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Abstract
Dopamine is involved in drug reinforcement but its role in addiction is less clear. Here we describe
PET imaging studies that investigate dopamine’s involvement in drug abuse in the human brain. In
humans the reinforcing effects of drugs are associated with large and fast increases in extracellular
dopamine, which mimic those induced by physiological dopamine cell firing but are more intense
and protracted. Since dopamine cells fire in response to salient stimuli, supraphysiological activation
by drugs is experienced as highly salient (driving attention, arousal, conditioned learning and
motivation) and with repeated drug use may raise the thresholds required for dopamine cell activation
and signaling. Indeed, imaging studies show that drug abusers have marked decreases in dopamine
D2 receptors and in dopamine release. This decrease in dopamine function is associated with reduced
regional activity in orbitofrontal cortex (involved in salience attribution; its disruption results in
compulsive behaviors), cingulate gyrus (involved in inhibitory control; its disruption results in
impulsivity) and dorsolateral prefrontal cortex (involved in executive function; its disruption results
in impaired regulation of intentional actions). In parallel, conditioning triggered by drugs leads to
enhanced dopamine signaling when exposed to conditioned cues, which then drives the motivation
to procure the drug in part by activation of prefrontal and striatal regions. These findings implicate
deficits in dopamine activity—inked with prefrontal and striatal deregulation—in the loss of control
and compulsive drug intake that results when the addicted person takes the drugs or is exposed to
conditioned cues. The decreased dopamine function in addicted individuals also reduces their
sensitivity to natural reinforcers. Therapeutic interventions aimed at restoring brain dopaminergic
tone and activity of cortical projection regions could improve prefrontal function, enhance inhibitory
control and interfere with impulsivity and compulsive drug administration while helping to motivate
the addicted person to engage in non-drug related behaviors.
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1. Introduction
Drugs of abuse trigger large increases in extracellular dopamine (DA) in limbic regions
(including nucleus accumbens; NAc) (Di Chiara and Imperato, 1988; Koob and Bloom,
1988), which are associated with their reinforcing effects. These effects mimic but surpass the
DA increases secondary to phasic DA cell firing that play a physiological role in coding for
saliency and reward (Schultz et al., 2000). Though some animal studies have questioned the
extent to which DA increases in NAc are associated with reward (Drevets et al., 2001; Day et
al., 2007), human imaging studies have shown that drug-induced increases in DA in the striatum
(including the ventral striatum, where the NAc is located) are associated with subjective
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descriptors of reward (high, euphoria) ( Volkow et al., 1996a; Drevets et al., 2001).
Nevertheless, it is also evident that the firing rate of DA cells encode not just reward (Tobler
et al., 2007) and expectancy of reward (Volkow et al., 2003b) but also the saliency of a given
event or stimulus (Rolls et al., 1984; Williams et al., 1993; Horvitz, 2000; Zink et al., 2003).
The saliency of an event is driven either by its unexpectedness, its novelty, its conditioned
expectations or its reinforcing effects (positive as well as negative) (Volkow et al., 2003,
2006b). Firing of DA cells, concomitant to the use of the drug will also facilitate the
consolidation of memory traces connected to the drug. These, in turn, will trigger DA cells
firing with future exposure to stimuli associated with the drug (in expectation of the reward)
(Waelti et al., 2001). Because of DA’s role in motivation, the DA increases associated with
drug-cues or the drug itself are also likely to modulate the motivation to procure the reward
(McClure et al., 2003).

The increase in knowledge regarding the multiple roles of DA in the reinforcement processes
has led to more complex models of drug addiction. It is currently believed that drugs are
reinforcing not just because they are pleasurable but because, by increasing DA, they are being
processed as salient stimuli that will inherently motivate the procurement of more drug
(regardless of whether the drug is consciously perceived as pleasurable or not).

Brain imaging techniques have contributed greatly to this new understanding. They have
allowed us to measure neurochemical and metabolic processes in the living human brain
(Volkow et al., 1997a), to investigate the nature of the changes in DA induced by drugs of
abuse and their behavioral relevance, and to study the plastic changes in brain DA activity and
its functional consequences in drug addicted subjects. This paper provides an updated review
of relevant findings.

2. Drug-induced dopamine increases in the human brain and in reinforcement
The use of positron emission tomography (PET) and specific D2 DA receptor radioligands
(e.g., [11C]raclopride, [18F]N-methylspiroperidol) has proven invaluable for the study of the
relationships between a drug’s ability to modulate DA and its reinforcing (i.e., euphorigenic,
high-inducing, drug-liking) effects in the human brain. The approach has been used effectively
to assess the effects of stimulant drugs (i.e., methylphenidate, amphetamine, cocaine) as well
as those of nicotine (Barrett et al., 2004; Brody et al., 2004; Montgomery et al., 2007; Takahashi
et al., 2007). Both the intravenous administration of methylphenidate (0.5 mg/kg), which like
cocaine, increases DA by blocking DA transporters (DAT) as well as that of amphetamine (0.3
mg/kg), which like methamphetamine, increases DA by releasing it from the terminal via DAT,
increase extracellular DA concentration in striatum and such increases are associated with self-
reports of “high” and “euphoria” (Hemby et al., 1997; Villemagne et al., 1999). Interestingly,
orally administered methylphenidate (0.75–1 mg/kg) also increased DA but is not typically
perceived as reinforcing (Chait, 1994; Volkow et al., 2001b). Since intravenous administration
leads to fast DA changes whereas oral administration increases DA slowly, the failure to
observe the “high” with oral methylphenidate—or amphetamine (Stoops et al., 2007)—is likely
to reflect the slower pharmacokinetics (Parasrampuria et al., 2007). Indeed, the speed at which
drugs of abuse enter the brain has been recognized as a key parameter affecting its reinforcing
effects (Balster and Schuster, 1973; Volkow et al., 1995, 2000). Not surprisingly, the DA
increases in ventral striatum induced after smoking, which has similarly very fast rate of brain
uptake, are also associated with its reinforcing effects (Brody et al., 2004).

This link between fast brain uptake (leading to fast DA changes) and the reinforcing properties
of a given drug suggests the involvement of phasic DA firing. The fast bursts (>30 Hz)
generated by phasic release result in abrupt fluctuations in DA levels that contribute to highlight
the saliency of a stimulus (Grace, 2000). Such a mechanism stands in contrast to tonic DA cell
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firing (with slower frequencies of around 5 Hz), which is responsible for maintaining the
baseline steady-state DA levels that set the DA system’s responsiveness threshold. Therefore,
we have proposed that drugs of abuse manage to induce changes in DA concentration that
mimic, but greatly exceed, those produced by physiologic phasic DA cell firing. On the other
hand the oral administration of stimulant drugs, which is the route used for therapeutic purposes
is likely to induce slow DA changes that resemble those associated with tonic DA cell firing
(Volkow and Swanson, 2003). Because stimulant drugs block DATs, which are the main
mechanism for DA removal (Williams and Galli, 2006), they could—even when given orally
—increase the reinforcing value of other reinforcers (natural or drug rewards) (Volkow et al.,
2001b). Similarly, nicotine, which facilitates DA cell firing, also enhances the reinforcing value
of stimuli with which it is paired. In the latter case the combination of nicotine with the natural
reward becomes inextricably linked to its reinforcing effects.

3. Role of dopamine in the long-term effects of drugs of abuse on DA in the
human brain: involvement in addiction

Synaptic increases in DA occur during drug intoxication in both addicted as well as non-
addicted subjects (Di Chiara and Imperato, 1988; Koob and Bloom, 1988). However, only a
minority of exposed subjects—the actual proportion being a function of the type of drug used
—ever develops a compulsive drive to continue taking the drug (Schuh et al.,1996). This
indicates that the acute drug-induced DA increase alone cannot explain the ensuing
development of addiction. Because drug addiction requires chronic drug administration, it is
likely to be rooted—in vulnerable individuals—in the repeated perturbation of the DA system,
triggering neuro-adaptations in reward/saliency, motivation/drive, inhibitory control/executive
function and memory/conditioning circuits, all of which are modulated by dopaminergic
pathways (Volkow et al., 2003a).

Consistent with this line of thought, there is mounting evidence that exposure to stimulants,
nicotine, or opiates produces persistent adaptive changes in the structure of dendrites and
dendritic spines on cells in key areas of the brain with roles in motivation, reward, judgment,
and the inhibitory control of behavior (Robinson and Kolb, 2004). For example, chronic
adaptations in DA receptor signaling may trigger compensatory glutamate receptor responses
with the potential to affect synaptic plasticity (Wolf et al., 2003). The fact that DA (Wolf et
al., 2003; Liu et al., 2005), but also glutamate, GABA, and other neurotransmitters, are all
highly versatile modulators of synaptic plasticity, draws a direct path connecting the effects of
drugs of abuse with the adaptive alterations, not only in the reward center but also in many
other circuits, through the strengthening, formation, and elimination of synapses.

Multiple radiotracers have been used to detect and measure these types of changes in targets
within DA network in the human brain (Table 1). Using [18F]N-methylspiroperidol or [11C]
raclopride we and others (Martinez et al., 2004,2005,2007) have shown that subjects addicted
to a wide variety of drugs (cocaine, heroin, alcohol, and methamphetamine), exhibit significant
reductions in D2 DA receptor availability in the striatum (including ventral striatum) that
persist months after protracted detoxification (Volkow et al., 2007a). Similar findings were
also recently reported in nicotine dependent subjects (Fehr et al., 2008).

It is also relevant to point out in this context that the striatal increases in DA induced by
intravenous methylphenidate or intravenous amphetamine (assessed with [11C]raclopride) in
cocaine abusers and alcoholics are at least 50% lower than in control subjects (Volkow et al.,
1997b; Martinez et al., 2007). Since DA increases induced by methylphenidate are dependent
on DA release—a function of DA cell firing—it is reasonable to hypothesize that the difference
likely reflects decreased DA cell activity in these drug abusers.
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It is important to keep in mind that the results of PET studies done with [11C]raclopride, which
is sensitive to competition with endogenous DA, are merely a reflection of vacant D2 DA
receptors available to bind to the tracer. Thus, any reduction in D2 DA receptor availability as
measured with [11C]raclopride could reflect either decreases in levels of D2 DA receptors and/
or increases in DA release (competing for binding with [11C]raclopride for the D2 receptors)
in striatum (including NAc). However the fact that cocaine abusers when given i.v. MP showed
blunted reductions in specific binding (indicative of decreased DA release) indicates that in
cocaine abusers there is both a reduction in the levels of D2 receptors as well as a decrease in
DA release in striatum. Each would contribute to the decreased sensitivity in addicted subjects
to natural reinforcers (Volkow et al., 2002b). Because drugs are much more potent at
stimulating DA-regulated reward circuits than natural reinforcers, drugs would still be able to
activate the depressed reward circuits. This decreased sensitivity, on the other hand would
result in a reduced interest for environmental stimuli, possibly predisposing subjects for
seeking drug stimulation as a means to temporarily activate these reward circuits. As time
progresses, the chronic nature of this behavior may explain the transition from taking drugs in
order to feel “high” to taking them just to feel normal.

What are the metabolic and functional correlates of such long term drug-induced perturbation
in dopaminergic balance? Using the PET radiotracer [18F]fluoro-deoxyglucose (FDG) that
measures regional brain glucose metabolism, we and others have shown decreased activity in
orbitofrontal cortex (OFC), cingulate gyrus (CG) and dorsolateral prefrontal cortex (DLPFC)
in addicted subjects (alcoholics, cocaine abusers, marihuana abusers) (London et al., 1990;
Galynker et al., 2000; Ersche et al., 2006; Volkow et al., 2007a). Moreover, in cocaine (Volkow
and Fowler, 2000) and methamphetamine (Volkowet al., 2001a) addicted subjects and in
alcoholics (Volkow et al., 2007d), we have shown that the reduced activity in OFC, CG and
DLPFC is associated with decreased availability of D2 DA receptors in striatum (see Fig. 1
for cocaine and methamphetamine results). Since the OFC, CG and DLPFC are involved with
inhibitory control (Goldstein and Volkow, 2002) and with emotional processing (Phan et al.,
2002), we had postulated that their abnormal regulation by DA in addicted subjects could
underlie their loss of control over drug intake and their poor emotional self-regulation. Indeed,
in alcoholics, reductions in D2 DA receptor availability in ventral striatum have been shown
to be associated with alcohol craving severity and with greater cue-induced activation of the
medial prefrontal cortex and anterior CG, as assessed with fMRI (Heinz et al., 2004). In
addition, because damage to the OFC results in perseverative behaviors (Rolls, 2000)—and in
humans impairments in OFC and CG are associated with obsessive compulsive behaviors
(Saxena et al., 2002)—we have also postulated that DA impairment of these regions could
underlie the compulsive drug intake that characterizes addiction (Volkow et al., 2005).

However, the association could also be interpreted to indicate that impaired activity in
prefrontal regions could put individuals at risk for drug abuse and that only then the repeated
drug use could result in the downregulation of D2 DA receptors.

DA also modulates the activity of the hippocampus, amygdala and dorsal striatum, which are
regions implicated in memory, conditioning, and habit formation (Volkow et al., 2002a).
Moreover, adaptations in these regions have been documented in preclinical models of drug
abuse (Kauer and Malenka, 2007). Indeed, there is increasing recognition of the relevance and
likely involvement of memory and learning mechanisms in drug addiction (Vanderschuren and
Everitt, 2005). The effects of drugs of abuse on memory systems suggest ways that neutral
stimuli can acquire reinforcing properties and motivational salience—that is, through
conditioned-incentive learning. In research on relapse, it has been very important to understand
why drug addicted subjects experience an intense desire for the drug when exposed to places
where they have taken the drug, to people with whom prior drug use had occurred, and to
paraphernalia used to administer the drug. This is clinically relevant since exposure to
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conditioned cues (stimuli that had become strongly linked to the drug experience) is a key
contributor to relapse. Since DA is involved with prediction of reward (Schultz, 2002), DA
has been predicted to underlie the conditioned responses that trigger craving. Preclinical studies
support this hypothesis: when neutral stimuli are paired with a drug, animals will—with
repeated associations—acquire the ability to increase DA in NAc and dorsal striatum when
exposed to the now conditioned cue. Predictably, these neurochemical responses have been
found to be associated with drug-seeking behavior (Vanderschuren and Everitt, 2005).

In humans, PET studies with [11C]raclopride recently confirmed this hypothesis by showing
that in cocaine abusers drug cues (cocaine-cue video of scenes of subjects taking cocaine)
significantly increased DA in dorsal striatum, and that these increases were also associated
with cocaine craving (Volkow et al., 2006c; Wong et al., 2006) in a cue-dependent fashion
(Volkow et al., 2008). Because the dorsal striatum is implicated in habit learning, this
association is likely to reflect the strengthening of habits as chronicity of addiction develops.
This suggests that the DA-triggered conditioned responses that form, first habits and then
compulsive drug consumption, may reflect a fundamental neurobiological perturbation in
addiction. It is likely that these conditioned responses involve adaptations in cortico-striatal
glutamatergic pathways that regulate DA release (Vanderschuren and Everitt, 2005).

To assess if cue-induced DA increases reflect a primary or a secondary response to the cue a
recent imaging study in cocaine addicted subjects evaluated the effects of increasing DA
(achieved by oral administration of methylphenidate), with and without the cue, in an attempt
to determine whether DA increases by themselves could induce craving. The results of the
study revealed a clear dissociation between oral methylphenidate-induced DA increases and
cue-associated cravings (Volkow et al., 2008) suggesting that cue-induced DA increases are
not the primary effectors but rather reflect downstream stimulation of DA cells (cortico-striatal
glutamatergic pathways that regulate DA release; Kalivas and Volkow, 2005). This observation
further illuminates the subtle effects of DA firing rate upon addiction circuitry, for the failure
of methylphenidate-induced DA increases to induce craving in this paradigm could be
explained by the slow nature of the DA increases. On the other hand, fast DA changes as
triggered by phasic DA cell firing—as a secondary response to the activation of descending
path-ways—may underlie the successful induction of cravings with exposure to a cue. It is
worth highlighting, that Martinez et al. reported a negative correlation between the DA
increases induced by intravenous amphetamine in cocaine abusers and their choice of cocaine
over money when tested on a separate paradigm(Martinez et al., 2007). That is, the subjects
that showed the lower DA increases when given amphetamine were the ones more likely to
select cocaine over a monetary reinforcer. Because in their studies they also reported reduced
DA increases in cocaine abusers when compared with controls this could indicate that cocaine
abusers with the most severe decreases in brain dopaminergic activity are the ones more likely
to choose cocaine over other reinforcers.

4. DA and vulnerability to drug abuse
Understanding why some individuals are more vulnerable to becoming addicted to drugs than
others remains one of the most challenging questions in drug abuse research. In healthy non-
drug abusing controls we showed that D2 DA receptor availability in the striatum modulated
their subjective responses to the stimulant drug methylphenidate. Subjects describing the
experience as pleasant had significantly lower levels of receptors compared with those
describing methylphenidate as unpleasant (Volkow et al., 1999, 2002c). This suggests that the
relationship between DA levels and reinforcing responses follows an inverted u-shaped curve:
too little is suboptimal for reinforcement while too much may become aversive. Thus, high D2
DA receptor levels could protect against drug self administration. Support for this is provided
by preclinical studies, which showed that higher levels of D2 DA receptors in NAc significantly
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reduced alcohol intake in animals previously trained to self-administer alcohol (Thanos et al.,
2001) and the tendency of group-housed cynomolgus macaques to self-administer cocaine
(Morgan et al., 2002), and by clinical studies showing that subjects who despite having a dense
family history of alcoholism were not alcoholics had significantly higher D2 DA receptors in
striatum than individuals without such family histories (Volkow et al., 2006a). The higher the
D2 DA receptors in these subjects, the higher their metabolism in OFC and CG. Thus we can
postulate that high levels of D2 DA receptors may protect against alcoholism by modulating
frontal circuits involved in salience attribution and inhibitory control.

On the other end of the spectrum, we have found evidence of depressed dopamine activity in
specific brain regions of adults with ADHD compared to controls. Deficiencies were seen at
the level of both D2 DA receptors and DA release in the caudate (Volkow et al., 2007b) and
in the ventral striatum (Volkow et al., 2007c). And, consistent with the current model, the
depressed DA phenotype was associated with higher scores on self-reports of methylphenidate
liking (Volkow et al., 2007b). Interestingly, if left untreated, individuals with ADHD have a
high risk for substance abuse disorders (Elkins et al., 2007).

Finally, sex differences in addictive disorders have been observed repeatedly, and it would be
reasonable to ask whether imaging studies could substantiate the preclinical evidence
suggesting such differences are due in part to striatal DA system differences and/or whether
they result from differences in activity of prefrontal regions (Koch et al., 2007). Indeed, recent
studies have documented sexually dimorphic patterns of amphetamine-induced striatal DA
release (Munro et al., 2006; Riccardi et al., 2006) that could impact substance abuse
vulnerability differently in men and women; although the data do not permit at this point a
clear cut conclusion as to whether men or women display greater DA responses. It is also likely
that the patterns will be sensitive to experimental conditions, such as context, age and stage of
menstrual cycle.

When combined, these observations provide critical insight into the striatal DA’s system
contribution to addiction vulnerability, to the emergence of frequent psychiatric comorbid
pairings, and to the observed sexually dimorphic patterns of substance abuse.

5. Treatment implications
Imaging studies have corroborated the role of DA in the reinforcing effects of drugs of abuse
in humans and have extended traditional views of DA involvement in drug addiction. These
findings suggest multiprong strategies for the treatment of drug addiction that should attempt
to (a) decrease the reward value of the drug of choice and increase the reward value of non-
drug reinforcers; (b) weaken conditioned drug behaviors, and the motivational drive to take
the drug; and (c) strengthen frontal inhibitory and executive control. Not discussed in this
review is the critical involvement of circuits that regulate emotions and response to stress
(Koob and Le Moal, 1997) as well as those responsible for interoceptive perception of needs
and desires (Gray and Critchley, 2007), which are also potential targets for therapeutic
interventions.
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Fig. 1.
(A) Normalized volume distribution of [11C]raclopride binding in the striatum of cocaine and
methamphetamine abusers and non-drug-abusing comparison subjects. (B) Correlation of DA
receptor availability (Bmax/Kd) in the striatum with measures of metabolic activity in the
orbitofrontal cortex (OFC) in cocaine (closed diamonds) and methamphetamine (open
diamonds) abusers. Modified with permission based on Volkow et al. (1993, 2001a).
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Table 1
Summary of PET findings comparing various targets involved in DA neurotransmission between substance abusers
and control subjects for which statistically significant differences between the groups were identified

Target investigated Drug used Finding Reference

D2 DA receptors Cocaine ↓ Acute Volkow et al., 1993

withdrawal

↓ Detoxified Volkow et al., 1993,
1996b

Alcohol ↓ 1–68 week Hietala et al., 1994

abstinence

↓ Detoxified Volkow et al., 2002d

Methamphetamine ↓ Detoxified Volkow et al., 2001a

Heroin ↓ Active user Wang et al., 1997

Nicotine ↓ Active user Fehr et al., 2008

Cannabis 0 Detoxified Sevy et al., 2008

DA transporters Cocaine ↑ 4 weeks Malison et al., 1998

abstinence

0 Detoxified Volkow et al., 1996b

Alcohol ↓ Acute Laine et al., 1999

withdrawal

0 Detoxified Volkow et al., 1996c

Methamphetamine ↓ Detoxied Chang et al., 2007

Cigarettes ↓ Active user Yang et al., 2008

Vesicular monoamine Methamphetamine ↓ Detoxified Chang et al., 2007

   transporters-2

Metabolism (MAOB) Cigarettes ↓ Active user Fowler et al., 2003

Synthesis (dopa Cocaine ↓ Detoxified Wu et al., 1997

   decarboxylase) Alcohol 0 Detoxified Heinz et al., 2005

DA release Cocaine ↑ Active user Schlaepfer et al., 1997

↓ Detoxified Volkow et al., 1997b

Alcohol ↓ Detoxified Volkow et al., 2007d

Modified and updated with permission based on Volkow et al. (2007a).
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