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Abstract
In many psychophysical experiments, the participant's task is to detect small changes along a given
stimulus dimension, or to identify the direction (e.g., upward vs. downward) of such changes. The
results of these experiments are traditionally analyzed using a constant-variance Gaussian (CVG)
model or a high-threshold (HT) model. Here, the authors demonstrate that for changes along three
basic sound dimensions (frequency, intensity, and amplitude-modulation rate), such models cannot
account for the observed relationship between detection thresholds and direction-identification
thresholds. It is shown that two alternative models can account for this relationship. One of them is
based on the idea of sensory “quanta”; the other assumes that small changes are detected on the basis
of Poisson processes with low means. The predictions of these two models are then compared against
receiver operating characteristics (ROCs) for the detection of changes in sound intensity. It is
concluded that human listeners' perception of small and unidimensional acoustic changes is better
described by a discrete-state Poisson model than by the more commonly used CVG model or by the
less favored HT and quantum models.
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An Evaluation of Psychophysical Models of Auditory Change Perception
Detecting simple differences or “unidimensional changes” between sensory stimuli (e.g.,
changes in brightness or loudness) and identifying the direction of these changes (e.g., upward
vs. downward) are two fundamental perceptual abilities. How these abilities are related to one
another is an important question for psychophysicists. The answer has both theoretical and
practical implications. An important practical implication relates to the choice of
psychophysical paradigm for measuring just-noticeable differences (JNDs) between stimuli.
In auditory psychophysics, for instance, the two-interval two-alternative forced-choice
(2I2AFC) paradigm has been commonly used to measure JNDs for various sound dimensions.
However, JNDs are usually defined as the smallest stimulus differences that an individual can
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detect with a certain level of accuracy (e.g., 70% correct). In contrast, the 2I2AFC paradigm
requires from the participant that he/she identifies the relative positions of the two presented
stimuli along some sensory dimension, or equivalently, that he/she identifies the direction of
the stimulus change. Thus, interpretations of 2I2AFC thresholds in terms of “JNDs” rest (in
most cases, implicitly) on the assumption that thresholds for the identification of the direction
of sensory changes are closely related to thresholds for the detection of those changes.
Specifically, it is commonly assumed that an individual's ability to identify the direction of
simple sensory changes is limited solely by that individual's ability to detect those changes, or
that as soon as a change has been detected, its direction can be identified.

Clearly, this assumption is not always warranted. For instance, Semal and Demany (2006)
recently identified listeners who could detect relatively small changes in frequency
(subjectively, pitch) between consecutive tones, but required changes approximately one order
of magnitude larger in order to correctly identify their direction. Similar findings were obtained
by Johnsrude et al. (2000) in individuals with auditory-cortex lesions. Another example of
dissociation between change detection and change-direction identification was provided by
experiments concerning the perception of transient intensity changes in a continuous sound
(Macmillan, 1971, 1973; Hafter et al., 1998; Gallun, 2003). These experiments revealed that
listeners are able to detect transient intensity changes using a cue which provides no information
regarding change direction.

Although these findings show that, in some cases, detecting a change is not sufficient for the
identification of its direction, they represent exceptions. More generally, experimental data in
the auditory perception1 literature are consistent with the view that the ability to identify the
direction of changes in sound frequency or sound intensity is limited only by the ability to
detect these changes. Some information relevant to that issue comes from studies in which
frequency and/or intensity discrimination thresholds measured using a 2I2AFC task (which
required from participants that they identify the direction of stimulus change) were compared
with thresholds measured in the same participants using a “same-different” (or AX)2 task
(which required the detection of a change but not the identification of its direction). The authors
of such experiments (Creelman & Macmillan, 1979;Jesteadt & Bilger, 1974;Jesteadt & Sims,
1975) intended to determine whether this relationship was consistent with the predictions of
the standard constant-variance Gaussian (CVG) psychophysical model from signal detection
theory (Green & Swets, 1966;Macmillan & Creelman, 2005;Wickens, 2001). In this model,
the presentation of a stimulus is assumed to evoke a sensory observation contaminated by
Gaussian internal noise with zero mean and constant variance. Under the assumption that
performance in the 2I2AFC and AX tasks is limited by the same internal noise, and that the
listener's decision strategy is optimal in the likelihood-ratio sense, the model predicts that the
paradigm-independent index of sensitivity d′, defined as the standardized distance between the
means of the probability density functions corresponding to the two stimulus classes that must
be discriminated, should be the same in the two tasks. As it turns out, the mean d′ ratio (d′ in
the AX task over d′ in the 2I2AFC task) measured across several studies (Creelman &
Macmillan, 1979;Jesteadt & Bilger, 1974;Jesteadt & Sims, 1975; see also the compact
summary of these studies in Macmillan and Creelman, 2005, p. 182) is approximately equal
to 0.8. This ratio, smaller than 1, is obviously consistent with the idea that the ability to identify
the direction of sensory changes is limited only by the ability to detect these changes. On the

1Our choice of focusing on audition was motivated in part by a greater familiarity with the auditory-perception literature, in part by the
fact that detailed measurements of thresholds for the discrimination of changes in various sound parameters (intensity, frequency, and
amplitude-modulation rate) were available to us. These empirical data, which represent a total of 1210 threshold measurements across
11 listeners (an average of 110 threshold estimates per listener), provided a unique opportunity to distinguish between different
psychophysical models, the predictions of which are not distant enough to permit statistical separation using smaller data sets.
2In the Same-Different paradigm, also known as “AX” or “2IAX” paradigm, the two stimuli presented on a trial (A and B) can be either
identical (AA or BB) or different (AB or BA), and the observer's task is to indicate whether the stimuli were “Same” or “Different”.
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other hand, the reason why the ratio differs from 1 is not clear. One possibility is that listeners
had difficulties in using a stable response criterion in the AX task. Another possibility, which
is more interesting, is that the CVG model does not describe adequately how human listeners
detect simple auditory changes.

The theoretical work reported here used detailed measurements of auditory change-detection
and change-direction-identification thresholds in order to test several psychophysical models
of auditory change detection. The considered acoustic changes were unidimensional and it was
reasonable to assume that, as soon as they were detectable, their direction could be identified;
for these changes, in other words, a warranted assumption was that detection and direction
identification merely represented different decision rules applied to the same sensory
information (Thomas, 1985; Thomas, Gille, & Barker, 1982). The analyzed data were collected
using a “dual-pair” psychophysical paradigm. This paradigm allowed change-detection and
change-direction-identification thresholds to be measured using the same stimulus design, and
it had the advantage of alleviating some of the concerns usually associated with the two-interval
same-different (AX) design.

The outline of this note is as follows. First, the dual-pair psychophysical paradigm that was
used to collect the experimental data is briefly described. Then, the predictions of two “classic”
psychophysical models (the CVG model and the high-threshold model) regarding the
relationship between change-detection thresholds and change-direction-identification
thresholds in the considered paradigm are derived. In the third section, these predictions are
compared to the experimental data. In the fourth section, ways in which the CVG model may
be reconciled with the data are explored. The fifth section is devoted to exploring alternative
models, and it shows that two models, respectively assuming quantized-Gaussian (Stevens,
1972; Stevens, Morgan, & Volkmann, 1941; Stevens & Volkmann, 1940) and Poisson-
distributed (Kaernbach, 1991a) decision variables, can account for the experimental data.
Finally, the relative merits of the two latter models are discussed.

The Dual-Pair Paradigm
The experimental data that provide the empirical basis for this note were collected using a four-
interval stimulus design, also known as “dual pair”. As the name indicates, in this design, two
pairs of stimuli are presented on each trial. In one of the two pairs the stimuli are identical, in
the other they are different; for brevity, we will refer to these pairs as the “same” pair and the
“different” pair. The order of presentation of the two pairs is randomized, each of the two
possible orderings being as likely (a priori) as the other. In the “different” pair, the change
between the first and second stimulus can be either “upward” (e.g., the second tone has a higher
intensity than the first) or “downward”, with equal probability. This dual-pair stimulus design
can be used to measure change detection and change-direction identification, the only
difference being in the instructions given to the subject. In the change-detection (D) task, the
subject is asked to indicate which of the two pairs contained different stimuli. In the change-
direction-identification (I) task, the subject must report in which direction the stimuli in the
“different” pair changed.

The dual pair design makes it possible to measure both change detection and change-direction
identification using the same stimulus design while avoiding (or at least, alleviating) concerns
regarding the influence of bias on performance. In this respect, this four-interval design is
superior to the more popular two-interval AX paradigm for measuring change detection,
because the two-interval AX is notoriously susceptible to bias. In fact, the dual-pair design can
be thought as a two-interval AX design “embedded into” a 2I2AFC design (Noreen, 1981).

In addition to these general features, the model predictions derived below take the following
methodological features into account. Firstly, the frequency (or AM rate) of the first stimulus
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in each pair was randomized independently from that in the other pair. This technique, known
as “roving” in the auditory psychophysics literature, is frequently used in order to discourage
participants from comparing individual stimuli across the two pairs. When, as was the case
here, the roving range is large compared to the measured thresholds, listeners are forced to rely
on perceived differences between the stimuli in each pair, rather than on comparisons of
individual stimuli across pairs, across trials, or with a fixed internal reference in memory.
Secondly, thresholds in the D and I tasks were measured using an adaptive procedure, which
tracked the 75%-correct point on the psychometric function (Kaernbach, 1991b). Finally, in
order to avoid some of the difficulties inherent to double-judgment psychophysics (Klein,
1985), the D and I thresholds were not tested simultaneously, but in separate blocks of trials,
intermingled within each test session.

Under those methodological circumstances, what do “classic” psychophysical models predict
regarding the relationship between thresholds in the D and I tasks?

Predictions of the CVG Model and the High-Threshold Model
The CVG Model

Gaussian signal-detection theory posits the existence of a continuum of sensory observations,
contaminated by normally distributed internal noise (Green & Swets, 1966). The most common
instantiation of this theory, the CVG model, further assumes that the variance of the internal
noise is constant, i.e., that it is the same for all observations and does not vary over time. In
addition, the Gaussian internal noises added to the observations are assumed to be uncorrelated,
i.e., statistically independent.

Since the dual-pair design described above involves the presentation of four stimuli on each
trial, each stimulus yielding one observation, the decision space for this paradigm is four-
dimensional. However, in the experiments considered here, wide across-pair roving was used
in order to prevent listeners from taking advantage of comparisons between individual
observations across the two pairs. With such roving, we can assume that the observer derives
no significant information from the absolute positions of the observations, or from comparisons
between single observations in different pairs; only the relative positions of, or the differences
between the observations within each pair are relevant (Dai, Versfeld, & Green, 1996;
Macmillan, Kaplan, & Creelman, 1977; Noreen, 1981; Macmillan & Creelman, 2005).
Therefore, there is no significant loss of information in reducing the decision space to two axes
corresponding to the signed differences between the observations in each pair. Denoting the
four observations made consecutively on each trial by y11, y12, y21, and y22, in that order, we
can plot the difference Δy1 = y12

- y11 (first pair) along the X-axis, and the difference Δy2 =
y22

- y21 (second pair) along the Y-axis of a Cartesian plane.

Figure 1 provides a schematic illustration, in this decision space, of the two-dimensional
conditional probability density function (PDF) of the difference variables, Δy1 and Δy2,
conditioned on the “different” pair being presented first, and on the change being “upward”;
accordingly, the bi-dimensional Gaussian PDF has a positive mean along axis Δy1 and a zero
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mean along axis Δy2.3 It is easy to imagine what the conditional PDFs for the other three
possible stimulus configurations look like.

The correct-response probabilities in the D and I tasks can be found by integrating the
conditional PDFs of the decision variables over regions of the decision space that correspond
to a correct response. These regions depend on the decision rule used by the observer for task
performance. An ideal observer uses optimal decision rules, i.e., rules that maximize the
probability of a correct response, given the constraints. For the D task with wide across-pair
roving, the optimal decision rule consists in selecting the pair for which the magnitude (i.e.,
absolute value) of the difference between the observations is largest (Macmillan, Kaplan, &
Creelman, 1977; Noreen, 1981; Rousseau & Ennis, 2001). According to this rule, the observer
chooses pair 1 if the point defined by the differences between the observations in each pair
falls inside quadrant P1 or P3, and pair 2 if it falls inside quadrant P2 or P4. Therefore, under
the CVG model, the probability of a correct response in the D task can be calculated as the
integral, over the region corresponding to quadrants P1 and P3, of the joint PDF shown in
Figure 1, which corresponds to the case in which an upward change occurred in the first pair.
4 Macmillan et al. (1977; see also Micheyl & Messing, 2006) provided a formula for this
integral as a function of d′; this equation is:

(1)

where PCDCVG denotes the proportion of correct responses in the detection task under the CVG
model, and Φ(x) denotes the cumulative standard normal function, defined as the integral from
-∞ to x of the Gaussian function with zero mean and unit variance. The converse equation,
which gives d′ as a function of PCDCVG is:

(2)

where Φ-1 denotes the inverse cumulative standard normal function. According to this equation,
when PCDVG equals 0.75 (the probability of correct responses corresponding to threshold in
the experimental data used here), d′ in the D task equals approximately 2.10.

For the I task, an intuitive strategy is to select the pair in which the magnitude of the difference
between the two observations is largest, and to respond “up” if the signed difference between
these observations is positive, and “down” otherwise. Going through the four quadrants of
Figure 1, which illustrates the PDF of the decision variables for the case of an upward change
in the first pair, we find that correct responses will occur in this case whenever the point
(Δy1, Δy2) falls in the half-plane formed by the quadrants P1 and P2. Thus, the decision rule
may be reformulated as follows: respond “up” if Δy1 > -Δy2; otherwise, respond “down”. Note

3Here, as in many other applications of signal detection theory, the expected values of the observations are linearly related to the values
of the relevant physical parameters, provided an appropriate choice of units for the latter. In the case of intensity, the decibel (dB) is an
appropriate unit because the index of sensitivity d′, which is defined as the standardized distance between the expected values of the
observations evoked by the two stimuli to be discriminated, increases roughly linearly with the stimulus intensity difference in dB (Buus
& Florentine, 1991; Jesteadt & Bilger, 1974). For frequency discrimination, d′ increases approximately linearly with the frequency
difference between the two stimuli in Hertz (Hz) (Nelson & Freyman, 1986); we assume that the same conclusion applies for AM rate,
at least in the range of rates studied here. In the experiments considered here, thresholds were measured in dB for intensity discrimination,
and cents for frequency or AM-rate discrimination; small frequency differences in cents are approximately proportionally related to their
counterpart in Hz.
4The integration does not need to be carried out for the other possible stimulus configurations and response regions because the PDFs
and regions are symmetric.
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that this can be rewritten as: respond “up” if Δy1 + Δy2 > 0, providing another description of
the same decision rule. As it turns out, this decision rule is optimal in a likelihood-ratio sense.
Using this decision rule, we can derive the probability of responding correctly in the I task
under the CVG model; it is

(3)

Note that this equation is identical to that defining the relation between d′ and the probability
of a correct response of an unbiased observer in the single-interval (Yes/No) task (Green &
Swets, 1966;Macmillan & Creelman, 2005). Equation 3 can be used to determine that the value
of d′ corresponding to a correct-response probability of 0.75 in the I task is approximately 1.34.
This is roughly 1.56 times smaller than the value found for the D task using equation 2. Thus,
according to the CVG model, thresholds should be approximately 56% larger in the D task
than in the I task.

The HT Model
HT theory posits the existence of a sensory threshold, which can never be exceeded in the
absence of a signal (for a review of the theory, see Green and Swets, 1966; Wickens, 2001;
Macmillan and Creelman, 2005). In the case of discrimination, the “signal” is defined as the
physical difference, Δ, between the two stimuli to be discriminated. The theory further posits
the existence of two internal states: a “non detect” state, which occurs whenever the signal
does not exceed the threshold, and a “detect” state, which occurs whenever the signal exceeds
the threshold. Subjects left in the non-detect state take a guess, which in the absence of bias is
equally likely to be either response alternative.

A slight complication arises from the fact that, with the experimental design considered in this
note, Δ can be either positive or negative. While the sign of Δ is irrelevant for the D task, it is
crucial for the I task. Therefore, we must assume two types of detect states: a “detect+” state,
which corresponds to the detection of an upward change, and a “detect-” state, which
corresponds to the detection of a downward change. The three internal states, “detect-”, “non
detect”, and “detect+” are separated by two thresholds. For simplicity, these thresholds are
assumed to be positioned symmetrically around zero along the relevant physical axis.

The HT model assumes that the threshold will never be exceeded in the absence of a change.
If an upward change is never registered in a “same” pair, i.e., a pair of identical stimuli, it is
logical to assume that such a change is also never registered in presence of a downward change.
Thus, according to this model, whenever a change has been detected, the direction of that
change should be readily identified.

In order to account for the probabilistic nature of detection or discrimination, HT theory posits
that thresholds fluctuate over time. Thus, associated with each Δ, there is a certain probability,
PD(Δ), that the observer is in one of the two “detect” states, and a probability of 1-PD(Δ) that
he/she is in the “non-detect” state. Since for the “same” pair, Δ=0, and according to the theory
the threshold can never be exceeded in the absence of the signal, the “same” pair can never
leave the observer in the “detect” state. Therefore, at the end of a trial in the dual-pair paradigm,
the HT observer can find him/herself in one of the following three situations: a) he/she detected
an upward change in one of the two pairs; b) he/she detected a downward change in one of the
two pairs; c) he/she failed to detect a change. In cases a and b, the response of the listener in
the D task should obviously correspond to the pair in which a change was detected; in those
cases, the probability of a correct response is 1. In case c, the listener is forced to guess and
the probability of a correct response is 0.5. For the I task, the response of the listener should,
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according to the model, correspond to the perceived direction of the change in cases a and b;
in case c, the listener should, again, guess. It follows that under this model the predicted
probability of a correct response in the I task is the same as that for the D task.5 Thus, unlike
the CVG model, the HT model predicts that the threshold in the I task should be the same as
the threshold in the D task, i.e., a D/I threshold ratio of 1.

Comparison between Model Predictions and Experimental Data
In order to test the predictions of the two above-described models, we reanalyzed data collected
in a series of experiments concerning the detection and direction-identification of changes in
frequency, intensity, and AM rate. The vast majority of these data were reported in an earlier
article (Semal & Demany, 2006). Although that article is entitled “Individual differences in
the sensitivity to pitch direction”, it contains data on intensity and AM-rate discrimination in
addition to frequency discrimination, and we strongly encourage readers to look into it for
details regarding how the discrimination thresholds on which the D/I threshold ratios reported
here are based were measured. Importantly, Semal and Demany's article was primarily focused
on listeners who exhibited unusually large thresholds in the discrimination of the direction of
frequency changes (i.e., the I task); these listeners were recruited especially for the purpose of
that study, and are not representative of those tested in the vast majority of earlier studies on
frequency discrimination. In contrast, here, we were interested specifically in listeners who did
not exhibit a conspicuous deficit in the identification of the direction of frequency changes,
and whose thresholds in this task are “normal”, in the sense that they are in line with those
typically reported in the psychoacoustical literature.6 Additional data on frequency
discrimination, which were collected by the same authors using the same paradigm as in their
original study, but were not reported in the 2006 article, were also included into the present
analysis; these supplementary data are, as of yet, unpublished. Overall, the data analyzed here
represent a total of 1210 threshold measurements (460 for frequency discrimination, 630 for
intensity discrimination, and 120 for AM-rate discrimination), from 11 different listeners.

The geometric means and ranges of the D and I thresholds for frequency, intensity, and AM-
rate discrimination that were used in the analyses described below are indicated in Table I. For
frequency discrimination, the mean D and I thresholds (expressed in musical cents; 1 cent =
1/100 semitone = 1/1200 octave) correspond to frequency differences of less than 1 %. For
AM-rate discrimination, the thresholds (also expressed in cents) are very much larger, as
expected from previous studies on AM perception (Formby, 1985;Hanna, 1992). For intensity
discrimination, the thresholds were around 2 dB. In comparing these thresholds with those
obtained in earlier studies, it is important to note that the thresholds reported here were
measured using a wide roving range, which explains why they are somewhat larger than those
reported in earlier studies using no (or smaller) roving. The frequency and intensity
discrimination thresholds reported here are generally consistent with those measured in other
studies using roving (e.g., Berliner & Durlach, 1973;Demany & Semal, 2005). Importantly,

5These probabilities can be computed as: PCIHT = PCDHT = PD(Δ)+[1-PD(Δ)]/2. The threshold corresponding to the proportion of
correct responses targeted by the tracking procedure, here 0.75, should equal that Δ for which PD(Δ)+[1-PD(Δ)]/2 equals 0.75, which
simplifies to PD(Δ) = 0.5; the value of Δ that satisfies this equation can be found by inverting the function relating Δ to PD.
6As mentioned in the Introduction, some of the listeners tested by Semal and Demany (2006) had unusual perceptual difficulties in
identifying the direction of changes in frequency; they could detect relatively small changes in frequency, but needed much larger
frequency differences before they could reliably identify the direction of these changes. Judging from the results of other studies in the
literature, which generally found comparable thresholds (or performance) in the detection and the identification of frequency changes
(Creelman & Macmillan, 1979; Jesteadt & Bilger, 1974; Nelson et al., 1983; Sek & Moore, 1995), such listeners appear to be atypical.
Accordingly, in the present reanalysis, we decided that for frequency discrimination, we would include only the data from the three
listeners (L1, L2, and L3) who had the smallest thresholds in Semal and Demany (2006) study. In 2007, four other listeners were tested
in exactly the same conditions. The data of these listeners were included into the reanalysis. As a result, data from a total of 7 listeners
are presented for frequency discrimination. Finally, we also excluded Semal and Demany's frequency discrimination data for pure tones
with very low frequencies (< 120 Hz), because in that case the frequency changes may have been systematically associated with changes
in sensation level and loudness, making it difficult to asses which perceptual cue(s) were used by the listeners.
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note that for each of the three dimensions considered, thresholds in the D task were larger on
average than thresholds in the I task.

For each listener, we computed the mean ratio between the thresholds measured in the D task
and the thresholds measured in the I task.7 Statistical bootstrap (Efron & Tibshirani, 1993) was
used in order to estimate the 95% confidence intervals around these mean D/I threshold ratios.
8 Figure 2 shows the mean D/I ratios. Each circle corresponds to the estimated D/I ratio for a
given listener (identified by a specific letter) and a given acoustic dimension, along with the
associated 95% confidence intervals. The predictions of the CVG and HT models, which
correspond to D/I ratios of 1.56 and 1.00, are indicated by horizontal solid lines. It can be seen
that 17 of the 18 D/I ratios displayed in Figure 2 fall between 1.0 (the prediction of HT theory)
and 1.56 (the prediction of the CVG model); the exception (subject J, frequency discrimination)
is a D/I ratio of 1.57. In view of their confidence intervals, eight D/I ratios are statistically
consistent with the CVG model and not the HT model, six go in the opposite direction, and the
remaining four are inconsistent with both models. Further statistical evidence that the data do
not agree with the prediction of either model is provided by a simple sign test: If the CVG
model were correct, the mean D/I ratios should fluctuate around 1.56, with roughly half of
them below that value, and the other half above it. Instead, 17 out of the 18 measured mean D/
I ratios were lower than 1.56, an outcome which has a negligible probability of occurring
(p<0.0001) under the hypothesis that the underlying mean D/I ratio is 1.56. For the HT model,
the outcome is even clearer: none of the mean D/I ratios is lower than 1.

Although a trend is apparent for D/I ratios to be higher (and closer to the prediction of the CVG
model) for frequency discrimination than for the other two acoustic dimensions tested, the
mean difference between the D/I ratios for frequency discrimination and intensity
discrimination failed to reach statistical significance; t(12) = 1.99, P = 0.069. Thus, it is not
clear that the relationship between D and I thresholds really differs across auditory domains;
this is a question for future studies. Assuming for now that the fluctuations in the mean D/I
ratios across acoustic dimensions merely reflect random variability across and/or within
listeners, it is interesting to pool the data in order to compute the “grand average” (geometric
mean) D/I ratio, across all acoustic dimensions and listeners. The result is a D/I ratio of 1.27.
This value, which is indicated by the horizontal dashed line in Figure 2, falls almost exactly
halfway between the predictions of the HT and CVG models, making it difficult to favor one
model over the other. Judging from the confidence-interval bars in Figure 2, a model that would
be able to predict a D/I ratio of 1.27 would be statistically consistent with the vast majority of
the data points shown in this figure: 16 out of the 18 confidence intervals encompass this value.

In summary, neither the HT model nor the CVG model provides a satisfactory account of the
observed relationship between the measured D and I thresholds. While the HT model predicts
a D/I ratio of 1.00, which is significantly lower than more than half of the measured mean D/
I ratios, the CVG model predicts a ratio of 1.56, which is significantly higher than more than
half of the measured mean D/I ratios. Overall, the mean measured D/I ratio falls almost exactly
in-between the predictions of these two models. This makes it difficult to favor one model over

7For consistency with the way in which the thresholds were originally measured, the mean ratios were computed using the geometric
mean rather than the arithmetic average.
8The technical details of the bootstrapping procedure are as follows: First, the D and I thresholds measured in the considered listener
were log-transformed. Then, they were independently re-sampled, with replacement, a large number of times (N=100,000), keeping the
same sample size as the original sample. The arithmetic average of the log-transformed values in each sample was then computed, still
separately for the D and I tasks, and the difference between the resulting averages (taken pairwise, in the order in which the samples were
generated) was computed, resulting in a single series of 100,000 differences. The statistical distribution of these differences was used in
order to estimate the 95% confidence intervals. In order to increase the stability and accuracy of the estimate, the distribution was first
fitted with a Gaussian using a maximum-likelihood fitting procedure. The confidence interval was determined by adding/subtracting 1.96
times the standard deviation of the best-fitting Gaussian to/from its mean. Finally, the resulting values were transformed back from log
to linear space.
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the other, and it suggests that, in fact, neither of these two models based on widespread
assumptions is consistent with the experimental data.

Can the CVG Model be Reconciled with the Data?
In this section, we explore whether and how the CVG model can be modified to yield predicted
D/I ratios between 1.00 and 1.56, consistent with the empirical data. The CVG model is
characterized by several assumptions. In particular, it assumes that the sensory observations
on a trial are contaminated by additive Gaussian noises, which are uncorrelated and have a
constant variance. Moreover, the relationships between d′ and the probability of a correct
response for the D and I tasks, as given in equations 1 and 3, are based on the assumption that
the observer is unbiased, i.e., has no a priori preference for either response alternative.
Departures from these assumptions affect the predictions of the model and can, in some cases,
yield smaller predicted D/I threshold ratios.

Some intuition into which changes in model assumptions are likely to yield predicted D/I ratios
lower than 1.56 can be gained by considering the geometry of the decision space illustrated in
Figure 1. Any geometric transformation of the PDF or decision axes that increases the
probability mass in quadrant P1 or P3 relative to that in quadrants P2 or P4 contributes to lower
the predicted threshold in the D task relative to that in the I task. In order to limit the number
of possible transformations, we considered only linear transformations (i.e., stretchings and/
or rotations of the PDF or decision axis) that had a relatively simple interpretation. For instance,
horizontal stretching of the PDF corresponds to an increase in the variance of the internal noise
associated with the sensory trace evoked by the first pair, which might be due to memory noise
(as discussed below); a stretch and 45° rotation of the PDF reflects correlation between the
decision variables, due possibly to fluctuating bias (as discussed below).

In order to compute how such modifications affected the predicted D/I ratios, we ran a series
of computer experiments simulating the behavior of a virtual listener in the D and I tasks using
modified versions of the original CVG model. Our main findings are summarized below.

Non-Constant Internal-Noise Variance?
The CVG model assumes that the variance of the internal noise that contaminates the sensory
observations remains constant over time. There are at least two reasons why this assumption
might not hold. The first relates to the possible influence of memory on sensory representations.
According to the CVG model, correct performance in the D and I tasks requires comparing a
quantity derived from the two observations in the first pair with one derived from the two
observations in the second pair. Thus, it requires that the observer hold in memory the first
quantity, or the original observations from which it derives, until the second quantity can be
computed. Retention in memory is not perfect. Stochastic diffusion models of memory assume
that sensory traces undergo a “random walk”, which may be modeled as a linear increase in
internal noise variance as a function of time (Kinchla & Smyzer, 1967). According to this type
of model, the variance of the internal noise associated with the difference between the
observations in the first pair should be larger than that associated with the difference between
the observations in the second pair. Monte-Carlo simulations showed that systematic
differences in internal noise magnitude between the first and the second pairs could produce
D/I threshold ratios lower than 1.56. However, these simulations also revealed that, in order
for the predicted D/I ratio to equal 1.27 (the mean D/I ratio measured based on the experimental
data), the standard deviation of the internal noise had to change (increase or decrease) by a
factor of approximately four between the first and the second pair.9 Assuming that such a

9The D/I ratio was similarly reduced if the noise variance was larger in the second than in the first pair. However, it is difficult to think
of a reason why this might have occurred in actual listeners.
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difference in internal-noise magnitude between the sensory representations of the differences
in the two pairs was due entirely do sensory-trace diffusion occurring between the offset of the
first pair and that of the second (i.e., an interval of 1.45 s), and that trace variance increases
linearly as a function of time, this should translate into an approximately four-fold decrease in
d′ in a 2I2AFC task as the delay between the two stimuli is increased from 0.55 to 2 s. Clément,
Demany, & Semal (1999) found that d′ decreased by a factor of about two as the delay between
the two sounds that listeners had to discriminate increased from 0.5 to 2 s. Thus, memory noise
does not provide a plausible explanation for why thresholds in the D task are only 27% larger
than thresholds in the I task, on average.

A second reason why the magnitude of the internal noise added to the observations could differ
between the two pairs relates to the use of across-pair roving. As mentioned earlier, the data
in Figure 2 were obtained in experiments in which the frequency (or AM rate) of the stimuli
was roved over a relatively wide range across pairs in order to discourage listeners from
comparing individual observations between the two pairs on a trial. Although data in the
literature (Buus & Florentine, 1991;Jesteadt & Bilger, 1974;Nelson & Freyman, 1986) indicate
that frequency and intensity JNDs do not vary markedly over the frequency range used as
roving range here (400-2400 Hz), it is possible that even small or moderate differences in
internal-noise variance across pairs due to roving contributed to significantly reduce D/I ratios.
In order to investigate this possibility, we ran Monte-Carlo simulations in which the standard
deviation of the noise added to the sensory observations varied randomly across pairs, being
drawn from a probability distribution that was uniform on a logarithmic axis (consistent with
the use of uniform roving on a semitone frequency scale in the experiments). The simulation
results revealed that such across-pair fluctuations in internal-noise magnitude could indeed
produce smaller predicted D/I ratios.10 However, they also revealed that for this effect to
explain D/I ratios as small as 1.27, it was necessary to assume that the standard deviation of
the internal-noise varied by a factor of more than 100 across the roving range. Such a large
variation in internal-noise magnitude would lead to wide variations in frequency or intensity
JNDs across the considered frequency range (400-2400 Hz), inconsistent with psychophysical
data in the literature (Buus & Florentine, 1991;Jesteadt & Bilger, 1974;Nelson & Freyman,
1986). Thus, roving-related fluctuations in internal-noise magnitude cannot plausibly explain
the finding of smaller than expected D/I ratios.

Response Bias?
Another way in which the CVG model can be altered to yield lower D/I ratios involves
introducing bias into the decision. In general, the proportion of correct responses achieved by
a biased observer is lower than that achieved by an unbiased observer. Thus, a simple way to
reduce the D/I ratio predicted by the CVG model is to assume that listeners are not unbiased,
and that the bias affects only the I task, or at least, that its influence on thresholds is larger in
this task than in the D task. The simplest form of bias corresponds to a constant a priori
preference for one of the two response alternatives. For instance, some listeners may be more
inclined to choose the “upward” direction than the “downward” direction; for other listeners,
the converse may be true. In fact, an analysis of the trial-by-trial data collected in some of the
listeners whose data are shown in Figure 2 showed no such bias. Instead, the listeners' responses
were equally distributed between “upward” and “downward”, as they should given that these

10In these simulations and those described hereafter, unless otherwise mentioned, the assumed decision rules were as specified above.
These rules did not always lead to optimal (maximum likelihood) decisions. However, in most of the cases studied, it was reasonable to
assume that the observer was unable to adapt the decision strategy for best performance, either due to incomplete information about the
stimulus, or because the optimal rule was too sophisticated. The situation of across-pair fluctuations in internal variance considered here
is a case in point. In that situation, the optimal strategy required that the observer memorize all possible distributions of the noise,
conditioned on the stimulus frequency, and select the appropriate distribution based on the current estimate of the stimulus frequency.
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stimulus alternatives were equally likely a priori. Thus, this simple form of bias can be ruled
out.

A subtler form of bias, which cannot be ruled out so easily, consists of fluctuations in the
position of the internal criterion across trials. Such bias may occur as a result of the observer's
response to the current trial being influenced by his/her response to the previous trial or, if
feedback is given (as was the case in the experiments considered here), by the outcome of that
trial, i.e., whether the response was correct or incorrect (Treisman & Williams, 1984). For
example, the participant may be inclined to choose the same response as that given on the
previous trial if that preceding response turned out to be correct. While the precise generating
mechanisms of this “fluctuating bias” cannot be determined based on the data currently
available, the fact that the stimulus alternative presented on a given trial did not depend on that
presented on the previous trial makes it possible to model this type of bias as a random variation
of the decision criterion. Moreover, although variable across trials, the direction and magnitude
of the shift may to a first approximation be regarded as constant within a trial. As a result, this
form of fluctuating bias introduces some correlation between the decision variables derived
from the different observations or pairs of observations on a trial; the assumption of statistical
independence, which was made in the original CVG model, is violated.

A schematic illustration of this effect is provided in Figure 3. The situation illustrated in this
figure is that in which an upward change occurred in the first pair, and the task is to identify
the direction of the change. For this task, a random shift of the criterion is mathematically
equivalent to an addition of the same random value to the two decision variables, Δy1 and
Δy2. Figure 3 shows how this modifies the joint PDF. The contour of the PDF, which was
circular in Figure 1, is now elongated along the major diagonal of the decision plane, reflecting
a positive correlation between the two decision variables. This transformation affects the way
in which the mass of the PDF is shared among the four quadrants. The effect may be depicted
schematically as an increase in the proportion of the mass in the half-plane formed by P4 and
P3 at the expense of that in the half-plane formed by P1 and P2. Assuming that the observer
is unable to adjust his/her decision strategy to take into account the correlation between the
decision variables, the predicted proportion of correct responses in the I task is still given, as
in Figure 1, by the proportion of the probability mass contained in quadrants P1 and P2, relative
to that contained in quadrants P3 and P4. An increase in the mass in P3 at the expense of P2
translates into a decrease of the predicted proportion-correct for the I task, and therefore, in a
smaller predicted D/I ratio.

Figure 4 shows how the D/I ratio predicted by a modified CVG model based on this assumption
of fluctuating bias in the I task only depends on the standard deviation of the bias-related noise
relative to that of the sensory noise. As the relative magnitude of the fluctuating bias increases
from zero to infinity, the predicted D/I ratio decreases from 1.56 to 1.00. In order for the D/I
ratio predicted by the model to equal the mean measured D/I ratio (1.27), the bias-related noise
must have approximately the same standard deviation as the sensory noise.

To summarize, D/I ratios lower than 1.56 can be accounted for by assuming a CVG observer
with a fluctuating bias toward the “upward” or “downward” response in the I task. However,
it is important to note that this is an ad hoc assumption. The data presented in this note provide
no evidence for or against such fluctuating bias, affecting selectively the decision between the
“upward” and “downward” responses. One might equally well assume that a similar fluctuating
bias also affected the decision between the first and second pairs in the D task, leading the
listener to favor the first interval on some trials, and the second interval on other trials. Such
bias would reduce the proportion of correct responses in the D task, thereby contributing to
bring the D/I ratio back toward its original value of 1.56. Thus, an explanation of the results
in Figure 2 in terms of fluctuating bias remains largely speculative.
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Non-Linear Psychometric Functions?
A third way in which D/I ratios lower than 1.56 might be explained without completely
abandoning the CVG model involves violating the assumption of linear psychometric
functions. So far, we have assumed in all mathematical derivations and simulations that d′ was
proportional to the physical difference (in cents, or in dB) between the stimuli to be compared.
This assumption is supported by results in the psychoacoustical literature (Buus & Florentine,
1991; Nelson & Freyman, 1986; Turner & Nelson, 1982).11 However, due to variability in the
psychophysical measures, the experimental evidence is necessarily limited, and it cannot be
used to rule out moderate deviations from linearity. Therefore, one may wonder how deviations
from the assumption of linear psychometric functions influence the D/I ratio predictions of the
CVG model, and more specifically, whether moderate deviations may in fact result in
substantially lower predicted values, consistent with those shown in Figure 2.

In order to investigate this possibility, we ran additional Monte-Carlo simulations using the
basic CVG model, but this time assuming that the relationship between d′ and the stimulus
difference, Δ, followed a power-law (d′ = Δk) instead of a linear relationship. The power law
is often used to model psychometric functions (Gescheider, 1997; Hartmann, 1998). It presents
the advantage over other elementary mathematical functions, such as the logarithmic and
exponential, that it can assume either convex or concave shapes, depending on whether the
value of the exponent, k, is larger or smaller than unity. In the simulations, this value was varied
systematically until the D/I ratio predicted by the simulated CVG model was consistent with
the mean ratio measured in the psychophysical experiments: 1.27. The results revealed that for
this to be the case, the exponent in the power-law function had to be about 1.85. Such an
exponent results in a substantial deviation from linearity in the shape of the psychometric
function. This outcome is inconsistent with the psychophysical results reported by Turner &
Nelson (1982) or Nelson & Freyman (1986) for frequency discrimination, and by Buus and
Florentine (1991) for intensity discrimination. (We are not aware of relevant experimental data
in the case of AM-rate discrimination.)

Alternative Models
The observation that the CVG model cannot easily be reconciled with the experimental data
leads us to consider other types of psychophysical models. The observation that all but one of
the mean D/I ratios shown in Figure 2 fall in-between the predictions of the HT and CVG
models suggests that listeners' behavior in the D and I tasks might be adequately captured by
a model that combines some of the features of these two types of models. In this section, we
briefly describe two such models. The first was obtained by appending a quantization stage to
the CVG model; the resulting model is referred to as the “quantized Gaussian” (QG) model.
The second model is a pure discrete-state model, inspired by neurophysiological observations,
which suggest that the perception of stimulus changes may be mediated, at the neural level, by
the relative activations of neurons that are selectively sensitive to increments or decrements,
and whose spike-count output follows a Poisson distribution.

A Quantized-Gaussian Model
The idea of quantized sensory representations is not new. Following Boring (Boring, 1926),
Stevens and colleagues (Stevens, 1972; Stevens et al., 1941; Stevens & Volkmann, 1940) and
others (Miller & Garner, 1944; Larkin and Norman, 1964) argued for a “quantum” model of
sensory discrimination. The “quantized-Gaussian” model, which we consider here, assumes

11In the case of frequency discrimination, Turner & Nelson (1982) and Nelson & Freyman (1986) conclude that d′ is proportional to the
frequency difference in Hertz. Here, frequency differences were measured in musical cents rather than in Hertz. However, for very small
frequency differences such as the thresholds displayed in the second column of Table I, differences in Hertz and in cents are proportional
to each other, and therefore equivalent.
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an initial stage in which, as in the CVG model, the sensory activity evoked by the stimuli is
modeled as a Gaussian-distributed random quantity along a continuous axis. This first stage is
followed by a second one, in which the continuous sensory activity from the first stage is
“quantized”. It is assumed that the subject only has access to the output of the latter stage;
therefore, his/her decisions are based on an imperfect, quantized representation of the stimuli.
This idea is represented schematically in Figure 5. Due to the quantization operation, the
decision space for this model is a discrete version of that for the CVG model shown in Figure
1.

By varying the size of the quantization steps relative to the magnitude of the internal Gaussian
noise, one can generate predicted D/I ratios that range from 1 to 1.56, as shown in Figure 6.
This can be understood by considering that, when the size of the quantization steps is large
relative to the magnitude of the internal Gaussian noise, the quantized-Gaussian model is
essentially equivalent to a two-state HT model. On the other hand, if the quantization steps are
made infinitely small, the quantized-Gaussian model becomes equivalent to the CVG model.

From this point of view, the HT and CVG models described in earlier sections can be thought
of as extreme cases on a continuum going from two to an infinitely large number of possible
internal states. The results shown in Figure 2 suggest that human observers stand in-between
these two extremes: they behave as if their decisions were based on a finite number of states,
although more than assumed by the HT model. The simulation results shown in Figure 6
indicate that in order for the QG model to predict a D/I ratio equal to the mean D/I ratio
measured experimentally (1.27), the size of the quantization step (or “quantum”) must be
between two and three times larger than the standard deviation of the internal Gaussian noise.
(Figure 5 was produced assuming a quantum size equal to three times the standard deviation
of the internal Gaussian noise.)

It is worth noting that Stevens and Volkmann (1940) and Stevens (1972) reached a different
conclusion regarding the relative size of the quantum, compared to other sources of noise
affecting the observer's responses in sensory discrimination experiments. These authors
concluded that the quantum size was probably smaller than that of the other sources of noise,
explaining why quantization effects are usually difficult to observe. Following this line of
reasoning, one might object that if, as indicated by our simulation results, the quantum size is
several times the standard deviation of the pre-quantization noise, this should produce visible
steps in psychometric functions for frequency and intensity discrimination, whereas in most
published reports of such functions, such steps are not clearly apparent.12 A possible
explanation for this lack of evidence for a quantization operation in psychometric data is that
the standard deviation of the additional sensory noise introduced by the quantization operation
is only 1/√12 of the quantum size. This means that even if the size of the quanta is up to 3.5
times the standard deviation of the Gaussian sensory noise, the quantization operation will
contribute less noise than there already is in the system. Thus, a quantum size between two and
three times larger than the standard deviation of the pre-quantization noise, as indicated by our
results, might not produce detectable steps in psychometric functions, at least under usual
testing conditions.

To summarize, the simulation results indicate that D/I threshold ratios comprised between 1.00
and 1.56 can be predicted by a model based on the assumption that listeners only have access
to a quantized representation of Gaussian sensory observations. From this point of view, the

12Although Stevens and colleagues (Stevens, 1972; Stevens et al., 1941; Stevens & Volkmann, 1940) did claim that under some specific
experimental conditions, linear steps are apparent in psychometric functions in various visual and auditory perception tasks, this claim
was questioned in subsequent publications, based on methodological considerations (Corso, 1973; Green & Swets, 1966).
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experimental data are consistent with the general idea behind the psychophysical “quantum”
theory (Stevens & Volkmann, 1940).

A Neurophysiologically Inspired Poisson Model
The second model considered here is based on the idea (supported by experimental data, in the
auditory domain as well as the visual domain) that some neurons in the central nervous system
respond with an increased firing rate when a stimulus changes in a given direction.
Psychophysical observations reported by Demany & Ramos (2005) provide strong evidence
for the existence of automatic and direction-sensitive “frequency-shift detectors” in the human
auditory system. This study showed that a sequence of two pure tones differing in frequency
and separated by a 500-ms silent delay can elicit a percept of directional pitch shift even when
the pitch of the first tone is not consciously audible.

The model that we propose here involves a neural “increment detector”, which compares the
two stimuli in a pair, and whose mean firing rate increases monotonically with the difference
in intensity or frequency, Δ, between these stimuli, but only if this difference is positive (i.e.,
Δ>0). For simplicity, we assume that when Δ is relatively small, as is typically the case near
discrimination threshold, the mean firing rate of the detector increases linearly with Δ. For
negative physical differences (i.e., Δ<0), the output of this detector is distributed following the
same distribution as for physically identical stimuli (i.e., Δ=0), reflecting the fact that the
detector is insensitive to decrements. Furthermore, it is assumed that the output of this detector
can be modeled as a Poisson process with a driving rate μ0 for identical stimuli or decrements,
and μ=μ0+αΔ for increments (with α a constant). Poisson processes are frequently used as an
approximate model of neural spiking, and accordingly the Poisson distribution is commonly
used as an approximate model of the distribution of spike counts (Rieke, Warland, de Ruyter
van Steveninck, & Bialek, 1997).

In addition to this “increment” detector, the model contains a “decrement” detector, which
produces a Poisson-distributed output with mean rate μ0 for Δ≥0, and mean rate μ=μ0+α|Δ| for
Δ<0. The difference between the outputs of these increment and decrement detectors is used
in order to decide whether or not a change occurred, and if a change did occur, in which direction
it was. Accordingly, the decision space for this model resembles that for the Gaussian and QG
models, in that the decision variables are differences between random variables derived from
the first and second pairs; however, instead of having a Gaussian or quantized-Gaussian
distribution, here, the decision variables have a distribution given by the difference between
two Poisson-distributed random variables. Examples of such Poisson-difference distributions
are shown in Figure 7. The two panels in this figure show how the decision variables are
distributed for “same” trials (upper panel) and “different” trials (lower panel), assuming a
Poisson process with a mean spontaneous rate, μ0, of 0.8 spikes per second and a mean evoked
rate of 2.9 spikes per second. As can be seen, the two distributions have different spreads; this
results from the fact that the variance of a Poisson-distributed random variable increases with
the mean.

The critical variable, in this model, is the mean spontaneous rate, μ0, of the increment and
decrement detectors; for simplicity, this rate is assumed to be the same for the two types of
detectors. As the mean spontaneous rate increases, and the mean evoked rate increases beyond
it, the probability distribution of the difference between the output of the two types of detectors
tends toward a Gaussian distribution, and the D/I predicted by this Poisson model tends toward
that of the CVG model. In Figure 8, we show how the D/I threshold ratio predicted by the
Poisson model depends on the mean spontaneous rate, μ0. For each value of μ0 we determined
the value of the evoked rate, μD, that yielded a predicted proportion of correct responses of
0.75 in the D task, and the value of evoked rate, μI, corresponding to the same proportion correct
in the I task. The D/I ratio was then calculated as (μD - μ0)/(μI - μ0). These results confirm that
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this Poisson model can predict D/I ratios lower than 1.56, and they reveal that such ratios result
from relatively low spontaneous rates: D/I ratios below 1.4 require a mean spontaneous rate
of approximately 1 or less.

Receiver Operating Characteristics for Change Detection: A Further Test of
the Models

The above simulation results reveal that a discrete Poisson model, or a “hybrid” (continuous-
discrete) quantized-Gaussian model, provide a more satisfactory account of the empirical D/I
threshold ratio data shown in Figure 2 than the HT and CVG models. However, it may be
argued that the former two models are ad hoc, and that although they originate in earlier work
independent from the present one (e.g., Green and Swets, 1966;Egan, 1975;Kaernbach,
1991a), they were only invoked here because it was suspected that they would resolve the
particular problem under consideration. Therefore, it was desirable to consider additional
experimental data, besides D/I ratios, in order to further evaluate whether the Poisson and
quantized-Gaussian models provide more adequate models of how sensory changes are
perceived.

Receiver operating characteristics (ROCs), which represent the probability of a false alarm as
a function of the probability of a hit for different values of the criterion (Green & Swets,
1966; Egan, 1975), provide such data. A landmark of the Poisson model is that it can account
for experimental findings of asymmetric ROCs in Yes-No signal-detection tasks (Egan,
1975; Kaernbach, 1991a; Swets, Tanner & Birdsall, 1961). This stems from the Poisson
distribution being asymmetric, and from its variance increasing with its mean. In contrast to
the Poisson model, the CVG model predicts symmetric ROC curves, at least for the Yes-No
detection task. Therefore, ROCs provide a way of distinguishing the Poisson model from the
CVG model.

One complication, which must be taken into account here, stems from the fact that we are not
dealing simply with detection, but with change detection. More precisely, we are dealing with
the detection of discrete sensory changes. The paradigm of choice for measuring this ability
is not the Yes-No paradigm, for which the above distinction between the CVG and Poisson
models has been established, but rather the Same-Different (2IAX) paradigm. For that
paradigm, the CVG model can actually predict asymmetric ROCs in some situations (see, e.g.,
Dai et al., 1996; Hautus, Irwin & Sutherland, 1994). This is the case, in particular, for
experiments in which the stimuli are roved over a relatively wide range across trials, as
commonly done to force listeners to compare the two stimuli presented on each trial, rather
than rely on a long-term memory trace. In this situation, the ROCs predicted by the CVG model
are slightly asymmetric about the minor diagonal (Dai et al., 1996).13 This makes the task of
distinguishing between the CVG and Poisson models less straightforward, since asymmetric
ROCs are now expected for both models (Kaernbach, in preparation). Fortunately, there is a
simple way to overcome this problem. The CVG model only predicts asymmetric ROCs in the
2IAX paradigm if the direction of the change is not known in advance by the observer. If the
observer knows the direction of the change in advance the asymmetry is eliminated. This is
because knowing the direction of the change eliminates the need for an optimal CVG observer
to base his decisions on the absolute value (or any other non-monotonic transformation) of the
difference between the sensory observations evoked by the two stimuli presented on a trial.
Instead, the CVG observer can now decide between “same” and “different” on the basis of the

13Why the CVG model predicts asymmetric ROCs in 2IAX experiments with roving can be understood by considering that in this
situation the optimal decision rule is based on the absolute value of the difference between the sensory observations; this is the so-called
“differencing strategy” for the 2IAX paradigm. Whereas the distributions of the original sensory observations are equal-variance
Gaussian, the distributions of the absolute value of the difference between the observations on “same” and “different” trials are not.
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signed (as opposed to the unsigned) difference between the two observations. This decision
strategy is formally equivalent to the differencing strategy for the 2I2AFC paradigm, which
we mentioned earlier, except for the placement of the criterion: Assuming a balanced design
(with equal a priori probabilities and symmetric payoffs), the optimal placement of the criterion
in the 2I2AFC paradigm corresponds to the origin (zero) of the decision axis; in contrast, in
the direction-known 2IAX paradigm, the optimal placement of the criterion corresponds to a
positive value for trials on which the direction of the change is “upward”, and to a negative
value for trials on which the direction is “downward”. In both cases, the criterion should be
positioned halfway between the means of the difference distributions corresponding to “same”
and “different” trials. Therefore, if in a 2IAX experiment the change between the two stimuli
in the different pairs always has the same direction, and listeners are aware of this fact, ROCs
should be symmetric under the CVG model. Since, on the other hand, the Poisson model still
predicts asymmetric ROCs, this provides a way of distinguishing between the CVG and Poisson
models in a change-detection setting.

The above rationale led us to analyze ROC data obtained in a 2IAX intensity-discrimination
experiment where the change in intensity between the two tones presented on “different” trials
could only be downward. Note that intensity is the dimension for which we previously found
D/I ratios to be the lowest on average (Figure 2), consistent with a Poisson process having a
relatively low mean. Therefore, it is for this dimension that one should expect the most
asymmetric ROC curves, if the Poisson model accurately describes the change-detection
process. This provides ideal conditions for testing which of the two rival models, CVG and
Poisson, is most consistent with empirical ROCs.

Listeners rated their certitude regarding the occurrence of a change between the stimuli using
six response categories: “very sure yes”, “sure yes”, “maybe yes”, “maybe no”, “sure no”, and
“very sure no”. A multiple-response monetary payoff matrix was used in order to entice
listeners to vary their criteria for deciding between the different response categories over a
relatively broad range, going from most conservative (i.e., trying to limit the number of false
alarms) to most liberal (i.e., trying to achieve a high hit rate). The ROC data measured across
five listeners using this technique are shown as symbols in Figure 9. The best-fitting predictions
of the CVG model and Poisson model are shown as dashed and solid curves, respectively. As
can be seen, the best-fitting asymmetric ROC produced by the Poisson model provides a better
fit to the empirical data than the best-fitting symmetric ROC produced by the CVG model
(model comparison: log of Poisson/CVG likelihood ratio = 75.5; p<0.0001).14 Interestingly,
the best-fitting Poisson model had a mean spontaneous rate, m0, of approximately 0.8, and an
evoked mean rate of approximately 2.6. Based on the data shown in Figure 8, which illustrate
how the mean D/I ratio predicted by the Poisson model depends on the mean spontaneous rate,
a mean spontaneous rate of 0.8 corresponds to a mean D/I ratio slightly below 1.4. This value
is somewhat larger than the mean empirical D/I ratio computed from the data displayed in
Figure 2, which was 1.27. However, in view of the inter- and intra-individual variability in the
psychophysical data, our estimates of the Poisson-model parameters derived from the D/I data
are in reasonably good agreement with those derived from the ROC data.

So far, this section has focused exclusively on the Poisson and CVG models. One remaining
question is whether the ROC data can also be used to distinguish the Poisson model from the

14This p value was computed as: p= 1-K(x, n), where K(x, n) denotes the cumulative Chi-square distribution with n degrees of freedom,
evaluated at x. Here, x was equal to 2log(λ1/λ2), with λ1 and λ2 denoting the likelihoods of the data under the two considered models:
Poisson and CVG, respectively. The number of degrees of freedom, n, was calculated as the difference between the number of free
parameters of the CVG model, 1 (d′), and the number of degrees of freedom for the Poisson model, 2 (mean and evoked spontaneous
rates); thus, n was equal to 1. This calculation relies on a convenient result in probability theory, which says that the statistic, 2log(λ1/
λ2), or twice the logarithm of the likelihood ratio, is asymptotically Chi-square distributed with degrees of freedom equal to the difference
in the number of free parameters of the two models being compared.
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other two models that were shown earlier to account for the empirical threshold-ratio data,
namely the modified Gaussian model with fluctuating bias, and the quantized-Gaussian model.
The former is easy to rule out because it assumed that a fluctuating bias was present only in
the I task. For the D task, the predictions of that model are exactly the same as those of the
CVG model. Consequently, we turn our attention to the quantized-Gaussian model. In order
to investigate whether and how well this model could explain the ROC data, we ran simulations
using different quantum sizes (relative to the magnitude of the pre-quantization internal noise),
until the best possible match between the measured and predicted ROCs was achieved. The
results of this analysis revealed that the quantized-Gaussian model could produce asymmetric
ROCs, if the quantum size was sufficiently large. This can be understood by considering that,
as the quantum size increases, the Gaussian internal-noise distribution is sampled more and
more coarsely. For very large quantum sizes, the number of relevant internal states in the
quantized-Gaussian model is relatively small, yielding ROCs with visible edges. Occasionally,
depending on the exact relationship between the quanta and the pre-quantization noise, the
main edge in the predicted ROC falls below the minor diagonal, as observed in the empirical
ROC data. However, this requires a specific relationship between the quanta and the pre-
quantization noise; in practice, this requirement is unlikely to be met consistently. Moreover,
we found that in order to account for a substantial departure from symmetry in the predicted
ROCs, the quantum size must be very large compared to the standard deviation of the pre-
quantization noise. Specifically, our simulation results revealed that in order to account for the
asymmetry observed in the empirical ROC data in Figure 9, the quantum size must be roughly
eight times larger than the standard deviation of the pre-quantization noise. This factor of 8 is
considerably larger than the factor that we arrived at earlier on the basis of empirical D/I ratios,
which indicated an average quantum size at most three times larger than the pre-quantization
noise. A quantum size eight times larger than the pre-quantization noise is inconsistent, not
only with this earlier result, but also with other data in the literature (cf. our earlier discussion
of the consequences of a large quantum size on psychometric functions).

To summarize the results and arguments presented in this section, the Poisson model correctly
predicts that ROCs for the detection of sensory changes having a fixed and known direction
are asymmetric. In addition to being qualitatively consistent with empirical ROC data, the
predictions of this model are in better quantitative agreement with the data than those of the
various other models considered in this work. Further study is required in order to determine
whether these findings, which concern changes in sound intensity, hold for other dimensions
of auditory perception, and for other sensory modalities. However, combined with our previous
demonstration that the Poisson model can account for the observed relationship between D and
I thresholds, these results pinpoint this model as a more adequate description of the perceptual
and/or neural processes involved in the perception of simple sensory changes than the HT,
CVG, or quantized-Gaussian model.

Conclusions
A statistical analysis of detailed measurements of thresholds for the detection of simple changes
in auditory stimuli, and thresholds for the identification of the direction of these changes
measured under identical stimulus conditions in the same listeners, revealed that the
relationship between these thresholds departed significantly from the predictions of two
common psychophysical models, the CVG model and the HT model. However, remarkably,
for the three acoustic dimensions studied (intensity, frequency, and AM rate) and all but one
of the 11 listeners tested, the mean measured D/I threshold ratios fell in-between the predictions
of these two models. This led us to consider the possibility that a hybrid model combining early
Gaussian sensory observations with a later quantization stage (the “quantized-Gaussian”
model), or a discrete-state model with a larger number of internal states than the basic HT
model (the “Poisson” model), might adequately capture the behavior of human listeners in the
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D and I tasks. This possibility was confirmed by simulation results: both the quantized-
Gaussian and Poisson model were able to produce D/I threshold ratios between 1.00 and 1.56,
as observed in humans. In order to further evaluate the different models, we analyzed ROC
data collected under conditions in which the direction of the sensory change was fixed, and
known to the listener. These ROC data were best accounted for (both qualitatively and
quantitatively) by the Poisson model.

Gaussian models have usually been favored over discrete-state models, because of their ability
to fit empirical ROC curves better than their historic competitor, the dual-state HT model.
However, as noted by Green and Swets (1966), ROCs typically contain a handful of data points,
and discrete-state models with at least as many internal states as the number of data points can
fit such empirical ROCs as well as the Gaussian model. The quantized-Gaussian model and
the Poisson model described in this note fall into this category. The Poisson model presents
the advantage that it can accommodate asymmetric empirical ROCs (Kaernbach, 1991a).
Future studies involving detailed measurements of ROCs for the detection of changes in sound
intensity or frequency under stimulus conditions similar to those considered here may provide
further arguments for or against this model.

Another argument that is often used to justify the Gaussian assumption is that, by the central-
limit theorem, the distribution of the sum of a large number of random variables tends toward
a Gaussian. However, this statistical theorem applies specifically to large numbers of
statistically independent sources of variability combined additively. Research on the neural
underpinnings of perception conducted during the past decades indicates that the neural
responses that are combined in order to arrive at a perceptual decision are usually correlated
rather than independent (Averbeck, Latham, & Pouget, 2006; Zohary, Shadlen, & Newsome,
1994). Moreover, neural responses may be combined in complex non-linear ways rather than
additively. The view that perception ultimately relies on discrete quantities is consistent with
a wealth of neurophysiological observations, including in particular findings indicating that
perceptual decisions may be based on the correlated spike counts of a relatively limited number
of neurons (Shadlen & Newsome, 1998). In this respect, the Poisson model of change-detection
and change-direction-identification described here is particularly attractive, because of its
neurophysiological plausibility and simplicity.

Another argument in support of the quantized-Gaussian and Poisson models stems from the
introspective fact that physically identical sounds are often perceived as identical. According
to a model in which sensory observations are continuous and contaminated by Gaussian internal
noise, the sensory observations evoked by two physically identical stimuli have an infinitely
small probability of being exactly identical, due to the influence of internal noise. By contrast,
in discrete-state models, the probability that two physically identical stimuli evoke strictly
identical percepts is not negligible. In order to reconcile the CVG model with introspection,
one would have to assume that the subject does not have conscious access to the “true” sensory
observations, but only to the decisions that were reached after comparing these observations
with an internal criterion. This is tantamount to assuming that the decisions of the subject rest
on a quantized (discrete) representation of the stimuli.

Based on these results and considerations, we suggest that discrete-state models, and in
particular a Poisson model, describe more adequately than the CVG model the processes
involved in the perception of simple changes in auditory stimuli. Of course, it would be
interesting to know if such a conclusion is valid for auditory dimensions not considered here
(for instance sound localization) and to see if a similar conclusion can be drawn for other
sensory modalities. It is therefore hoped that the analysis described in this note will spark
further empirical studies, concerning especially the relationship between change detection and
change-direction identification.
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Figure 1.
Schematic illustration of the decision space for the dual-pair detection and identification tasks,
according to the CVG model. Differences between the two observations from the first pair,
y12 - y11, are plotted along the Δy1 axis. Differences between the two observations from the
second pair, y22 - y21, are plotted along the Δy2 axis. The four quadrants (labeled P1 to P4)
delimited by the major and minor diagonals correspond to different decision regions, as
explained in the text. The fuzzy patch represents the two-dimensional probability density
function (PDF) of the decision variables (with darker areas corresponding to regions of higher
probability density) for trials in which the first pair contained an upward change; accordingly,
the mean is positive along the Δy1 axis and zero along the Δy2 axis. In this example, the mean
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of the PDF along the Δy1 axis was chosen so that the probability mass over quadrants P1 and
P3 was equal to 0.75, the targeted probability of a correct response in the detection (D) task in
the psychophysical experiments described in the text.
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Figure 2.
Mean individual D/I threshold ratios measured in 11 listeners (A, B, C, … K) for three sound
attributes (frequency, intensity,, and AM-rate). Values greater than 1.0 indicate that the
threshold for detection of a change is higher than the threshold for the identification of the
direction of the change. Note that only two listeners (A and B) were tested on all three attributes.
Error bars indicate the 95% confidence intervals around the mean ratios, estimated using
statistical resampling (bootstrap). The two solid horizontal lines indicate the predictions of the
CVG model (a ratio of 1.56) and of the HT model (a ratio of 1.00). The geometric mean of the
18 plotted D/I ratios is indicated by a dashed line.
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Figure 3.
Decision space for the CVG model with fluctuating bias added to the decision variables, Δy1
and Δy2 In this example, the bias-related noise has a normal distribution with a standard
deviation twice as large as that of the sensory noise. As manifested by the elliptical shape of
the PDF, and its diagonal orientation, this type of bias introduces a correlation between the two
decision variables. This correlation contributes to reduce the proportion of correct responses,
compared to the case where no such bias is present (Figure 1).
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Figure 4.
Influence of the magnitude of the bias toward one of the two response alternatives in the D
task on the D/I threshold ratios predictions of the CVG model. The magnitude (i.e., standard
deviation) of the bias is expressed relative to that of the sensory noise.
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Figure 5.
Schematic illustration of the sensory-observation process and decision space for the quantized-
Gaussian (QG) model. Top panel: Schematic representation of the physical and sensory scales.
A stimulus with a certain value on a physical scale, x, evokes a sensory response on a continuous
sensory scale, y As in the CVG model, this sensory response is contaminated by Gaussian
noise. However, in the QG model, the observer only has access to a quantized representation
of the sensory activity, as represented by the discrete scale, q In this example, the size of the
quanta was chosen to equal three times the standard deviation of the Gaussian sensory noise.
In addition, we purposefully chose a case where sensory activity on the continuous scale, y,
falls close to the border between two quanta, to illustrate the fact that a given stimulus value
does not always result in the activation of the same quantum. Bottom panel: Two-dimensional
decision space for the QG model. This can be compared to the decision space for the CVG
model illustrated in Figure 1. As in that figure, the situation illustrated is one in which an
upward change occurred in the first pair. Here, the probability of a correct response is computed
as a sum over quadrants P1 and P3 for the D task, and P1 and P2 for the I task. For quanta that
are cut through by one or two diagonals, decisions are determined by guessing. In this example,
the physical difference, Δ, between the two stimuli was set to 2.1 times the standard deviation
of the Gaussian sensory noise, so that the proportion-correct in the D task equals approximately
0.75.
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Figure 6.
D/I ratio predicted by the quantum model as a function of the quantum size relative to the
standard deviation of the pre-quantization noise. The vertical dotted line shows the relative
quantum size corresponding to the case of a quantization noise with a standard deviation equal
to that of the pre-quantization noise, as discussed in the text.
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Figure 7.
Example probability distributions for the “difference between observations” decision variable
in the Poisson model. The two panels in this figure show how the decision variables are
distributed on “same” trials (upper panel) and on “different” trials (lower panel). These
distributions are for a Poisson process with a mean spontaneous rate, μ0, of 0.8 spikes per
second and a mean evoked rate of 2.9 spikes per second.
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Figure 8.
D/I ratios for decisions based on Poisson increment and decrement detectors as a function of
the mean spontaneous rate at the output of the detector.
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Figure 9.
ROCs predicted by the CVG and Poisson models compared to human data. The crosses show
mean hit and false-alarm probabilities measured in five human listeners performing a 2IAX
intensity-discrimination task where the direction of intensity changes (downward) was constant
and known to the listener (see text for details). The dashed curve shows the best-fitting ROC
curve produced by the CVG model, which under such testing conditions can only yield
symmetric ROCs. The solid lines indicate the best-fitting ROC obtained using the Poisson
model described in the text. As can be seen, the latter predicts an asymmetric ROC, which
more accurately fits the data than the symmetric ROC produced by the CVG model.
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Table I
Geometric means and ranges (across participants) of the thresholds measured in the D task and the I task.

Frequency discrimination (cents) Intensity discrimination (dB) AM-rate discrimination (cents)

D task 13.7 (10.3-14.8) 2.2 (1.2-4.2) 184.3 (152.0-223.4)

I task 9.9 (8.8-11.0) 1.8 (0.9-3.9) 155.2 (110.7-208.4)
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