression line is shown
as a dotted line for each plot. For the Rosetta scoring, one outlier point is outside the range of
the plot and is not shown. For the ZAFFI scoring (bottom plot), the points that did not pass the
filter function are shown as empty circles, and identities of three ZAFFI predictions that
improved binding are labeled.
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Figure 2.
ΔΔG kon (a) and ΔΔG koff (b) versus ΔΔG for the 18 measured point mutations with kinetics
values in Table 1, with values defined as follows: ΔΔG kon = RT*ln(kon_wt/ kon_mut), ΔΔG
koff = RT*ln(koff_mut/ koff_wt), and ΔΔG = RT*ln(KD_mut/ KD_wt) = RT*(ln(kon_wt/kon_mut) +
ln(koff_mut/koff_wt)) = ΔΔG kon + ΔΔG koff. The correlations are: a) 0.15 and b) 0.87.
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Figure 3.
Models of mutant complexes for point mutations D26W (a and b) and G28T (c and d) of the
TCR α chain, using cartoon (a and c) and spacefill (b and d) to represent the molecules. Wild-
type residues and TCR α chain are shown in green, mutant residues are shown in blue, MHC
is colored yellow, peptide is colored pink, and TCR β chain is colored slate. In a and c, side
chains of peptide and MHC residues in the vicinity of the mutation are labeled. In a, dotted
lines indicate the distance from the TCR D26 OD2 atom to the MHC E58 OE1 atom (3.3 Å),
and to the MHC R65 NH2 atom (6.1 Å). In c, dotted lines indicate the distances from the
(modeled) TCR T28 CG2 atom to the peptide L1 CD1 atom (3.4 Å), to the MHC W167 CZ2
atom (3.5 Å), and to the MHC Y59 CD1 atom (4.3 Å). Images generated using Pymol
(www.pymol.org).
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Figure 4.
Biacore SPR sensorgrams for binding of Tax/HLA-A2 to designed and wild-type TCRs. In a),
the binding for αD26W (dashed line) is compared with binding to wild-type (solid line) for
Tax/HLA-A2 concentration of 40 μg/ml. In b), the binding of combined mutant αWFGMT
(dashed line) is compared with wild-type (solid line), using Tax/HLA-A2 concentration of 10
μg/ml. Approximately 400 response units of TCR were immobilized for each experiment.
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Table 2
TCR point mutations that exhibited no measurable binding to pepMHC. The mutations produced during development
of the ZAFFI filter are shown in italics.

CDRα1 CDRα3 CDRβ1 CDRβ3

Q30M T93Q E30A R95F

Q30H T93I E30F L98D

Q30L T98E E30Q L98F

Q30F D99N E30W L98I

Q30W S100M E30Y L98M

Q30Y S100I A99D

S100L A99Y

S100F G100I

G102S G101M

G102D G101V
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Table 3
Scoring terms, individual correlations with measured TCR binding energies, and change (loss) in correlation when
removing term from ZAFFI scoring function (marked “−” for terms not in ZAFFI scoring function).

Term Correlation Corr. Change

vdW_atr −0.01 0.28

vdW_rep 0.12 0.19

solv 0.48 0.39

HB −0.12 -

intra 0.08 0.05

SR elec −0.09 -

LR elec 0.10 -

BB prob 0.20 -

ACE 0.42 0.10

IFACE 0.07 -

DFIRE 0.14 -
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