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Abstract
Three 9,10-di-O-(−)-camphanoyl–7,8,9,10-tetrahydro-benzo[h]chromen-2-one (7-carbon-DCK)
analogs (3a–c) were synthesized and evaluated for inhibition of HIV-1 replication in H9
lymphocytes. All three new carbon bioisosteres of the anti-HIV lead DCK showed anti-HIV activity.
Compound 3a had an EC50 value of 0.068 μM, which was comparable to that of DCK in the same
assay. The preliminary results indicated that 7-carbon-DCK analogs merit attention as potential
HIV-1 inhibitors for further development into clinical trials candidates.
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3′,4′-Di-O-(−)-camphanoyl-(+)-cis-khellactone (DCK, 1) demonstrated extremely potent
inhibitory activity against HIV-1 replication in H9 lymphocytic cells with an EC50 value of
2.56 × 10−4 μM and a therapeutic index (TI) of 1.37 × 105 in our prior research.1 In subsequent
structural modification studies, numerous DCK derivatives were synthesized and at least 20
DCK analogs have shown promising inhibitory activity against HIV-1 replication in H9
lymphocytes.2 Among them, 3-methyl, 4-methyl, and 5-methyl substituted DCKs were much
more potent than DCK and AZT in the same assay with EC50 and TI values ranging from 5.25
× 10−5 to 2.39 × 10−7 μM and 2.15 × 106 to 3.97 × 108, respectively.3 In addition, a preliminary
mechanistic study showed that 3-hydroxymethyl-4-methyl DCK inhibits HIV reverse
transcriptase (RT) via a different mechanism of action from those of current clinical anti-HIV/
AIDS drugs.4 It was also found that DCK analogs are strongly synergistic with approved drugs
such as AZT and act at a point in the virus life cycle immediately following the target for AZT
and nevirapine.4 In our recent research on structural modification of 4-methyl DCK (2), the
ring oxygen atom in the A or C ring of DCK was replaced by a sulfur atom, and these sulfur-
containing analogs also exhibited potent inhibitory effects on HIV-1 replication in H9
lymphocytes.5,6 Moreover, gem-dimethyl substitution at the 8-position was found to be
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preferable to larger alkyl substituents or hydrogen atoms.7 In a continuing effort to identify
the pharmacophores in this class of potent anti-HIV agents, we designed a new series of DCK
analogs, namely 7-carbon-DCK derivatives (3a–c). In these compounds, a methylene group
replaces the oxygen in the C ring of DCK. Thus, these analogs are bioisosteres of DCK, and
the effect of the 7-oxygen atom on the anti-HIV activity of DCK-type compounds can be further
explored. In addition, to help determine the possible impact of the 8,8-dimethyl groups, both
unsubstituted (3a–b) and dimethylated (3c) analogs were prepared. Herein, we report the
synthesis of compounds 3a–c and their preliminary anti-HIV bioassay results (Fig. 1).

The synthesis of 3a–b was accomplished by a 7-step sequence, as illustrated in Scheme 1. The
key intermediates 7,8-dihydro-benzo[h]chromen-2-one (10a) and its 4-methyl analog (10b)
were prepared according to the procedure reported in our prior work.8 Sharpless asymmetric
dihydroxylation (AD) of 10a and 10b afforded dihydroxy derivatives 11a and 11b in moderate
yield (45–49%).9 Finally, 7-carbon-DCK analogs 3a and 3b were obtained in 62% and 82%
yields, respectively, by acylation of 11a and 11b with (S)-(−)-camphanic chloride in CH2Cl2
at room temperature with pyridine as acid scavenger.

As shown in Scheme 2, the preparation of 3c followed a slightly different synthetic route with
5-methoxy-1-tetralone (12) as starting material. Dimethylation of 12 with CH3I in the presence
of t-BuOK afforded 2,2-dimethyl-5-methoxy-1-tetralone (13) in 91% yield.10 Reduction of
dimethylated tetralone 13 with H2 catalyzed with 10% Pd-C gave 1,2,3,4-tetrahydro-5-
methoxy-2,2-dimethylnaphthalene (14) quantitatively.11 Demethylation of 14 with BBr3
resulted in the formation of phenol derivative 15 in 98% yield.11 The remaining synthetic steps
followed those detailed above for 3a–b from phenol 5. The target compound 3c was thus
obtained in an overall yield of 5% via a six-step reaction sequence starting from 15.

The anti-HIV activities of compounds 3a–c were evaluated in H9 lymphocytes, with AZT as
the reference compound. The bioassay data are shown in Table 1 and indicated that all three
compounds inhibited HIV replication and had reasonable therapeutic index (TI) values.
Compounds 3a and 3b had significant EC50 values of 0.068 and 0.083 μM, respectively. Thus,
the presence of the C-4 methyl in these 7-carbon DCK analogs did not lead to increased potency,
in contrast to results with DCK and 4-methyl DCK. Although an absence of gem-dimethylation
was detrimental in the 7-oxy DCK series,7 it was hard to make a definitive conclusion in the
7-carbon DCK series (comparison of 3c with 3b) due to solubility problems with 3c. However,
the 7-carbon analog 3b was more potent and had a higher TI than the corresponding
demethylated 7-oxy DCK derivative, 2′,2′-dihydro-4-methyl DCK (EC50 = 6.9 μM, TI > 6).
7 Compound 3b was also more potent against HIV replication but was more cytotoxic than the
analogous 7-thio analog (EC50 = 0.141 μM, TI = 1,110).6

Further structural modification and biological screening are in progress as these promising
bioassay results demonstrate that 7-carbon-DCK analogs merit attention as potential HIV-1
inhibitors.
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found 657.2690.
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Figure 1.
Structures of DCK (1), 4-methyl DCK (2) and 7-carbon-DCK analogs (3a–c).
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Scheme 1.
Synthesis of 3c: (i) t-BuOK/THF, reflux, 5 h, CH3I, 0.5 h; (ii) H2, Pd-C, CH3SO3H, HOAc,
CH3COOC2H5, C2H5OH, rt, 36 h; (iii) BBr3/CH2Cl2, −78°C; (iv) CH3COCH2COOC2H5,
POCl3, Benzene, reflux, 24 h, 66.0%; (v) CrO3, HOAc, rt, 30 h, (yield: 17=39.0%, 18=19.9%);
(vi) NaBH4, CH3OH, 0.5 h, (yield: 70.3%); (vii) 2% H2SO4, 120–130°C, 5 h, (yield: 95.0%);
(viii) AD-mix-α (K2OsO4·2H2O, K3Fe(CN)6, (DHQ)2PHAL, K2CO3), t-butanol/H2O 1:1,
CH3SO2NH2, rt, 32 h, (yield: 75.5%); (ix) (S)-camphanic chloride, Et3N, DMAP, CH2Cl2, rt,
4 h, (yield: 81.2%).
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Scheme 2.
Synthesis of 3a–b: (i) Raney Ni-Al alloy, 1% aq. KOH/water, 90°C, 2 h; (ii) L-Malic acid,
H2SO4, HOAc, 140°C, 6 h (R=H); CH3COCH2COOC2H5, POCl3, 100°C, 18 h (R=CH3); (iii)
CrO3, HOAc, rt, 3 days; (iv) NaBH4, CH3OH, 1 h; (v) 2% H2SO4, reflux, 6–16 h; (vi) AD-
mix-α (K2OsO4·2H2O, K3Fe(CN)6, (DHQ)2PHAL, K2CO3), t-butanol/H2O 1:1, rt, 2–3 days;
(vii) (S)-camphanic chloride, pyridine, DMAP, CH2Cl2, rt, 24 h.
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Table 1
Anti-HIV data of compounds 3a–c in acutely infected H9 lymphocytes

Compound IC50 (μM)a EC50 (μM)b TIc

3a 57.2 0.068 841

3b 54.4 0.083 659

3cd >39.4 <0.39 >100

DCKe >16.1 0.049 >328

4-Me DCKe >38.9 0.0059 >6,600

AZT 500 0.0137 36,520

a
Concentration that inhibits uninfected H9 cell growth by 50%.

b
Concentration that inhibits viral replication by 50%.

c
TI = therapeutic index IC50/EC50.

d
More precise data could not be determined due to solubility problems.

e
The data for DCK and 4-methyl DCK were cited from Ref. 8. EC50 and TI values for DCK and 4-methyl DCK were 2.56 × 10−4 μM, 1.83 × 10−6

μM, and 1.37 × 105, 6.89 × 107, respectively, in previous screenings, using a different methodology, and publications.1
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