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Abstract

Networks of protein-protein interactions play key roles in numerous important biological processes in living subjects. An
effective methodology to assess protein-protein interactions in living cells of interest is protein-fragment complement assay
(PCA). Particularly the assays using fluorescent proteins are powerful techniques, but they do not directly track interactions
because of its irreversibility or the time for chromophore formation. By contrast, PCAs using bioluminescent proteins can
overcome these drawbacks. We herein describe an imaging method for real-time analysis of protein-protein interactions
using multicolor luciferases with different spectral characteristics. The sensitivity and signal-to-background ratio were
improved considerably by developing a carboxy-terminal fragment engineered from a click beetle luciferase. We
demonstrate its utility in spatiotemporal characterization of Smad1–Smad4 and Smad2–Smad4 interactions in early
developing stages of a single living Xenopus laevis embryo. We also describe the value of this method by application of
specific protein-protein interactions in cell cultures and living mice. This technique supports quantitative analyses and
imaging of versatile protein-protein interactions with a selective luminescence wavelength in opaque or strongly auto-
fluorescent living subjects.
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Introduction

Although systematic analysis of interacting proteins is per-

formed extensively using the yeast two-hybrid method [1], spatial

and temporal information of each protein-protein interaction is

crucial for understanding living cells. Protein-fragment comple-

mentation assay (PCA) [2], also named bimolecular fluorescence

complementation (BiFC) [3–7], is useful to visualize subcellular

sites of protein-protein interaction under conditions that closely

reflect the normal cellular environment. The BiFC analysis

generally involves the fusion of split fluorescence protein fragments

to a pair of proteins of interest such that neither fragment

independently retains fluorescence to a great degree. When

proteins of interest mutually interact, two fragments of the

fluorescent protein refold correctly and the activity is resumed.

BiFC is used for dual interaction of proteins using different spectral

characteristics and it also enables for quantitative analysis of dual

protein interactions at a single cell level [5–7]. Although BiFC

analysis is widely used, the chromophore formation of fluorescent

proteins and the irreversible reaction of the fragments’ comple-

mentation limit temporal analysis of protein-protein interactions in

living cells [8].

Bioluminescent proteins, luciferases, are used extensively as

reporters of many biological functions. It is highly advantageous for

the luciferase to emit its photons in the red to near-infrared

wavelength, at which tissue attenuation of emitted photons is

minimized. Moreover, luciferase reporters are actually more

sensitive than fluorescence reporters because they obviate the need

for exogenous illumination. External light often bleaches the

fluorescence to some extent, yields a higher background fluores-

cence, perturbs physiology in light-sensitive tissues, and causes

phototoxic damage to analyzed cells [9]. Because a bioluminescent

reporter protein overcomes those disadvantages, luciferases with

distinct characteristics are now used––Renilla, firefly, and red and

green click beetle luciferases––all of which provide parallel analyses

of gene functions in cultured cells and living subjects [10]. We and

other groups have demonstrated that PCAs using different

luciferases enable this simple assay system to evaluate protein-

protein interactions in living cells and mice [11–15].

Here, we show an imaging method for spatiotemporal analysis

of different protein-protein interactions with significant improve-

ment of both sensitivity and a signal-to-background ratio. Unlike

fluorescent proteins, the amino acid sequences of individual

luciferases differ greatly among species (Table S1), which hampers
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cross complementation of luciferase fragments originated from

different species. We developed a novel luciferase fragment by

random mutagenesis and realized cross complementation between

inter- and intra-luciferase fragments with high efficiency. We show

potential applications of the luciferase fragments for real-time and

dual imaging of kinase-induced interactions of Smad1–Smad4 and

Smad2–Smad4 in different stages of a single live Xenopus laevis

embryo. The obtained results are compared with the previous

data; BiFC analysis revealed a subcellular distribution of Smad2–

Smad4 at single cell levels during early stages of Xenopus embryos

[16]. We also present the applicability for visualizing a chemically

induced interaction of FKBP-FRB, kinase-induced interactions of

IRS-1–p85b, Bad–14-3-3, and Bad–Bcl-2 in cultured cells and

living mice.

Results and Discussion

The structure of luciferase from Photinus pyralis (FLuc) consists of

a large N-terminal domain and a small C-terminal one, which are

connected using a flexible linker loop [17] (Figure 1). The substrate

D-luciferin is bound in a hydrophobic pocket of the N-terminal

domain, although the entrance of the pocket is blocked by the

adenosine moiety. The spectral characteristics of luciferase are

determined by subtle structural differences of only an amino acid

residue in the hydrophobic pocket, whereas the C-terminal

domain is used for accelerating the enzymatic reaction [18].

Based on such information, we hypothesized that a common C-

terminal fragment of luciferase complements each N-terminal

fragment of different-color luciferases when they are brought

sufficiently close together.

To examine this, we investigated complementation of split

luciferases from firefly (Photinus pyralis; Firefly Luc; FLuc), click

beetle in green (Brazilian Cratomorphus distinctus; Emerald Luc;

ELuc) [19], and click beetle in red (Caribbean Pyrophorus

plagiophthalamus; CBR). Although N-terminal and C-terminal

fragments of FLuc have been identified (FLuc(1–413) and

FLuc(414–550)) [20], no information exists related to the

dissecting sites of ELuc or CBR. We therefore investigated the

dissecting sites systematically at amino acid residues from 390 to

410 based on a comparison of the amino acid sequence of FLuc

(Table S1). The N-terminal and C-terminal fragments were fused

to FK506-binding protein (FKBP) and FKBP-binding domain

(FRB) (Figure S1). A pair of the fusion proteins was co-expressed in

mammalian cells and the luminescence intensities were examined

using a luminometer. Amino-fragments and carboxy-fragments of

individual luciferase (ELuc(1–413) and ELuc(394–542), and

CBR(1–414) and CBR(395–542) were found to complement

sufficiently to recover bioluminescence upon interaction between

FKBP and FRB in the presence of rapamycin (Figure 1 and Figure

S2). However, no complementation was detected when a

combination of different luciferase fragments was used. The

spectrum of the complement ELuc was separated from that of

CBR (Figure S2 and S3), indicating that complementation of each

ELuc and CBR fragments offers the ability to monitor two pairs of

protein-protein interactions simultaneously in a single cell.

In complicated protein interaction networks, a protein of

interest might interact with proteins of many kinds in single cells.

In such cases, it would be more useful if a common C-terminal

fragment, which has the ability to complement multiple N-

terminal luciferases, were available for the analysis. The fragment

of CBR was randomly mutagenized by site-directed mutagenesis

[21] to develop such a C-terminal fragment. The products were

connected directly with a cDNA of FRB; the fusion proteins were

expressed in COS-7 cells including FKBP-connected N-terminal

fragments of FLuc, ELuc, or CBR. Among the mutant proteins

that were screened, a mutant of the C-terminal fragment including

three point mutations, F420I, G421A, E453S, named multiple-

complement luciferase fragment (McLuc1), demonstrated the most

remarkable properties, which enabled complementation to all N-

terminal fragments of FLuc, CBR, and ELuc (Figure 1).

Bioluminescence activity of a pair of N-terminal CBR and

McLuc1 was recovered 13-fold in the presence of rapamycin in

comparison to the background luminescence (Figure 2A). More-

over, McLuc1 was complementary to the N-terminal fragments of

FLuc and ELuc, whose respective signals increased 3800-fold and

100-fold upon addition of rapamycin (Figure 2B and C).

Remarkably, absolute photon counts of a complement of McLuc1

and N-terminal FLuc exhibited a 12-fold increase compared to

those of a native pair of N-terminal and C-terminal FLuc. The

signal-to-background ratio upon using McLuc1 was improved to

10-times higher than that of the native one. Similarly, absolute

photon counts of McLuc1 with the N-terminal ELuc fragment

showed 40-fold stronger than that of N-and C-terminal ELuc

fragments (Figure 2C). Also, the bioluminescence intensity of the

pair of ELuc fragments was lower than any other native pairs of

luciferase fragments (Table S2). Two pairs of luciferase fragments,

N-terminal CBR plus C-terminal FLuc and N-terminal ELuc plus

C-terminal FLuc, did not emit luminescence in the presence of

rapamycin, whereas another pair of different luciferase fragments

showed a little extent of bioluminescence. The spectra of N-

terminal FLuc, CBR, and ELuc that complement to McLuc1 were

almost identical to those of the respective native luciferases (Figure

S3), indicating that spectral characteristic of the luciferases are

determined by N-terminal domains of the respective luciferases.

We next investigate association and dissociation rates of the new

luciferase fragments in vitro. Addition of rapamycin induced rapid

increases in the bioluminescence upon complementation of

McLuc1 with N-terminal fragments of FLuc, CBR and ELuc. A

competitive inhibitor of FK506 prevented the rapamycin-induced

bioluminescence generated by all the combinations (Figure 2D).

The complex formation and dissociation rates were found

apparently similar between all the luciferase fragments. To

examine whether the loss of bioluminescence signals in the

presence of FK506 is due to complex dissociation or degradation,

stability of each luciferase fragment was examined by western

blotting analysis (Figure 2D and S4). There was no difference in

the abundance of each luciferase fragment over time, indicating

that the decreases in the bioluminescence in the presence FK506

were originated from the dissociation of luciferase fragments. All

these data demonstrate that McLuc1 is used for a new

complementation partner of all N-terminal luciferases tested here

and that each pair of luciferase fragments enables multi-color

quantitative analysis of protein-protein interactions in living cells.

We applied this technique for a heteromeric complex of

Smad1–Smad4 involved in cytoplasmic signaling of the bone

morphogenetic protein (BMP) in living cells. We constructed a set

of probes consisting of Smad1 connected with the N-terminal

fragments of FLuc (FLucN-Smad1) and CBR (CBRN-Smad1)

(Figure S1). In addition, a probe of Smad4 connected with

McLuc1 (Smad4-McLuc1) was constructed (Figure S1). The

probes were expressed in COS-7 cells containing either a

constitutively active form of a transmembrane receptor, activin-

like kinase 3 (ALK3CA), or its dominant negative form

(ALK3DN). When we analyzed bioluminescence intensities of

the cells including FLucN-Smad1 and Smad4-McLuc1, the

luminescence from the cells expressing ALK3CA was found 8

times higher than that from the cells expressing the ALK3DN or

mock-transfected cells (Figure 3A). In the case of expressing
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CBRN-Smad1 and Smad4-McLuc1, luminescence intensities of

the cells showed 2 times higher than that of cells expressing the

ALK3DN or mock-transfected cells. When we tested for ELucN-

Smad1 and Smad4-McLuc1 under otherwise identical conditions,

the luminescence intensity in the presence of ALK3CA increased

12 times higher than that of ALK3DN. The maximum response of

the bioluminescence was obtained from the pair of CBRN-Smad1

and Smad4-McLuc1, indicating that the pair of luciferase

fragments was useful for sensitively visualizing Smad1–Smad4

interactions in living cells. We next analyzed changes in the

abundance of CBRN-Smad1 and Smad4-McLuc1 by western

blotting analysis with anti-myc antibody (Figure 3A). No difference

was observed in the expression levels of the probes upon

expression of ALK3CA or ALK3DN. A Smad1 mutant lacking

phosphorylation sites (S462A, S464A) showed negligible lumines-

cence, indicating that phosphorylation of Smad1 induced its

interaction with Smad4, thereby resulting in the complement of

the luciferase fragments in living cells. These results confirmed that

the changes in the bioluminescence intensities were indeed

dependent on the interaction of Smad1–Smad4. When COS-7

cells expressing the probes of FLucN-Smad1 with Smad4-McLuc1

were stimulated with BMP-2 for 2 hours, large increases in

bioluminescence were observed. This demonstrates that the split

luciferase fragments are applicable for detection of inducible

protein-protein interactions in living cells.

The Smad1–Smad4 interaction has been shown to play an

important role in early developing stages of a Xenopus laevis

embryo[22]. The embryo has a large amount of fluorescent yolk,

which hampers fluorescence imaging because of their spectral

overlaps. We applied this bioluminescence technique for a time-

lapse imaging of the interaction in a single Xenopus embryo. We

synthesized mRNAs from cDNA constructs of CBRN-Smad1 and

Smad4-McLuc1, and microinjected the mRNAs into two diagonal

blastomeres of the 2-cell embryo. The mRNA of a yellow

fluorescent protein named Venus was also injected for visualizing

the whole shape of the embryo. After the embryo was set on a glass

dish and soaked in a solution including D-luciferin, embryonic

development was monitored over 24 h using a handmade

microscopic system equipped with a cooled charge-coupled device

(CCD) camera (Figure 3B and Movie S1). When a sibling embryo

reached stage 10, a weak but significant signal of bioluminescence

was detected in the lateral sides of ventral region. The signal

became intense of stage 14, and was stronger from stage 17 to

stage 26. Localization of the bioluminescence signals was the same

as that of BMP signals detected with anti-phosphorylated Smad1

antibody [22]. It is noteworthy that specific patterns of

bioluminescence signals in the embryo do not represent distribu-

tion of the mRNA, but rather real endogenous BMP signals

because the same embryo including the Venus mRNA showed

almost ubiquitous expression patterns among all cells over time.

To confirm this further, we obtained fluorescence images of the

fusion proteins, Venus-Smad1 and Venus-Smad4, expressed in

Xenopus embryo in order to examine their expression levels and

localization (Figure S5). The Venus-fusion Smads were expressed

ubiquitously in Xenopus embryo at stage 10, 17 and 23. We also

examined the auto-fluorescence and auto-bioluminescence imag-

ing of un-injected Xenopus embryos (Figure S5). The fluorescence

intensity of yolk was 3-times lower than that of Venus or Venus-

fusion Smads. In contrast, the auto-bioluminescence signals were

negligible, demonstrating that luciferase complementation has a

property of higher signal-to-background ratio upon using auto-

fluorescent samples.

Next, we investigated the Smad2–Smad4 interaction induced by

TGF-b. A probe consisting of Smad2 connected with N-terminal

ELuc (ELucN-Smad2) was constructed (Figure S1) and expressed

with Smad4-McLuc1 in COS-7 cells. The cells expressing

ALK5CA revealed strong bioluminescence, whereas the cells

expressing ALK5DN were silent (Figure 3A). The Smad2 was

replaced by a Smad2 mutant lacking phosphorylation sites

(S465A, S467A) and performed the same experiments. The cells

showed little bioluminescence even in the presence of ALK5CA.

Western blotting analysis revealed no significant difference in the

expression level of the probes when ALK5DN or ALK5CA was

expressed in the cells, confirming that phosphorylation of Smad2

induced its interaction with Smad4 in COS-7 cells. We further

characterized the Smad2–Smad4 interaction induced by TGF-b
in a single Xenopus embryo. We injected mRNA of CBRN-Smad2

instead of CBRN-Smad1 and performed under otherwise identical

conditions. Strong bioluminescence was found in both lateral sides

of the ventral region during stages 10–17 (Figure 3C and Movie

S2). In addition, a bioluminescence signal appeared in the dorsal

region of trunk at stage 17; thereafter the signal intensified along

the entire dorsal region from head to tail. The signal was sustained

on the dorsal side up to stage 26 and gradually faded away,

indicating dissociation between Smad2 and Smad4. Fluorescence

images of Venus-Smad2 in Xenopus embryos showed almost

ubiquitous expression patterns (Figure S5), indicating that the

obtained bioluminescence signals were due to the complementa-

tion of CBRN with McLuc1 induced by the Smad2–Smad4

interaction in the embryo.

The specific patterns of the observed bioluminescence at stage

12 indicate activation of an endogenous TGF-b signaling from the

marginal zone. A previous study using BiFC has demonstrated an

accumulation of Smad2–Smad4 interaction in marginal zone cells

of vegetal hemisphere in a subcellular level [16]. Although spatial

resolution of the present data on the whole embryo was not so high

as the data using BiFC because of low photon emission, the spatial

pattern of Smad2–Smad4 interaction was almost consistent with

the previous data obtained by BiFC analysis. This indicates that

luciferase complementation is suitable for temporal analysis of

protein-protein interaction, whereas BiFC analysis is better for

spatial analysis of the interaction with higher resolution.

To test whether it is possible to detect the interactions of

Smad1–Smad4 and Smad2–Smad4 simultaneously in a single

Xenopus embryo, mRNAs of CBRN-Smad1, ELucN-Smad2 and

Smad4-McLuc1 were injected into the embryo. Specific images

originated from bioluminescence signals were obtained in the

absence and presence of band-pass filters (536610 nm and

624625 nm), although the intensities of the bioluminescence

were less than 10% (Figure 3D). At the stage 23, anterior region

nearby cement gland of embryo showed strong bioluminescence

originated from the Smad1–Smad4 interaction. Bioluminescence

from the Smad2–Smad4 interaction was only detected at the

dorsal side. The specific patterns of the bioluminescence were

Figure 1. Schematic illustration showing structures of luciferases composed of different luciferase fragments’ complementation.
Structural models of each luciferase (upper part of each image) are based on the X-ray crystal structure of full-length Photinus pyralis (Firefly)
luciferase. The N-terminal and C-terminal domains of respective luciferases are shown in different colors. Bioluminescence images of COS-7 cells
transfected with plasmids expressing the protein fragments fused to FKBP and FRB are shown below the luciferase structures. The cells were cultured
on the 24-well plate and incubated in the presence (+Rap) and absence (2Rap) of rapamycin.
doi:10.1371/journal.pone.0005868.g001
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identical to those obtained from the independent experiments

shown in Figure 3B and 3C. The auto-bioluminescence back-

ground signals were negligible during early stages of Xenopus

embryos. These results reflect the usefulness of McLuc1 and N-

terminal fragments of the luciferases for dual imaging of different

protein-protein interactions with a third shared protein in the

developing stages of a single embryo.

Detection of two discrete pairs of interactions in living cells is

also important for resolving complex protein networks. We applied

the multicolor-luciferase fragments for dual imaging of Smad1–

Smad5 and Smad2–Smad3 interactions in living cells. It has been

shown that Smad5 and Smad3 are phosphorylated by ligand-

induced ALK3 and ALK5, respectively [23]. When Smad2 is

phosphorylated by TGF-b-induced activin-like kinase, Smad2

forms heterotrimer with Smad3 and Smad4 [24]. Smad1 is also

considered to interact with Smad5 as well as the case of Smad2–

Smad3 interaction. Each Smad3 and Smad5 was connected with

McLuc1 and two pairs of interactions, Smad1–Smad5 and

Smad2–Smad3, were visualized in COS-7 cells using CBRN-

Smad1 and ELucN-Smad2. Bioluminescence signals from BMP-

induced Smad1–Smad5 and TGF-b-induced Smad2–Smad3

interactions were obtained with green and red band-pass filters

(Figure 4). Upon stimulation with 50 nM BMP-2, red biolumi-

nescence intensity was found to increase over time. When 20 nM

TGF-b was added to the cells 50 min after BMP stimulation, only

green bioluminescence increased whereas red bioluminescence

was silent. A different pair of CBRN-Smad1 and Smad3-McLuc1

or ELucN-Smad2 and Smad5-McLuc1 did not show any

bioluminescence signals. These results demonstrate that the

combination of multicolor N-terminal fragments of click beetle

luciferases with McLuc1 makes it possible to monitor discrete pairs

of protein-protein interactions in the same living cells.

To show applicability for another interaction with reversible

and transient character, we used the McLuc1 and N-terminal

fragment of FLuc to assay an interaction of IRS-1 with PI3-Kinase

(Figure S1), which are known to regulate insulin signal cascade

[25]. In the presence of insulin, IRS-1 is phosphorylated, thereby

interacting with p85b of PI3-Kinese. The IRS-1 and the p85b
were fused to McLuc1 and N-terminal fragment of FLuc,

respectively. cDNAs of the fusion proteins were cotransfected into

CHO-IR cells expressing insulin receptor [26], and the biolumi-

nescence intensities were examined by a luminometer. Upon

stimulation with 100 nM insulin, a large increase in biolumines-

cence signals was observed (Figure 5), indicating that phosphor-

ylated IRS-1 interacted with p85b. Subsequently, the medium

including insulin was replaced by a fresh medium without insulin

and the cells were incubated for 30 minutes thereafter. The

bioluminescence signal showed a gradual decrease due to the

dephosphorylation of IRS-1. This result indicates that the McLuc1

is applicable for monitoring relatively rapid and reversible

interactions in living cells.

We further used the McLuc1 and N-terminal fragments of

luciferases to assay phosphorylation of Bad, which is known to

regulate cell survival [27]. In the presence of growth factors, Bad is

phosphorylated, thereby interacting with the 14-3-3 protein. Upon

deprivation of growth factors, Bad is dephosphorylated. Subse-

quently, it binds to one of the Bcl-XL family members, Bcl-2. The

Bad protein was fused to McLuc1 (Bad–McLuc1), whereas the 14-

3-3 and Bcl-2 proteins were fused, respectively, to N-terminal

fragments of ELuc (ElucN–14-3-3) and FLuc (FLucN–Bcl-2)

(Figure S1). A strong bioluminescence signal was detected from

COS-7 cells transfected with ELucN–14-3-3 and Bad–McLuc1

(Figure 6A), indicating that Bad interacts endogenously with 14-3-

3. To confirm that the bioluminescence signal was indeed

triggered by interaction of Bad and 14-3-3, we constructed Bad

mutants in which all the key serine residues; S112, S136, and

S155; which play an important role for interaction of Bad with 14-

3-3, were replaced with alanine. Upon expression of 14-3-3 and

the Bad mutants in the cells, bioluminescence signals were reduced

significantly. A triple mutant of Bad (S112A, S136A, S155A)

showed a negligible interaction with 14-3-3 (Figure 6A). Phos-

phorylation of the serine residues (S112, S136, S155) in Bad is

necessary for interaction of Bad with 14-3-3. The lack of these

phosphorylation sites was confirmed using Western blotting with

respective antibodies (Figure 6B). The cDNA construct of Bad–

McLuc1 was further used for the analysis of interaction with Bcl-2.

When the Bad–McLuc1 and FLucN–Bcl-2 were expressed in

COS-7 cells, a strong bioluminescence signal was obtained.

Addition of Bcl-2 inhibitors, antimycin or HA14-1, caused

reduction of the bioluminescence signals (Figure 6C), demonstrat-

ing that three fragments of McLuc1, N-terminal ELuc and FLuc

are useful for detecting interactions of a protein associated with

multiple distinct protein partners.

We also examined the usefulness of the probe for visualizing

Bad phosphorylations in living mice. For bioluminescence imaging

in vivo with living mice, Renilla luciferase and its substrate

coelenterazine are used to normalize the transfection efficiency

and the number of implanted cells. However, that mode of

analysis is limited by qualitative evaluation because of the

differences of temporal fluctuation and inhomogeneous distribu-

tion between D-luciferin and coelenterazine. This limitation can

be overcome if the same D-luciferin is used instead of

coelenterazine for the dual analysis. We selected a luciferase

derived from Phrixothrix railroad worm (SLRLuc) as an internal

control [28] to show the proof-of-principle that McLuc1 is

applicable for two-color monitoring with a single substrate, D-

luciferin. The emission maximum of SLRLuc is 630 nm, of which

the spectrum is separated completely from that of complementary

fragments of McLuc1 and N-terminal ELuc (Figure S3). To show

dual color imaging with a single substrate, we implanted COS-7

cells that had been cotransfected with three plasmids on the backs

of mice: Bad connected with McLuc1, 14-3-3 connected with N-

Figure 2. Quantitative and time-course evaluation of rapamycin-induced luciferase complementation. (A–C; upper) Absolute photon
counts for COS-7 cells cotransfected with the plasmids of a pair of luciferase fragments fused to FKBP and FRB in the absence (white bars) and
presence (black bars) of rapamycin. (A–C; lower) Normalized photon counts for COS-7 cells transiently cotransfected with plasmids expressing the
luciferase fragments fused to FKBP and FRB, and Renilla luciferase. The Renilla luciferase was used to normalize the transfection efficiency. Results are
expressed as the relative luminescence unit (RLU) ratio; values of which the luminescence intensity were normalized to the intensity of Renilla
Luciferase for rapamycin-treated cells were divided by those for rapamycin-untreated cells (black bars). Differences of heights between white and
black bars indicate rapamycin-induced luminescence. (D) Reversibility of the complementation between McLuc1 and N-terminal FLuc. The lysates
extracted from COS-7 cells expressing FKBP and FRB fused to the luciferase fragments were treated with rapamycin for 1–10 min (50 nM, upper data).
The cells were treated successively with different concentrations of FK506 (1 mM, 10 mM, 100 mM) for 0–25 min in the presence of 50 nM rapamycin
(middle data). Photon counts were taken every 60 s. The luminescence values were normalized against the maximum luminescence values. Western
blotting analysis of the cells including LucN and McLuc1 in the presence or absence of rapamycin and FK506 with cycloheximide (lower). Error bars
represent s.d. calculated for three independent samples. (**P,0.01, ***P,0.001)
doi:10.1371/journal.pone.0005868.g002
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Figure 3. Bioluminescence analysis of Smad1–Smad4 and Smad2–Smad4 interactions. (A) Characterization of the probes. a and b: COS-7
cells were transfected with the plasmids, Smad4-McLuc1 plus FLucN-Smad1 or Smad4-McLuc1 plus CBRN-Smad1, in the absence (Mock) and
presence of either ALK3CA or ALK3DN receptor. Smad1(AXA) and Smad2(AXA) indicate double mutants of Smad1(S462A,S464A) and
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terminal ELuc, and SLRLuc. Then D-luciferin was injected

intraperitoneally in the mice and bioluminescence images were

taken using a cooled CCD camera. The image contained the sum

of the light from two luciferases, SLRLuc, and complementary

fragments of N-terminal ELuc and McLuc1 (Figure 6D). We next

passed the emitted photons through a green filter (BP525625 nm),

Figure 4. Dual-color assay for Smad1–Smad5 and Smad2–Smad3 interactions using different fragments of luciferases. (A) Ligand-
induced Smad1–Smad5 and Smad2–Smad3 interactions. COS-7 cells were cotransfected with CBRN-Smad1, Smad5-McLuc1, ELucN-Smad2 and
Smad3-McLuc1 and their bioluminescence intensities were obtained with a luminometer. (*P,0.05) (B) Analysis of bioluminescence with different
combination of Smads. COS-7 cells were cotransfected with either CBRN-Smad1 and Smad3-McLuc1 or ELucN-Smad2 and Smad5-McLuc1.
Representative data were shown.
doi:10.1371/journal.pone.0005868.g004

Smad2(S465A,S467A), respectively. The cells were incubated for 12–16 h and the luciferase activities were measured. c: COS-7 cells were transfected
with the plasmids, ELucN-Smad2 plus Smad4-McLuc1 or ELucN-Smad2(AXA) plus Smad4-McLuc1 in the absence (Mock) and presence of either
ALK5CA or ALK5DN receptor. d: COS-7 cells transfected with the plasmids FLucN-Smad1 and Smad4-McLuc1 were stimulated with BMP-2 (50 nM) for
2 h and luciferase activities were measured. Error bars represent s.d. calculated for three independent samples. e: Western blotting analysis of the
expression of Smad1–Smad4 or Smad2–Smad4 protein in the presence of ALK3CA, ALK3DN, ALK5CA or ALK5DN. (*P,0.05, **P,0.01, ***P,0.001)
(B)–(D) Real-time bioluminescence images of Smad1–Smad4 and Smad2–Smad4 interactions using CBRN-Smad1 and Smad4-McLuc1 (B), CBRN-
Smad2 and Smad4-McLuc1 (C), and CBRN-Smad1, ELucN-Smad2 and Smad4-McLuc1 (D), in a Xenopus embryo. RNAs encoding the Smad probes were
injected into the animal pole of a 2-cell stage Xenopus embryo. The embryo was incubated for 24 h at 13uC and thereafter, digital images of Venus
(gray) and bioluminescence (pseudocolor) were acquired using a microscopic system equipped with an EM-CCD camera. Bar, 1 mm.
doi:10.1371/journal.pone.0005868.g003
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thereby detecting photons only from ELuc. In contrast, when the

filter was replaced into a red filter (BP 630637.5 nm), the image

was separated from the image that was taken with the green filter,

confirming that SLRLuc is suitable as an internal control for dual-

color bioluminescence imaging with the single D-luciferin.

In conclusion, we developed a novel luciferase fragment of

McLuc1. It has the unique ability to complement multiple N-

terminal luciferases with different spectral characteristics. Sensi-

tivities of McLuc1 which complements to N-terminal fragments of

FLuc and ELuc were improved 12-fold and 40-fold higher than

those of native pairs of luciferase fragments. In addition, the

complementation reaction with McLuc1 occurs within a few

minutes and is reversible. Because of its high sensitivity and

reversibility, the luciferase fragments enable spatiotemporal and

simultaneous imaging of protein-protein interactions of two kinds

in opaque and auto-fluorescent living subjects. Thus, the present

method using luciferase-fragment complementation provides a

sensitive and quantitative method to assess two discrete pairs of

protein interactions or three protein interactions with a third

shared protein. Such dual assay system for multiple protein-

protein interactions might be constructed if we would use mutant

firefly luciferases with different spectral properties. Although the

approach with firefly luciferases seems to be straightforward, a

drawback exists: A spectrum of firefly luciferase is known to

change in a pH-dependent manner, which may hamper spectral

deconvolution or precise photon counts with specific filters. By

contrast, crick beetle luciferases and their mutants have a specific

character of pH independence on the spectra. Therefore, the use

of McLuc1 with different N-terminal luciferase fragments allows

precise and quantitative detection of multiple protein interactions

in living cells. The imaging technique using luciferase fragments

might greatly facilitate imaging analysis of protein networks in vitro

and in vivo in a wider range of organisms.

Materials and Methods

Construction of mammalian expression vectors
All cDNAs were cloned with pBlueScript (Stratagene) using

standard methods, with sources of FLuc and CBR (Promega

Corp.), and ELuc (Toyobo Co. Ltd., Japan). The cDNAs encoding

FLuc (1–413), FLuc (414–550), ELuc (1–413), ELuc (394–542),

CBR (1–414), CBR (395–542), FKBP, FRB, 14-3-3 (1–244), Bcl-2,

Bad (1–204), Smad1, Smad2, Smad3, Smad4, Smad5, IRS-1 and

p85b were generated by polymerase chain reaction (PCR) to

attach a Kozak sequence and restriction enzyme sites. Mutants of

Bad(S112A), Bad(S136A), Bad(S155A), Bad(S112A,S136A,

S155A), and Smad1(S462A,S464A) and Smad2 (S465A, S467A)

were generated using a mutagenic PCR technique. All PCR

fragments were sequenced using a genetic analyzer (ABI310;

Applied Biosystems). The cDNA fragments used for cultured

COS-7 cells were subcloned into a mammalian expression vector,

pcDNA4/V5-His(B) (Invitrogen Corp., Carlsbad, CA). The

constitutive active form and dominant negative form of activin-

like kinase 3 (ALK3) and activin-like kinase 5 (ALK5) (gifted from

Dr. T Imamura, The Cancer Institute of JFCR, Japan) were

subcloned into a mammalian expression vector, pcDNA3

(Invitrogen Corp.).

Cell culture and Transfection
For this study, COS-7 cells were sub-cultured in 12-well plates

in Dulbecco’s modified medium supplemented with 10% fetal

bovine serum (FBS) and 1% penicillin-streptomycin (P/S) at 37uC
in a 5% CO2 incubator. Cells in 24-well plates were transfected

with an expression vector including the probe constructs in the

presence of Lipofectamine 2000 (Gibco BRL).

Western blotting
The COS-7 cells were plated on 6-well plates and transiently

transfected with each combination of LucN-FKBP and FRB-LucC

or Bad(wt)–McLuc1, Bad(S112A)–McLuc1, Bad(S136A)–

McLuc1, Bad(S155A)–McLuc1, or FLucN–14-3-3. At 24 h

transfection, the cells expressing FKBP-FRB probes were

incubated with 20 mM cycloheximide. Three hours later, the cells

were lysed with a buffer with D-Luciferin (Steady-Glo system,

Promega). This sample is Rap(2). After lysis of the cells, 50 nM

rapamycin was added. When the samples showed a maximal

luminescence response to rapamycin, 100 nM FK506 was added.

The sample decreasing bioluminescence were mixed with sample

buffer (125 mM Tris pH 6.8, 10% glycerol, 4% SDS, 0.006%

Bromophenol blue, 1.8% beta-mercaptoethanol). This sample is

Rap+, FK506+, CHX+. At 16–24 h after transfection, the cells

expressing Bad–14-3-3 probes were lysed with a sample buffer

(125 mM Tris pH 6.8, 10% glycerol, 4% SDS, 0.006% Bromo-

phenol blue, 1.8% beta-mercaptoethanol). Then samples of the

lysates were subjected to Western blotting using anti-V5 (Sigma)

and anti-Bad (pBad(S112), pBad(S136) and pBad(S155); Cell

Signaling Technologies) antibodies [1:5000 in 1% skimmed milk

in TBST (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.05%

Tween 20)] and alkaline-phosphatase-labeled anti-mouse antibody

(GE Healthcare) (1:4000 in 1% skimmed milk in TBST). The

phosphatase activities were visualized using an ECL advance

Western blotting detection kit (GE Healthcare) with an image

analyzer (LAS-1000 plus Fuji Photo Film Co.).

Luminescence assay
The COS-7 cells were transfected with the plasmids including

N-terminal and C-terminal fragments of luciferase and incubated

for 12–16 h. The cells were stimulated with rapamycin (final

concentration, 100 nM), and incubated for 4 h. As its negative

control, the COS-7 cells were not stimulated by rapamycin, but

were subjected to all other experimental procedures. The

luciferase activities were measured according to the manufactur-

er’s protocol (Promega Corp.). The time for measuring each

luciferase activity was 30 s. All measurements were performed

Figure 5. Analysis of IRS1-p85b interaction based on lumines-
cence intensities of McLuc1 and FLucN complementation. The
CHO-IR cells were transiently transfected with IRS1-McLuc1 and FLucN-
p85b; luciferase activities were measured at each time point. Error bars
represent s.d. calculated for three independent samples.
doi:10.1371/journal.pone.0005868.g005
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using a luminometer (MiniLumat LB9506; Berthold GmbH & Co.

KG) and were made in triplicate with different wells of culture

plates. Results are presented as average ratios with standard

deviations.

Imaging
We set up a dual system for fluorescence and bioluminescence

imaging on an upright microscope (BX61; Olympus Corp.) with

106 dipping objective (0.40 NA) for Xenopus embryo and 206
dipping objective (0.10 NA) for plant cells. We selected a 60 W

metal-halide light source for illumination of fluorescent proteins,

and filter sets for Venus (excitation 490610 nm; emission

530610 nm). For bioluminescence imaging, we used only band-

pass emission filters (536610 nm and 624625 nm). Emitted light

from the sample was passed through a lens attachment (U-

TV0.25XC; Olympus Corp.) in front of a camera. Digital images

were acquired using a cooled (set at 280uC) EM-CCD camera

(ImagEM; Hamamatsu Photonics K.K.). The filters and camera

control were adjusted automatically using software (Meta Morph;

Universal Imaging Corp.). Stray light was cut off by turning off the

electric system and covering it tightly with foil. The imaging

system was used in a dark room (A-3542-03; Hamamatsu

Photonics K.K.).

Analysis and imaging of Smad1–Smad4 and Smad2–
Smad4 interactions in living cells and a Xenopus embryo

The COS-7 cells were transfected with plasmids, Smad4-

McLuc1 plus LucN-Smad1 (LucN: FLucN, CBRN or ELucN) or

Smad4-McLuc1 plus ELucN-Smad2 in the absence (Mock) and

presence of either ALK3CA, ALK3DN, ALK5CA or ALK5DN.

A Smad1 mutant of Smad1(AXA) and a smad2 mutant of

Smad2(AXA) were constructed. The mutants were connected with

LucN instead of Smad1 or Smad2, and expressed in the COS-7

cells. The cells were incubated for 12–16 h; the luciferase activities

were measured for 30 s with a luminometer (MiniLumat LB9506;

Berthold GmbH & Co. KG). Data acquisitions were made in

triplicate with different wells of culture plates. Results are

presented as averages with standard deviations for three

independent experiments.

To visualize the interaction in a Xenopus embryo, CBRN-

Smad1, ELucN-Smad2, CBRN-Smad2, and Smad4-McLuc1

were subcloned into the pCS2 vector. Using the vector, capped

Figure 6. Analysis of Bad phosphorylation based on luminescence intensities of the McLuc1 and N-terminal ELuc complementation.
(A) Results of analyses of interactions between 14-3-3 and Bad mutants. The COS-7 cells were transiently transfected with Bad–McLuc1 and ELucN–
14-3-3; luciferase activities were tested. Error bars represent s.d. calculated for three independent samples. (B) Results of Western blotting analysis of
Bad phosphorylation. Expression levels of Bad and its mutants were determined using immunoblotting with the anti-V5 antibody (left). Mutations of
Bad at S112A, S136A, and S155A were confirmed by immunoblotting with the respective antibodies (right). (C) An inhibitory effect of antimycin or
HA14-1 on the bioluminescence was developed by the Bad-Bcl-2 interaction. Antimycin (10 mM) or HA14-1 (10 mM) was added to the cells after
transfection and incubated for 20 h. The cells were harvested and the photon counts were analyzed. Error bars represent s.d. calculated for three
independent samples. (D) Dual color imaging of mice with a single substrate. The images shown are superimposed on the optical CCD
bioluminescence image without a filter (Open) or with a band-pass filter of BP(ELuc) (525625 nm) or BP(SLRLuc) (630637.5 nm). A nude mouse was
imaged after implantation of COS-7 cells that had been transiently transfected with plasmids SLRLuc (site 1), Bad–McLuc1 and ELucN–14-3-3 (site 2),
SLRLuc plus Bad–McLuc1 and ELucN–14-3-3 (site 3), and SLRLuc plus Bad(S112A, A136A, A155A) –McLuc1 and ELucN–14-3-3 (site 4). To obtain
photon flux information from mice, the bioluminescence intensity was shown as pseudocolors. Photon counts with BP(ELuc) divided by those with
BP(SLRLuc) are shown at the right side of the image.
doi:10.1371/journal.pone.0005868.g006
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mRNAs were synthesized in vitro using a kit (mMACHINE Sp6;

Ambion Inc.) according to the manufacturer’s protocol. The

RNAs were injected into the animal pole of the 2-cell stage Xenopus

embryos in a 3% Ficoll, 0.1% Steinberg’s solution. The embryos

were incubated for 24 h at 13uC. After incubation, a single

embryo was dipped in a 0.16MMR buffer (0.1 M NaCl, 2.0 mM

KCl, 1 mM MgSO4, 2 mM CaCl2, 0.1 mM EDTA, 5 mM

Hepes, pH 7.8) including 1 mM D-luciferin, which was set on a

stage of the microscopic system. To acquire bioluminescence

images, the exposure time was set to 30 s (Smad1–Smad4

interaction) and 5 min (Smad2–Smad4 interaction) for single

wavelengths, and at 60 min (Smad1–Smad4 interaction) and

90 min (Smad2–Smad4 interaction) for dual imaging.

Detection of IRS-1 and PI3-Kinase interactions
To detect an interaction of IRS-1 with PI3-Kinase, we used a

pair of luciferase fragments, McLuc1 and N-terminal fragment of

FLuc. The CHO-IR cells expressing insulin receptor were

cultured in 12 well plates. The cells were transfected with cDNAs

of IRS-1–McLuc1 and FLucN–p85b and pTK-RLuc (Promega

Corp.). After incubation for 24 h, the cells were stimulated with

100 nM insulin. The luminescence signals were measured in each

time point. All measurements were performed using a luminom-

eter (MiniLumat LB9506). The obtained luminescence from D-

luciferin (LF) normalized against the luminescence from coelen-

terazine (LR) was termed as the relative light unit (RLU;

RLU = LF/LR). Data were made in triplicate with different wells

of culture plates. Results were presented as average ratios with

standard deviations.

Imaging of Bad–14-3-3 and Bad–Bcl-2 interactions
For imaging the interaction between Bad and 14-3-3 in living

mice, we used N-terminal ELuc and McLuc1 as complementation

partners. Furthermore, SLRLuc (Toyobo Co. Ltd.) was used as an

internal control. The COS-7 cells were cultured in 10 cm dishes.

Each dish was transfected with Bad–McLuc1 and ELucN–14-3-3

plus SLRLuc, Bad(S3A)–McLuc1, ELucN–14-3-3 and SLRLuc.

The cells were harvested after incubation for 18–24 h. The cells

were suspended in phosphate buffer saline. Then an aliquot of

16106 cells was implanted in anesthetized BALB/c nude mice

(females, 4 weeks old, ca. 15 g body weight). Fifteen minutes after

cell implantation, D-luciferin, 3 mg dissolved in 100 mL of PBS,

was injected i.p. Ten minutes after injection of D-luciferin,

bioluminescence images were taken using a cooled CCD camera

(Versarray 1300B, Princeton Instruments Inc.) with or without a

filter (BP(ELuc); 520625 nm, BP(SLRLuc); 630637.5 nm, Chro-

ma Technology Corp.). Image processing was performed using

imaging software (SlideBook 4.1; Intelligent Imaging Innovation

Inc.). To quantify the measured luminescence, regions of interest

were drawn over the cell-implanted areas. Then, luminescence

intensities were evaluated.

Statistical analysis
Where indicated, two-tailed Student’s t-tests (Calculated in

Microsoft Excel) were used. All summary bar graphs are presented

as mean6s.d., with significance denoted as follows: *P,0.05,

**P,0.01, ***P,0.001.

Supporting Information

Figure S1 Schematic structures of major constructs. 14-3-3 and

Bad indicate the cDNA sequences encoding the 1–244 and 1–204

amino acids of 14-3-3 and Bad proteins, respectively. Enzyme sites

and the length of the cDNA constracts of Bad mutants,

Bad(S112A), Bad(S136A), Bad(S155A), Bad(S112A, S136A,

S155A) are the same as those of Bad(wt). V5, V5 epitope; Myc,

Myc epitope.

Found at: doi:10.1371/journal.pone.0005868.s001 (3.89 MB TIF)

Figure S2 Bioluminescence imaging of COS-7 cells transfected

with plasmids expressing the luciferase fragments fused to FKBP

and FRB. The cells were cultured on the 24-well plate in the

presence (+) and absence (2) of rapamycin. Each image was taken

without a filter (OPEN) or with a band-path filters (BP

525625 nm and BP630637.5 nm) by using a cooled CCD

camera (Versarray: 1300B, Prinston Instruments) after addition of

D-luciferin. Image processing was performed by a SlideBook 4.1

imaging software.

Found at: doi:10.1371/journal.pone.0005868.s002 (2.99 MB TIF)

Figure S3 Bioluminescent spectra of cells expressing McLuc1

and N-terminal fragments of FLuc (FLucN), ELuc (ELucN) and

CBR (CBRN). Spectra indicate ELucN plus McLuc1 (green, a),

FLucN plus McLuc1 (orange, b), CBRN plus McLuc1 (red, c), and

SLRLuc (dark red, d).

Found at: doi:10.1371/journal.pone.0005868.s003 (1.29 MB TIF)

Figure S4 Reversibility of the complementation between N- and

C-terminal fragments of luciferases. An N-terminal fragment of

luciferase (LucN; FLucN, CBRN or ELucN) was connected with

FKBP, whereas a C-terminal fragment of luciferase (Luc-C;

ELucC, CBRC or FLucC) was connected with FRB. Each pair of

N- and C-terminal luciferases was expressed in COS-7 cells. The

cell lysates were treated with rapamycin for 25 min (50 nM, A–C;

upper data). The cells were treated successively with FK506

(100 ÂmM) for 40 min (A–C; middle data). Photon counts were

taken every 60 s. The luminescence intensites were normalized

against the maximum luminescence values. Error bars represent

s.d. calculated for three independent samples. (A–C; lower)

Western blotting analysis of the expression of LucN with McLuc1

in the presence or absence of rapamycin and FK506 with

cycloheximide.

Found at: doi:10.1371/journal.pone.0005868.s004 (1.30 MB TIF)

Figure S5 Fluorescence imaging of single living Xenopus

embryos including Venus-fusion Smad1, Smad2 and Smad4 (left).

RNA encording the Venus-fusion Smads were injected into the

animal pole of a 2-cell stage Xenopus embryo. The injected

embryo was incubated for 24 h at 13uC. At the indicated stages,

fluorescence images were taken under fluorescence microscope

equipped with a CCD camera. As the control experiments, auto-

fluorescence and auto-bioluminescence images of Xenopus

embryo were taken under the identical conditions.

Found at: doi:10.1371/journal.pone.0005868.s005 (4.94 MB TIF)

Table S1 Comparison of the amino acid sequences between

FLuc, CBR and ELuc.

Found at: doi:10.1371/journal.pone.0005868.s006 (0.20 MB

PDF)

Table S2 Maximal bioluminescence intensities of complement

luciferase fragments in the presence of rapamycin.

Found at: doi:10.1371/journal.pone.0005868.s007 (0.01 MB

PDF)

Movie S1 Three mRNAs of CBRN-Smad1, Smad4-McLuc1

and Venus were microinjected into two diagonal blastomeres of

the 2-cell embryo. The embryo was set on a glass dish and dipped

in a solution including 1 mM D-luciferin. The embryonic

development was monitored over 24 hours under the fluorescence

and bioluminescence upright microscope. Obtained digital images
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of bioluminescence (pseudocolor) were overlaid with the images of

fluorescence (gray) at each time.

Found at: doi:10.1371/journal.pone.0005868.s008 (0.49 MB AVI)

Movie S2 Three mRNAs of CBRN-Smad2, Smad4-McLuc1

and Venus were microinjected into two diagonal blastomeres of

the 2-cell embryo. The embryo was set on a glass dish and dipped

in a solution including 1 mM D-luciferin. The embryonic

development was monitored over 12 hours under the fluorescence

and bioluminescence upright microscope. Obtained digital images

of bioluminescence (pseudocolor) were overlaid with the images of

fluorescence (gray) at each time.

Found at: doi:10.1371/journal.pone.0005868.s009 (0.68 MB AVI)
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