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Endothelium-dependent contractions in SHR: a tale
of prostanoid TP and IP receptors
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In the aorta of spontaneously hypertensive rats (SHR), the endothelial dysfunction is due to the release of endothelium-derived
contracting factors (EDCFs) that counteract the vasodilator effect of nitric oxide, with no or minor alteration of its production.
The endothelium-dependent contractions elicited by acetylcholine (ACh) involve an increase in endothelial [Ca2+]i, the
production of reactive oxygen species, the activation of endothelial cyclooxygenase-1, the diffusion of EDCF and the
subsequent stimulation of smooth muscle cell TP receptors. The EDCFs released by ACh have been identified as PGH2 and
paradoxically prostacyclin. Prostacyclin generally acts as an endothelium-derived vasodilator, which, by stimulating IP recep-
tors, produces hyperpolarization and relaxation of the smooth muscle and inhibits platelet aggregation. In the aorta of SHR and
Wistar-Kyoto rats, prostacyclin is the principal metabolite of arachidonic acid released by ACh. However, in SHR aorta,
prostacyclin does not produce relaxations but activates the TP receptors on vascular smooth muscle cells and produces
contraction. The IP receptor is not functional in the aortic smooth muscle cells of SHR as early as 12 weeks of age, but its activity
is not reduced in platelets. Therefore, prostacyclin in the rule protects the vascular wall, but in the SHR aorta it can contribute
to endothelial dysfunction. Whether or not prostacyclin plays a detrimental role as an EDCF in other animal models or in human
remains to be demonstrated. Nevertheless, because EDCFs converge to activate TP receptors, selective antagonists of this
receptor, by preventing endothelium-dependent contractions, curtail the endothelial dysfunction in diseases such as hyper-
tension and diabetes.
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Introduction

Endothelial cells synthesize and release various factors that
modulate vascular tone as well as angiogenesis, inflammatory
responses, haemostasis and permeability. As a major regulator
of local vascular homeostasis, the endothelium maintains the
balance between vasodilatation and vasoconstriction, inhibi-
tion and promotion of the proliferation and migration of
smooth muscle cells, prevention and stimulation of the adhe-
sion and aggregation of platelets as well as thrombogenesis
and fibrinolysis. Upsetting this tightly regulated balance leads
to endothelial dysfunction. A reduced bioavailability of nitric
oxide (NO), an alteration in the production of prostanoids

(including prostacyclin, thromboxane A2 and/or isopros-
tanes), an impairment of endothelium-dependent hyperpolar-
ization as well as an increased release of endothelin-1 can
individually or in association contribute to endothelial dys-
function (Félétou and Vanhoutte, 2006a). The present review
focuses on the endothelial function observed in spontane-
ously hypertensive rats (SHR).

Endothelium-dependent contractions in SHR aorta

The endothelium-dependent relaxations are impaired in the
aorta of hypertensive rats (Lockette et al., 1986; Luscher and
Vanhoutte, 1986). Thus, in contracted aortic rings of SHR,
acetylcholine (ACh) induces endothelium-dependent relax-
ations, but the concentration–response curve to the muscar-
inic agonist is biphasic and at concentrations higher than
100 nmol·L-1 the relaxations become smaller. In quiescent
aortic rings of SHR, ACh produces endothelium-dependent
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contractions that are amplified in the presence of inhibitor
of NO synthases (NOS; Luscher and Vanhoutte, 1986; Auch-
Schwelk et al., 1992; Iwama et al., 1992; Yang et al., 2002)
(Fig. 1). These endothelium-dependent contractions are
larger in aortae from male than female SHR (Kauser and
Rubanyi, 1995), are positively correlated with the severity of
hypertension and the aging process and occur in aging nor-
motensive Wistar-Kyoto rats (WKY) (Koga et al., 1988; 1989;
Iwama et al., 1992; Ibarra et al., 1995).

Inhibitors of cyclooxygenase (COX) inhibit the
endothelium-dependent contractions and fully restore the
impaired endothelium-dependent relaxations, indicating that
there is no or little alteration in NO production (Luscher and
Vanhoutte, 1986), a conclusion strengthened by perfusion-
superfusion bioassay studies (Hoeffner and Vanhoutte, 1989).
Further bioassay studies using layered ‘sandwich’ preparations
demonstrated that endothelium-dependent contractions to
ACh involve the endothelial release of diffusible contractile
COX derivatives, which oppose the relaxing effect of NO
(Yang et al., 2003a) (Fig. 2).

The generation of endothelium-derived contracting factor
(EDCF) is observed not only in response to endothelial mus-
carinic M3 receptor stimulation (Boulanger et al., 1994) but
also in response to ATP (Koga et al., 1989; Mombouli and
Vanhoutte, 1993;Yang et al., 2004), VEGF (Liu et al., 2001), as
well as in response to receptor-independent stimuli, for
instance the calcium ionophore, A 23187 (Yang et al., 2004;
Tang et al., 2007). EDCF contributes to the contractile
responses of endothelin (Taddei and Vanhoutte, 1993a,b) and
in the presence of inhibitor of NOS, a tonic generation of
EDCF is observed in SHR aorta and in that of aging WKY
(Abeywardena et al., 2002).

Mechanisms underlying endothelium-dependent contractions
Endothelium-dependent contractions can be elicited by
receptor-dependent mechanisms and by A 23187, which

allows the free entry of extracellular calcium into endothelial
cells, indicating that an increase in intracellular calcium is
necessary for the production of endothelium-dependent
contractions (Yang et al., 2004; Gluais et al., 2006; Tang et al.,
2007). Indeed, ACh causes a rapid increase in cytosolic
calcium concentration in endothelial cells of SHR and to a
lesser extent in that of WKY. This rise of calcium was not
affected by inhibiting COX or by the combination of tiron
(a superoxide scavenger) plus diethyldithiocarbamate acid
(DETCA; a superoxide dismutase inhibitor) (Tang et al., 2007).
However, endothelium-dependent contractions are reduced
by the acute exposure to the combination of tiron plus
DETCA or by a chronic treatment with dimethylthiourea
(an in vivo depletor of free radicals) (Yang et al., 2002). Fur-
thermore, the production of superoxide anions selectively
enhances endothelium-dependent contractions (Yang et al.,
2003b) and under bioassay conditions, the transfer of EDCF
from the donor tissue to the bioassay preparation is dimin-
ished by the combination of superoxide dismutase plus cata-
lase (Yang et al., 2003a). Confocal microscopy shows that ACh
causes a rapid increase in reactive oxygen species in endothe-
lial cells of SHR aorta but not in that of WKY. This burst in
reactive oxygen species generation is prevented by COX inhi-
bition or by the combination of tiron plus DETCA (Tang et al.,
2007). In contrast to ACh, the increase in endothelial intrac-
ellular calcium, the generation of reactive oxygen species and
the amplitude of endothelium-dependent contractions elic-
ited by A 23187 are of similar amplitude in WKY and SHR
aorta (Gluais et al., 2006; Tang et al., 2007).

These results indicate that an abnormal accumulation of
calcium in SHR endothelial cells is a prerequisite to initiate
the release of EDCF, and this can be mimicked in that of WKY
when stimulated by the calcium ionophore. The sequence of
events occurring during endothelium-dependent contrac-
tions firstly requires the accumulation of calcium, which then
most likely induces the phospholipase A2-dependent mobili-
zation of arachidonic acid (Luscher and Vanhoutte, 1986),

Figure 1 Endothelial dysfunction and endothelium-dependent contractions in SHR aorta. (A) In contracted rings of WKY and SHR aorta,
acetylcholine induces endothelium-dependent relaxations, which at higher concentrations are blunted in the arteries of the hypertensive strain.
(B) In quiescent aortic rings of SHR, acetylcholine induces endothelium-dependent contractions (in the presence of the nitric oxide synthase
inhibitor L-nitro-arginine, L-NA) that are blocked by the antagonist of the TP receptor, S18886, the preferential COX-1 inhibitor, valeryl
salicylate, but only partially affected by the preferential COX-2 inhibitor, NS-398. Modified from Yang et al. (Br J Pharmacol, 2002). COX,
cyclooxygenase; SHR, spontaneously hypertensive rats; WKY, Wistar-Kyoto rats.
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COX activation and the production of reactive oxygen species
along with that of EDCF(s) (Tang et al., 2007). Reactive
oxygen species can diffuse towards the vascular smooth
muscle cells and produce contraction (Auch-Schwelk et al.,
1989; Katusic and Vanhoutte, 1989; Suzuki and Ford, 1992;
Yang et al., 2002) and be involved in a positive feedback loop
on the endothelial cells by further activating COX (Harlan
and Callahan, 1984).

Identification of EDCFs
Cyclooxygenases and prostaglandin synthases. COX are the first
enzymes involved in the biosynthetic pathway leading to
prostanoid formation. A constitutive (COX-1) and an induc-
ible isoforms (COX-2) have been cloned and characterized
(De Witt, 1988; Merlie et al., 1988; Hla and Neilson, 1992;
O’Banion et al., 1992; Yokoyama et al., 2002). COX-2 can be
induced by several stimuli associated with cell activation and
inflammation. In endothelial cells, COX-1 is expressed con-
stitutively but can also be over-expressed, for instance by
shear stress (Vane et al., 1998; Doroudi et al., 2000; Davidge,
2001). Both endothelial and vascular smooth muscle cells
contain COX, however endothelial cells contain 20 times
more of the enzyme than smooth muscle cells (DeWitt et al.,
1983). Endothelial cells express preferentially COX-1 versus

COX-2 (Onodera et al., 2000; Kawka et al., 2007). In SHR
endothelial cells the mRNA and protein expression of COX-1
are enhanced when compared with that of WKY, and in both
strains they are augmented by aging (Ge et al., 1995; Tang and
Vanhoutte, 2008). Endothelium-dependent contractions to
ACh are blocked by specific inhibitors of COX-1 and mini-
mally affected by specific inhibitors of COX-2 (Ge et al., 1995;
Yang et al., 2002; 2003a,b; Gluais et al., 2006) (Fig. 1). In
agreement with a preponderant role for COX-1 in
endothelium-dependent contractions, these responses are
abolished in aorta taken from COX-1 knockout mice while
they are maintained in aortic rings of COX-2 knockout
animals (Tang et al., 2005). However, in some instances, COX-
2-derived contractile prostanoids are produced by WKY and
SHR aortic endothelial cells (Camacho et al., 1998; Zerrouk
et al., 1998; Garcia-Cohen et al., 2000; Alvarez et al., 2005;
Blanco-Rivero et al., 2005).

Various biologically active eicosanoids are formed from the
short lasting but biologically active endoperoxide (PGH2),
through the action of a set of synthases namely PGD, PGE,
PGF, PGI and thromboxane synthases (Tsuboi et al., 2002).
The expression of prostacyclin synthase (PGIS) is by far the
most abundant of these synthases expressed in the rat
aortic endothelial cells (Tang and Vanhoutte, 2008), and a
greater co-distribution of PGIS with COX-1 is observed when

Figure 2 Bioassay of endothelium-derived contracting factor in SHR aortic rings: layered or ‘sandwich’ preparation. Acetylcholine (ACh)
produces contraction of the bioassay strip (without endothelium) only if endothelial cells are present on the donor aortic strip. L-nitro-arginine
(L-NA) and tetrahydrobiopterin (BH4) are present to optimize endothelium-derived contracting factor-mediated responses. Papaverine (Papav.)
produces complete relaxation of the bioassay strip. Modified from Vanhoutte et al. (Br J Pharmacol, 2005).
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compared with COX-2 (Kawka et al., 2007) explaining why
the majority of the endothelial COX-1-derived endoperoxides
are transformed into prostacyclin (Gluais et al., 2005; 2006;
Tang and Vanhoutte, 2008) (Fig. 3). The expression of PGIS
and thromboxane synthase is higher in SHR aortic endothe-
lial cells than in those of WKY (Tang and Vanhoutte, 2008).

Acetylcholine-induced endothelium-dependent contractions and
thromboxane A2. Prostaglandins interact with specific seven
transmembrane, G protein-coupled receptors, which are clas-
sified in five subtypes DP, EP, FP, IP and TP in function of their
sensitivity to the five primary prostanoids, prostaglandins D2,
E2, F2a, I2 and thromboxane A2 respectively (Tsuboi et al., 2002;
Alexander et al., 2008). These receptors are all expressed
in WKY and SHR aortae, although at low levels (Tang and
Vanhoutte, 2008). ACh-induced endothelium-dependent
contractions are blocked by antagonists of the TP receptors.
However, inhibitors of thromboxane synthase do not affect
these endothelium-dependent contractions indicating that
thromboxane A2 is not the EDCF released following muscar-
inic receptor activation (Luscher and Vanhoutte, 1986; Koga
et al., 1989; Auch-Schwelk et al., 1990; Kato et al., 1990; Ge
et al., 1995; Tesfamariam and Ogletree, 1995; Yang et al.,
2002; 2003a,b; 2004; Gluais et al., 2005; 2006) (Fig. 4).

Acetylcholine-induced endothelium-dependent contractions and
PGH2. Thromboxane A2 is the most potent agonist at TP
receptors but is not its exclusive ligand. In fact, in WKY and
SHR aorta numerous prostanoids produce contraction by acti-

vating TP receptors, with the following order of potency
9,11-dideoxy-9a,11a-epoxymethano prostaglandin F2a (U
46619) >> 8-isoprostane = PGF2a = PGH2 > PGE2 = PGD2 > PGI2.
Among those agonists, only PGH2 and prostacyclin evoke
transient contractions, possibly because of their short half-life
in aqueous solutions (3–4 min, Dickinson and Murphy,
2002), that mimic endothelium-dependent contractions
(Gluais et al., 2005). PGH2 is the second most potent agonist
at TP receptors, and there is an augmented sensitivity of the
SHR smooth muscle cells towards this endoperoxide when
compared with that of WKY (Ge et al., 1995; 1999). Therefore,
PGH2 has been considered as a suitable candidate for an EDCF
(Auch-Schwelk et al., 1990; Kato et al., 1990; Ge et al., 1995;
Gluais et al., 2005; 2006; 2007). However, in SHR aortic endot-
helial cells, the massive expression of PGIS (Tang and Van-
houtte, 2008) and its close association with COX-1 (Kawka
et al., 2007) are not in favour of a large PGH2 spillover. The
levels of PGH2 are difficult to measure and still need to be
better assessed in order to evaluate more precisely the contri-
bution of this endoperoxide to endothelium-dependent
contractions.

PGH2 is spontaneously or enzymatically transformed in the
more stable isomer PGE2 and in presence of mild reducing
agent or enzymatically into PGF2a. Although PGE2, via EP
receptor activation, is an endothelium-derived contractile
factor in a rat model of diabetes (Shi et al., 2007), in the SHR
aorta the involvement of this prostaglandin either via EP or
TP receptor activation has been ruled out (Tang et al., 2008).
However, when PGIS is inhibited, a compensatory increase in
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Figure 3 Acetylcholine-induced prostaglandin release in WKY and SHR aorta. Acetylcholine produces the endothelium-dependent release of
prostacyclin (A, as measured as its stable metabolite 6-keto-PGF1a), thromboxane A2 (B, as measured as its stable metabolite thromboxane B2),
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the production of PGE2 and PGF2a is observed, and then these
prostaglandins act as EDCF (Gluais et al., 2005).

Acetylcholine-induced endothelium-dependent contractions and
8-isoprostane. 8-isoprostane (8-epiPGF2a) is generally pro-
duced from the oxidative modification of polyunsaturated
fatty acids via a free radical-catalysed mechanism (Morrow
et al., 1990). However, under some circumstances, 8-
isoprostane could be a direct product of COX or an indirect
consequence of superoxide anion production by COX-
mediated metabolism (Watkins et al., 1999). In both WKY and
SHR aortic rings, 8-isoprostane is a potent constrictor (Gluais
et al., 2005), supporting the hypothesis that an isoprostane
could contribute to EDCF-mediated responses (Janssen,
2002). However, proper measurement of 8-isoprostane gen-
eration failed to detect significant ACh-stimulated and
endothelium-dependent release of this prostanoid (Gluais
et al., 2005). Therefore, in the SHR aorta, 8-isoprostane is
unlikely to be an EDCF released by ACh.

Acetylcholine-induced endothelium-dependent contractions and
PGI2. ACh produces the endothelium-dependent release of
prostacyclin, PGE2, PGF2a and thromboxane A2 in the aorta of
both WKY and SHR. The release of prostacyclin is 10 to 100
times larger than that of the other prostaglandins, while the
generation of thromboxane A2 is the smallest. Furthermore,
the release of prostacyclin is much larger in the aorta of SHR
than in that of WKY (Gluais et al., 2005). In the SHR aorta and
that of aging WKY, prostacyclin paradoxically is not a relaxing
but a contracting prostaglandin (Gluais et al., 2005; Gomez
et al., 2008) (Figs 5 and 6). Whether or not, the reduction in
the relaxing response to prostacyclin in SHR and the decrease

of this response during aging is associated with parallel
changes in the expression of the IP receptor gene remains
controversial (Numaguchi et al., 1999; Tang and Vanhoutte,
2008). Nevertheless, the IP receptor dysfunction is specific of
vascular smooth muscle cells because IP receptor-dependent
inhibition of platelet activation is not altered in SHR or
by aging (Gomez et al., 2008). Therefore, endothelium-
dependent contractions elicited by ACh in the aorta of SHR
and aging WKY are likely to involve at least in part the release
of prostacyclin.

This conclusion is based on the following observations: (i)
in WKY and SHR, prostacyclin is a contracting but not a
relaxing factor (Figs 5 and 6); (ii) prostacyclin is a more
potent contracting agent in SHR than in WKY (Fig. 6); (iii)
the contractions evoked by prostacyclin mimic the
endothelium-dependent contractions produced by ACh both
in term of duration and amplitude (Fig. 5); (iv) prostacyclin-
and the endothelium-dependent contractions both involve
activation of TP receptors (Figs 1 and 5); (v) prostacyclin is
the most abundant prostaglandin released by ACh and is of
endothelial origin (Fig. 3); (vi) the release of prostacyclin is
two times larger in SHR than in WKY (Fig. 3); (vii) the time
course of the release of prostacyclin is compatible with the
time course of the observed endothelium-dependent con-
tractions; (viii) the release of prostacyclin correlates with the
amplitude of the endothelium-dependent contractions over
the full concentration range of ACh in both WKY and SHR
(Fig. 7); (ix) the endothelium-dependent contractions and
the release of prostacyclin are affected similarly by COX
inhibitors; (x) The expression of PGIS is by far the most
abundant of the prostaglandin synthases expressed in the rat
aortic endothelial cells and PGIS and COX-1 co-segregate;
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and finally (xi) the inhibition of prostacyclin synthesis
enhances the ACh-induced endothelium-dependent contrac-
tions. Paradoxically, this latter observation also supports
the hypothesis that prostacyclin contribute to endothelium-
dependent contractions because the inhibition of PGIS may
enhance PGH2 spillover, a more potent TP receptor agonist

than prostacyclin itself (Rapoport and Williams, 1996; Gluais
et al., 2005). The hypothesis that prostacyclin is an EDCF is
in agreement with the conclusion that prostacyclin is the
main factor accounting for endothelial dysfunction in the
aorta of WKY and SHR treated with aldosterone (Blanco-
Rivero et al., 2005).
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EDCFs released in response to other stimuli. In response to
other stimuli, such as ATP or the calcium ionophore A 23187,
thromboxane synthase inhibitors partially inhibit
endothelium-dependent contractions indicating that throm-
boxane A2 contributes to these responses, prostacyclin and/or
PGH2 being the other contributors (Gluais et al., 2006; 2007)
(Fig. 8). Similarly, in response to endothelin, the endothelial
generation of thromboxane A2 contributes to the contractile
response (Taddei and Vanhoutte, 1993a,b).

Different stimuli, that is, ATP, ACh and A 23187, induce a
very different pattern in prostaglandin release. Subsequently,
the endothelium-dependent contractions do not involve the
same COX derivatives, although the final effector remains
the prostanoid TP receptor on the vascular smooth muscle
cells (Yang et al., 2004). These differences are not linked to
agonist stimulating G protein-coupled receptors versus
receptor-independent mechanism because thromboxane A2

contributes to both ATP- and A 23187-induced endothelium-
dependent contractions but not in those evoked by ACh.
These differences are unexplained at present but could be
linked to differences in the dynamic of the increase in endot-
helial intracellular calcium evoked by these different stimuli
(Gordon and Martin, 1983; Carter et al., 1988). (Fig. 9)

Endothelial dysfunction in other SHR vascular beds

The endothelial dysfunction observed in the mesenteric
(Lüscher et al., 1990; Fu-Xiang et al., 1992; Takase et al., 1994;
Lang et al., 1995; Hutri-Kahonen et al., 1997; Dantas et al.,
1999; Xavier et al., 2008), renal (Lüscher et al., 1988; Dai et al.,

1992; Fu-Xiang et al., 1992; Ito and Carretero, 1992; Dohi
et al., 1996; Kagota et al., 1999) and skeletal muscle (Huang
et al., 1993; Lübbe et al., 1993; Huang and Koller, 1996; Mori
et al., 2006) vascular beds is qualitatively similar to that
reported for the aorta. The generation of EDCFs similar to
those identified in the aorta contributes to the altered
endothelium-dependent relaxations/vasodilatations.

In these resistance arteries, in contrast to the aorta,
endothelium-dependent hyperpolarizations (EDHF-mediated
responses) participate to endothelium-dependent relaxations
(Félétou and Vanhoutte, 2006b). Most studies show a marked
attenuation of the EDHF-mediated component in SHR arteries
(Fujii et al., 1992; 1993; Hayakawa et al., 1993; 1995; Mantelli
et al., 1995; Dohi et al., 1996; Hutri-Kahonen et al., 1997; Bus-
semaker et al., 2003). The decrease in EDHF-mediated
response has been associated with, but not yet causally linked,
to a change in the expression profile of gap junctions in
endothelial cells (Busse et al., 2002; Félétou and Vanhoutte,
2004; Griffith, 2004). Indeed, the expression of connexins 37
and 40 is lower in arteries of the SHR than in that of the WKY
(Kansui et al., 2004; Rummery and Hill, 2004). Additionally,
alterations in the expression or function of endothelial
calcium-activated potassium channels may lead to the
preferential activation of calcium-activated chloride
channels and endothelium-dependent depolarization instead
of endothelium-dependent hyperpolarization (Corriu et al.,
1996; Coleman et al., 2001; Goto et al., 2007). The production
of NO is generally not altered, although in the mesenteric
artery, a decrease in its bioavailibity due to the generation of
oxidative stress may occur (Tschudi et al., 1996; DeLano et al.,
2006; Macarthur et al., 2008). In renal arteries of the WKY,
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and endothelium-dependent contractions on the right Y-scale (presence of L-nitro-arginine, L-NA). Modified from Gluais et al. (Br J Pharmacol,
2005). SHR, spontaneously hypertensive rats; WKY, Wistar-Kyoto rats.
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inhibitors of EDHF-mediated responses favour endothelium-
dependent contractions (Michel et al., 2008b).

EDCF-mediated responses are not ubiquitous in SHR arter-
ies. Thus, in the carotid and cerebral arteries of that strain, the
endothelium-dependent relaxations to ACh are attenuated,
but this involves an impairment of the NO component
without generation of EDCF and without alteration of the
EDHF-mediated responses (Hongo et al., 1988; Lüscher et al.,
1988; Mayhan, 1990; Sobey et al., 1999; Dina et al., 2004;
Iaccarino et al., 2004). Likewise, in SHR coronary arteries
when compared with those of WKY, the endothelium-
dependent relaxations are not or minimally affected and are
not associated with the production of EDCF (Tschudi et al.,
1994; 1995; Nava et al., 1995; Bund, 1998; Garcia and Bund,
1998).

Conclusions and perspectives

In the SHR, prostacyclin, PGH2, thromboxane A2 and
depending on the circumstances, PGE2 and PGF2a can act as
EDCFs and all converge towards the TP receptor (Fig. 9). The
generation of EDCFs has been demonstrated in human
essential hypertension and also in various other animal
models of cardiovascular diseases, in particular diabetes
(Taddei et al., 2001; Vanhoutte et al., 2005; Verbeuren,
2006a,b; Xu et al., 2006; Cheng et al., 2007; Matsumoto
et al., 2007; 2008; Shi et al., 2007; Michel et al., 2008a). In

apo E-deficient mice blockade of TP receptors but not
aspirin inhibits atherogenesis (Cayatte et al., 2000). In
patients with coronary artery disease, a TP receptor blocker
improves endothelial function beyond the simple inhibition
of COX (Belhassen et al., 2003), indicating that eicosanoids
other that the above-mentioned arachidonic acid metabo-
lites, possibly isoprostanes, activate TP receptor and are
involved in these pathologies. In the SHR, a functional
impairment of IP receptors of the vascular smooth muscle is
likely to contribute to the endothelial dysfunction. Mice
knockout for the IP receptor (Xiao et al., 2001; Cheng
et al., 2002) and human patients with a dysfunctional pros-
tacyclin IP receptor mutation (Arehart et al., 2008) show
accelerated atherothrombosis indicating that an imbalance
between vasoconstrictor/relaxing and thrombogenic/anti-
thrombogenic prostaglandins is of major importance in the
generation of cardiovascular disease.

Conflicts of interest

MF and TJV are employees of the Institut de Recherches
Servier, a pharmaceutical company that is currently
involved in the clinical development of a TP receptor
antagonist (S 18886 or Terutroban, or Triplion®). PMV is a
consultant for the group Servier and a former employee of
this company.

Figure 8 Thromboxane A2 and endothelium-dependent contractions in SHR aortic rings. (A) The calcium ionophore, A23187, produces a
significantly larger endothelial release of thromboxane A2 than acetylcholine. (B) The endothelial release of thromboxane A2 by A23187 is
blocked by dazoxiben, the thromboxane synthase inhibitor. (C) Dazoxiben partially inhibits the endothelium-dependent contraction to
A23187 (in the presence of L-nitro-arginine), indicating the contribution of thromboxane A2 in the endothelium-dependent contractions
elicited by the calcium ionophore. (D) In SHR aortic rings with endothelium, the dazoxiben-sensitive production of thromboxane A2 is
significantly correlated to the dazoxiben-sensitive component of the endothelium-dependent contractions. SHR, spontaneously hypertensive
rats.
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