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Physical methods of gene (and/or drug) transfer need to combine two effects to deliver the therapeutic material into cells. The
physical methods must induce reversible alterations in the plasma membrane to allow the direct passage of the molecules of
interest into the cell cytosol. They must also bring the nucleic acids in contact with the permeabilized plasma membrane or
facilitate access to the inside of the cell. These two effects can be achieved in one or more steps, depending upon the methods
employed. In this review, we describe and compare several physical methods: biolistics, jet injection, hydrodynamic injection,
ultrasound, magnetic field and electric pulse mediated gene transfer. We describe the physical mechanisms underlying these
approaches and discuss the advantages and limitations of each approach as well as its potential application in research or in
preclinical and clinical trials. We also provide conclusions, comparisons, and projections for future developments. While some
of these methods are already in use in man, some are still under development or are used only within clinical trials for gene
transfer. The possibilities offered by these methods are, however, not restricted to the transfer of genes and the complementary
uses of these technologies are also discussed. As these methods of gene transfer may bypass some of the side effects linked to
viral or biochemical approaches, they may find their place in specific clinical applications in the future.
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Introduction

The existence of therapeutic targets located within cells has
been known for decades. Most of the traditional anti-cancer
drugs (still extensively used in chemotherapy) have intracel-
lular targets, such as the cell DNA or the enzymes of the DNA
synthesis pathways. These drugs easily enter cells, mainly
due to their small size and physicochemical characteristics.
Advances in understanding of many diverse intracellular
mechanisms, such as signalling pathways, intracellular regu-
latory pathways through siRNAs, the identification of genes
responsible for severe diseases etc., have identified new intra-
cellular targets and novel therapeutic molecules are currently

under development, including complete genes. Many of these
molecules are nucleic acids, and they are not able to diffuse
through the plasma membrane due to their size and/or their
physicochemical properties, for instance hydrophilicity. The
therapeutic expectations of gene therapy are considerable.
The goal of curing genetic diseases by the transfer of genes
coding for functional proteins absent in specific patients is
highly desirable. Moreover, the use of gene-transfected cells to
produce large quantities of secreted proteins for direct thera-
peutic application or for the production of vaccines is also
of considerable benefit. Strategies for the transfer of nucleic
acids, especially genes, have been developed. These strategies
include the use of viral vectors, chemical vectors and physical
vectors. The physical vectors allow the direct penetration into
the cytosol of both small and large nucleic acid molecules, as
well as of any other non-permeable molecule, which nor-
mally cannot reach the cell cytosol because it can not diffuse
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through the plasma membrane or because it is not actively
transported across the plasma membrane.

Viral vectors are extremely effective in transferring genes
and are the most advanced in development. The efficacy with
which these agents affect DNA transfer, particularly in vivo, is
due to their efficiency and specificity in entering cells and
expressing the genes carried in the modified viral genome
using the cell’s own biosynthetic machinery. Unfortunately,
there are well-known adverse effects, such as the immunoge-
nicity of the adenoviral vectors, as well as potential and real
risks associated with the use of such viruses, including cell
transformation (by insertional mutagenesis with retrovi-
ruses), cancer development, etc.

On the other hand, physical and chemical methods of
targeting also allow the transfer of long and short nucleic
acids, DNA or RNA, across the cell membrane. Physical
methods, that is non-viral and non-chemical, can bypass
many of the side effects linked to viral or biochemical tech-
niques, and they allow repeated administration of drugs or
DNA. Another advantage is that, contrary to the situation
with the viral vectors and some chemical vectors, there is no
limitation in the length of the coding sequence that can be
carried by the physical vectors.

The biggest challenge for these physical approaches is to
attain the same efficiency of gene transfer as the viral
methods. All the gene transfer methods (viral or non-viral)
must overcome two major constraints:

First, there is the need to bring the nucleic acids to the
target cells. Viruses are ‘naturally’ equipped for such encoun-
ters. The more ‘intelligent’ chemical vectors, which are
‘stealthy’ with respect to the body defence mechanisms, such
as the reticulo-endothelial system, are able to recognize spe-
cific antigens at the cell surface and are thus able to locate
defined target cells. In the case of physical vectors, most use
naked DNA, hence, not only does this DNA need to be
brought to the target tissue (lung, muscle), but because of the
absence of spontaneous diffusion of DNA within the tissues,
there is a need for ‘active transport’ systems to move the DNA
within the tissue to individual cells.

The second constraint is that of penetration of the nucleic
acids into the cell through the plasma membrane. While
viruses achieve this using natural mechanisms, chemical and
physical vectors must perturb the plasma membrane (i.e.
physical vectors) and/or internal vesicular membranes (e.g. the
cationic lipids after their incorporation into the endosomes).

In order to obtain an efficient vector system, particularly a
physical one, and to achieve a high rate of cell transfection,
these two conditions must be integrated in the development
of a genetic vector.

Here, we describe and compare several types of physical
methods of gene or drug transfer in vivo: biolistics, jet injec-
tion, hydrodynamic injection, ultrasound, magnetic field and
electric pulse mediated gene transfer. We discuss the physical
mechanisms underlying these approaches and we compare
their relative advantages and their potential therapeutic
applications in research or in preclinical and clinical medi-
cine. The possible uses of the techniques described in this
article have not been restricted exclusively to the transfer of
genes, and hence, complementary uses of these technologies
are also discussed.

Preamble

In vivo, cells can take up naked DNA but the mechanism of this
uptake is not completely defined. For example, a simple injec-
tion of a plasmid into skeletal muscle may result in the expres-
sion of the proteins coded by the DNA at low and extremely
variable levels (Wolff et al., 1990; 1991). Similar results have
been reported using other tissues such as heart (Acsadi et al.,
1991; Li et al., 1997), skin (Hengge et al., 1996) and thyroid
(Sikes et al., 1994). One hypothesis for this phenomenon pro-
posed the existence of a DNA uptake pathway involving
endocytosis mediated by DNA receptors (Budker et al., 2000).

It has been recently shown that a rapid injection into a tissue
can also induce an increase of the gene expression compared
with a ‘classical’ slow injection (André et al., 2006). In muscle,
an injection of less than 2 s duration results in a 500-fold
increase of gene expression compared with the expression
obtained with the same amount of DNA injected over 25 s,
even when using the same injection volume (20 mL). Most of
this uptake can be inhibited by the addition of heparin, a linear
polymer with anionic charges that mimics the phosphate
charge distribution of DNA. This observation is suggestive of
receptor-mediated uptake of DNA as heparin would be a com-
petitive inhibitor of the DNA binding to the receptors. How-
ever, at the highest injection speed, a slight permeabilization of
the muscle fibres was also observed (André et al., 2006). In the
brain, another ‘simple injection’ technique has been applied to
improve drug and gene transfer, known as the convection-
enhanced delivery. It consists of a continuous injection of a
fluid containing drugs or plasmids under positive pressure
(Raghavan et al., 2006). The main benefit is that the volume
distribution of the drug or the gene into the brain is enhanced
because of their transport by convection, that is by the injected
fluid itself (Voges et al., 2003; Raghavan et al., 2006).

The role of the injections is to introduce the naked DNA
into the tissue. The injections are expected to have little or no
influence on the uptake of the naked DNA into the cells,
where the DNA will be expressed, which would explain their
low efficacy. Therefore, in order to increase gene expression
up to levels essential for a therapeutic effect and to achieve
reproducible conditions to reach this level of expression,
several types of physical methods of gene or drug transfer
have been developed and are described below.

Biolistics (the ‘gene gun’)
In the biolistics technique, heavy metal particles are coated
with naked DNA plasmid and propelled into the cells. The
technique was first used in 1987 on plant cells (Klein et al.,
1987) and later used on mammalian cells and then whole
tissues (Yang et al., 1990; Williams et al., 1991).

Targeted tissues or cells are thus permeabilized by small
beads of biocompatible heavy metal (gold or tungsten) with
diameters from 1 to 5 mm and coated with the DNA plasmid of
interest (Fynan et al., 1993). The necessary acceleration of the
particles is made by a gas discharge in a gun (‘gene gun’). Water
vaporization under high-voltage electric spark (Yang et al.,
1990) or helium discharge (Wolff et al., 1991) can also give
sufficient velocity to the particles to penetrate the cells. The
area targeted in vivo using a classical gene gun (Helios, Bio-Rad
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Laboratories, Hercules, CA) is about 2 cm2. A single shot using
this method requires 0.5–5 mg of gold beads coated by 1–10 mg
of DNA. One advantage of this technique is that DNA is
transported directly into the cytosol and is not damaged
during its penetration into cells, for example, by transport via
the endosomes (Condon et al., 1996; Porgador et al., 1998).
The transfection efficiency of biolistics is due to the penetra-
tion of certain gold particles into the cell nucleus (Shestopalov
et al., 2002). Under these conditions, high-level gene expres-
sion can appear after only 3 h in cattle (Loehr et al., 2000) and
be present for up to 18 h in the cornea (Zagon et al., 2005).
Another advantage is the long-lasting expression of the trans-
fected DNA: transgene expression was present even after 28–50
days following the ‘shooting’ of particles into muscle (Ajiki
et al., 2003). These effects were also seen in other tissues such as
epithelial cells and neurons (Sudha et al., 2001).

Many organs can be reached without damaging the sur-
rounding tissues: muscle (Zelenin et al., 1997; Lauritzen et al.,
2002), liver (Kuryama et al., 2000; Watkins et al., 2005), heart
(Matsuno et al., 2003) and brain (Zhang and Selzer, 2001;
O’Brien and Lummis, 2004). However, the most important
limitation of this method is the low efficiency of the metal
particles in reaching the entire tissue due to the low penetra-
tion of the particles. Moreover, surgery is often necessary to
use the technique in order to reach any non-superficial tissue.
Although various kinds of injectors have been made (Dileo
et al., 2003), the major application of this technique remains
gene delivery to skin cells (Wang et al., 2004).

The approach has been used extensively for genetic vacci-
nation (Larregina et al., 2001) and for ‘suicide’ gene therapy to
treat certain cancers (Yang and Sun, 1995). Skin vaccination
with DNA by gene gun induces two types of response (Tuting
et al., 1998): generation of cytotoxic lymphocytes and genera-
tion of antibodies. Recent studies using skin reported the
combination of this method together with different adjuvants
to determine efficacy and to increase the transfection effi-
ciency. One specific study combined an antigen-coding
plasmid with the plasmid-encoding interleukin 3 (pIL-3)
(Matthews et al., 2007).

The second type of application is the treatment of various
types of cancer by DNA vaccination. Hung et al. (2007) devel-
oped various strategies to enhance the potency of the vac-
cines and to increase vaccine-elicited T-cell immune responses
in cervical cancer. Clinical trials of these vaccines showed a
disease regression in three of nine patients post vaccination
(Hung et al., 2007). More recently, Luz Garcia-Hernandez et al.
(2008) reported that the use of prostate stem cell antigen
vaccination induced a long-term protective immune response
against prostate cancer. Only one patient out of 12 displayed
a complete regression, probably because of the advanced stage
of the disease (the efficacy of anti-cancer vaccines is greater
when administered in the early stages of disease).

Another potential application that was tested was the ex
vivo gene transfer to liver allografts prior to transplantation
(Nakamura et al., 2003): this DNA vaccination provides an
effective strategy for inducing protective immunity to infec-
tion and malignancy.

The main drawback of the gene gun approach is thought to
be associated with the deposition of metal particles into the
body and the potential long-term consequences. As an alter-

native to heavy metal particles, Lee et al. (2008a) used biode-
gradable polymeric nanoparticles in combination with a low-
pressure gene gun. The chitosan and poly-gamma-glutamic
acid beads showed the same efficiency of DNA transfection, as
obtained with heavy metal particles (Lee et al., 2008a).

This technology has also been used in plant tissue to estab-
lish chloroplast transformation in cabbage (Liu et al., 2007)
and to study protein targeting by genetic transformation in
diatoms, unicellular eukaryotes playing an important role in
ecology by fixing large amounts of CO2 in the oceans (Kroth,
2007).

Jet injection
Jet injection is also a ballistic method based on a principle
close to that of the gene gun. Jet injection is the local injec-
tion of a liquid by means of a device that uses high pressure
to force microdroplets of liquid to penetrate the skin or
mucous membrane. The jet injection method is used to inject
the molecules (drugs, nucleic acids) diluted in liquid without
the use of a needle or particles. This high-pressure stream of
liquid is used to pierce the skin or targeted tissues. Pressure
can reach up to 3–4 bar, and the velocity of the droplets range
from 100 m·s-1 to 200 m·s-1. The advantage of using jet injec-
tion is to minimize patient discomfort.

There are two types of jet injections: high volume (more
than 100 mL) and low volume (20–30 mL). The low-volume
method limits the volume of the injected solution, but it
cannot target a large tissue area (anything greater than 1 cm2).
Both methods use the same concentrations of DNA: from 0.1
to 1 mg·mL-1 of solution. Velocity of the fluid in jet injection
contributes to the penetration into the skin, whereas the
diameter of the jet and the injected volume limit the penetra-
tion depth of the solution (Arora et al., 2007).

The physical phenomenon linked to jet-induced pene-
tration in the skin has only recently been investigated
(Schramm-Baxter et al., 2004). A hole is created in the skin
surface by the high pressure of the jet, most likely through the
erosion or fracture of the skin. The depth of this hole is
increased until the liquid that has accumulated in the hole
created by the jet is sufficient to slow down the speed of the
incoming jet, and the progression stops (Baxter and Mitrag-
otri, 2005). The penetration of the injected molecules inside
the cells is a consequence of the pressure caused by the liquid,
locally delivered into the targeted tissue. The efficiency of this
method and the depth of the penetration depend on several
jet parameters including nozzle diameter (generally in the
range of 150–300 mm), velocity of the liquid jet and the dis-
tance between the nozzle and the surface of the skin (Rajarat-
nam et al., 1994). For example, the highest concentration of
DNA in keratinocytes was found using a distance of about
10 cm between the skin surface and the jet injector (Sawa-
mura et al., 1999).

Since 1930, different types of jet injectors have been devel-
oped and used in clinical applications: immunization with
vaccines (Canter et al., 1990; Ren et al., 2002), insulin delivery
(Weller and Linder, 1966; Lindmayer et al., 1986), growth
hormone delivery (Verhagen et al., 1995), local anaesthesia
(Jimenez et al., 2006) and even tattooing (Kang et al., 2007).
Jet injectors were and are still widely used in large vaccination
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campaigns, especially by the US War Department during
the deployment of the American army in countries at risk
(Warren et al., 1953; Foege and Eddins, 1973). The most
important usage was probably in the WHO vaccination cam-
paign against smallpox (Roberto et al., 1969). The feasibility
of 600 or more subcutaneous injections per hour makes this
the fastest immunization system (Grabenstein et al., 2006).

Jet injection can be also used in gene therapy for the transfer
of genes to the skin or to tissues such as muscle, fat, skin and
mammary cells of mice and sheep (Furth et al., 1995). In mice,
injections of naked DNA coding for the cytosine deaminase
suicide gene using the jet injection method promoted tumour
regression caused by injection of 5-fluorocytosine (Walther
et al., 2001; Walther et al., 2005). Intradermal genetic vaccina-
tion induces a jet-injected DNA immune response (Johansson
et al., 2007). A preclinical evaluation of a CEA DNA prime/
protein boost vaccination strategy against colorectal cancer
has also been performed (Hallermalm et al., 2007). Another
attractive application is jet-mediated gene delivery for the
treatment of skin diseases caused by genetic defects, such as the
production of abnormal proteins in keratinocytes (Sawamura
et al., 1999). ShRNA encoding DNA, utilized to reverse the
classical MDR1/P-glycoprotein-mediated multidrug resistance
phenotype in vivo, was also delivered by a jet injection method
in mice (Stein et al., 2008). Siegel et al. (2007) started a phase I
trial of gene transfer into in-transit metastases from melanoma
and skin metastases from breast cancer.

Other applications of jet injection have been considered.
The combination of jet injection with conventional elec-
troporation was tested in order to transfer DNA into murine
muscles with the same or larger efficiency than with a needle
injection before electro-transfer (Horiki et al., 2004).

Hydrodynamic injection
Hydrodynamic injection was first performed on mice by
Budker et al. (1996). Gene transfer, mainly in the liver, was
achieved through the rapid intravenous injection in the tail
vein of a high volume of solution (almost equivalent to the
blood volume of the treated animal) in just a few seconds.
This method leads to an efficient gene transfer in mice with,
for example, an injected volume of 8–12% of their mass and
an injection duration of 5–10 s (Liu et al., 1999). The same
result was shown in rats of 250 g with an injection volume of
25 mL containing 800 mg of DNA injected in 15 s in the tail
vein (Maruyama et al., 2002). The transgene mRNA is mainly
found in the liver (Herweijer and Wolff, 2003) and in lungs,
kidney, spleen and heart, but in a lower extent. Both Liu et al.
(1999) and Zhang et al. (1999) developed the tail vein
approach to deliver genes by this method, but direct injection
into liver vessels (Zhang et al., 1997) and muscle vessels
(Budker et al., 1998) have also been used.

It is agreed that the volume of the injected liquid is too high
to be handled by the heart in the normal way, so the liquid
accumulates in the inferior vena cava (Zhang et al., 2004).
Moreover, the low K+ content of the injection liquid also
contributes to block the passage through the heart (Sawyer
et al., 2007). Organs linked to the inferior vena cava (espe-
cially the liver, which can be easily distended) (Wolff and
Budker, 2005), capture the injected DNA due to the high

volume injected and the resulting pressure (Liu et al., 1999;
Niidome and Huang, 2002).

There also appeared to be permeabilization of the
membranes of hepatocytes, capillary endothelium and sur-
rounding parenchymal cells, due to the increase of the hydro-
dynamic pressure (Zhang et al., 2004). The mechanism of
hydrodynamic delivery in the liver is called hydroporation
but the explanation of this hydrodynamic permeabilization is
still hypothetical. The DNA uptake by the hepatocytes could
also be mediated by DNA receptors (Budker et al., 2000) or by
macropinocytosis (Sebestyen et al., 2006).

For many years, the hydrodynamic injection method was
mostly limited to the hepatic transfer of genes in small animal
research. The limitation of the procedure was essentially due
to the high volume of DNA solution required for injection
and the frequent lethality of rapid injection. Sawyer et al.
(2007) reported temporary cardiac dysfunction in rats follow-
ing hydrodynamic injection. Moreover, Liu and Huang (2001)
showed that transfection could be improved by an interrup-
tion of hepatic blood flow for 3 min. Studies were performed
on larger mammals, such as dogs and monkeys (Zhang et al.,
2001; Wells, 2004), and more recently on pigs by isolating the
inferior vena cava (Fabre et al., 2008). This last experiment
was reproduced on a rat liver with a low-volume injection,
but severe cardiovascular disturbances were induced (Sawyer
et al., 2008). Until now, the delivery of DNA was tested with
inserts less than 100 kb, but Hibbit et al. (2007) demonstrated
the possibility of delivering a 135 kb human genomic DNA
fragment containing the gene coding for the low-density lipo-
protein receptor.

A computer-controlled injection device was recently devel-
oped to achieve an efficient, safe and automatically controlled
hydrodynamic injection (Suda et al., 2008). This program-
mable device measures the pressure in the injected vessel,
adjusting the speed of the injection to maintain a target
pressure for a precise time, thus allowing efficient delivery of
both viral and non-viral vectors to various organs with a
minimal injection volume. This study should result in the
advancement of a safe and programmable injection device for
clinical use.

Ultrasound-mediated gene transfer
Sonoporation consists of the application of ultrasound to
permeabilize cell membranes in order to improve internaliza-
tion of large molecules. Although ultrasound has long been
used for diagnostic purposes, its application as an experimen-
tal delivery system for molecules such as DNA is relatively
new for studies in vitro (Kim et al., 1996; Bao et al., 1997; Tata
et al., 1997). This technique has been used to produce growth
factor (Schratzberger et al., 2002) or to transfect neuronal cells
(Fischer et al., 2006). Ultrasonic waves were recently used
in in vivo studies for the delivery of naked DNA into muscle
(Taniyama et al., 2002a; Lu et al., 2003; Wang et al., 2005),
carotid artery (Miller and Song, 2003), solid tumours (Huber
et al., 2003), liver (Miao et al., 2005), kidney (Koike et al.,
2005), heart (Taniyama et al., 2002b; Bekeredjian et al., 2003),
and for transdermal delivery (Smith, 2007). Inhibition of
prostate tumour growth was also demonstrated (Duvshani-
Eschet et al., 2007) after the in situ transfer of genes encoding
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for hemopexin-like domain fragment by ultrasound (using
ultrasound at 1 MHz and 2 W·cm-2 for 30 min with 10% of
the volume of Optison). They have also been applied to gene
transfer in plant cells (Liu et al., 2005).

Therapeutic ultrasound operates at frequencies from 1 to
3 MHz (or lower) and intensities of 0.5 to 3 W·cm-2. Other
diagnostic techniques operate at higher frequencies (from 3.5
to 40 MHz) and lower intensities. Therapeutic trials consist of
DNA plasmid injection followed by tissue irradiation by ultra-
sound for periods between 3 ms and 20–30 min. Ultrasound is
easily approved for clinical use (delivery of chemotherapeutic,
thrombolytic and gene-based drugs) because of the low
energy delivered and because it is non-invasive (Ng and Liu,
2002). Ultrasound has other advantages: it has good penetra-
tion through soft tissue, does not damage cells or tissues (at
appropriate intensities), and does not affect DNA integrity.
One limitation of this technique is that it can cause the
breakdown of the cytoskeleton, thus altering, among other
mechanisms, the DNA trafficking inside the cells (Skorpikova
et al., 2001).

Potential therapeutic application of ultrasound, as men-
tioned above, can be used in gene therapy. Ultrasound seems
to facilitate the penetration of the DNA into several tissues
(Newman et al., 2001) by increasing the porosity of mem-
branes (Deng et al., 2004). Sonoporation mechanisms are not
well characterized (Ferrara, 2008). Acoustic cavitation seems
to be the most probable explanation of the phenomenon,
coupled with acoustic pressure (Schlicher et al., 2006). The
efficiency of this method can be improved by the use of an
ultrasound contrast agent, which consists of compressible
gas-filled microbubbles such as perfluorocarbon-filled micro-
spheres of heat-denatured human albumin in the case of the
commonly used Optison™ (Taniyama et al., 2002a; 2002b;
Duvshani-Eschet and Machluf, 2007). The collapse of these
microbubbles results in a gas jet that could explain the pen-
etration of gene or drugs in cells (Prentice et al., 2005). Ultra-
sound also improved the transfer of DNA entrapped in
nanoparticles, micelles (Husseini and Pitt, 2008) and lipo-
somes (Huang, 2008).

High-intensity-focused ultrasound is also known to
provoke the thermal ablation of tumours (Uchida et al., 2002;
Wu et al., 2004). Another anti-tumour approach without
thermal effects is the combination with bleomycin, which
results in an effective tumour therapy (Larkin et al., 2008).
Ultrasound can stimulate the anti-cancer effect of bleomycin
in tumour-bearing tissues because of the ultrasound-induced
permeabilization of the cell membrane. Ultrasound applica-
tion is a mechanical way to permeabilize cells, to be compared
with electroporation, an electrical way to cause cell permeabi-
lization (see next paragraph). Yamashita et al. (2002) tried to
combine sonoporation with the application of an electric
field. This new method, called electro-sonoporation, consists
of an intramuscular injection of naked DNA followed by a
5 min application of ultrasound combined with electric
pulses. Greater efficiency was achieved when electrical pulses
were applied in the middle of the ultrasound wave delivery.

Magnetic field mediated gene transfer
Magnetofection or magnetic gene transfer is based on the
application of a magnetic field in order to set in motion

super-paramagnetic iron oxide nanoparticles (SPION) (50 nm
in diameter) that are coupled to DNA plasmids (Barnes et al.,
2007).

This method is based on the use of cationic polymers that
can combine the SPION and DNA, or RNA, via electrostatic
interactions. They form stable complexes and DNA is protected
from degradation (Hildebrandt et al., 2003). However, SPION
can be used with viral vectors like paramyxoviruses (Kadota
et al., 2005). In the presence of static magnets, the coupled
magnetic polyplex nanoparticles display a transfection effi-
ciency of reporter genes comparable with conventional non-
viral transfection systems. The uptake of DNA/SPION
complexes into the cells is by non-specific endocytosis (Huth
et al., 2004). The magnetic field allows the concentration of the
magnetic complexes within the target tissue. Moreover, it
seems to cause the extravasation of the magnetic particles
through the vascular wall into the target tissue (Goodwin et al.,
2001). Although the influence of these magnetic particles on
cellular functions is not well known, rapid kinetics of efficient
transfection has been reported (Plank et al., 2003).

Other studies with pulsed magnetic fields reported an
enhancement of the efficiency of in vitro non-viral gene deliv-
ery (Kamau et al., 2006). Magnetofection was used to transfect
in vitro primary cells such as endothelial cells (Krotz et al.,
2003), embryonic stem cells (Lee et al., 2008b) and neurons
(Buerli et al., 2007). This technique is still in development for
in vivo use, but early results have showed an enhancement
of non-viral-mediated gene transfer into airway epithelium
(Xenariou et al., 2006). Ex vivo trials, a compromise between
in vitro and in vivo experiments, showed good results in gene
transfer into osteoblast cells (Yang et al., 2008).

While static magnetic fields can be used for magnetofec-
tion, alternating magnetic fields can be used to heat tissue due
to the movement of ferromagnetic nanoparticles, empty or
filled with drugs or nucleic acids. The principle of this method
is the direct injection of a magnetic fluid into a tumour, and
then heating in an alternating magnetic field thereby causing
a tumouricidal effect. Anti-tumour studies using this method
have been reported for breast cancer (Kikumori et al., 2008),
on prostate (Kawai et al., 2008), and on brain tumours (Jordan
and Maier-Hauff, 2007). In addition, specific nano-entities
have been developed for both the optical detection and the
hyperthermic treatment (Jin et al., 2008). This technique
cannot yet be considered as a method of gene transfer as it has
only been used for drug transfer. Some experiments have been
performed in tumour-bearing rabbits to transfer drugs into
the tumour cells (Alexiou et al., 2000). The technique has also
had limited use in clinical trials on patients with advanced
sarcomas, using injected epirubicin and applying a 0.8 Tesla
permanent magnetic field for a 30–120 min duration (Lubbe
et al., 1996).

Electric pulse mediated gene transfer
Electroporation or electropermeabilization consists of the
exposure of living cells to short and intense electric pulses.
The first use of this method was published by Neumann et al.
(1982) who demonstrated that DNA could be introduced into
viable mouse lyoma cells by means of electric pulses. Two
years later, the efficiency of this method was proved by
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transferring genes using standard laboratory equipment (gen-
erators for proteins and DNA electrophoresis) into mouse
pre-B lymphocytes (Potter et al., 1984). These systems deliv-
ered exponentially decaying electric pulses. A square wave
pulse generator was developed in 1985 by J. Teissié with
outputs compatible for the treatment of cells (in suspension
or attached) with rectangular pulses for which pulse duration
and pulse amplitude are independently adjusted (Zerbib et al.,
1985). Many trials started rapidly: not only on animal cells
but also on plant cells, to transfer genes (Fromm et al., 1985)
or to inhibit gene expression with antisense RNA (Ecker and
Davis, 1986), and on bacterial transformation (Fiedler and
Wirth, 1988; Taketo, 1988). Electroporation has been the
most popular way to transfect bacterial cells since 1988.

The exposure of living cells to electric pulses induces
a position-dependent modification of the transmembrane
potential difference, which is numerically described by the
equation of Schwan (1957). This induced transmembrane
potential difference depends on physical parameters (pulse
duration, field intensity and electrode geometry) and biologi-
cal factors (cell size, shape and density). It is superimposed on
the resting transmembrane potential difference. Electroper-
meabilization is generated when the net value of the transient
transmembrane potential difference exceeds a threshold value
between 0.2 and 0.4 V across the membrane (Teissié and
Rols, 1993). Transient permeation structures are generated at
the cell membrane level due to electrocompressive forces
induced by the potential difference and the field effects on
the water and membrane dipoles (Teissié et al., 2005). This
‘de-structuring’ of the membrane takes place in a few tens of
microseconds (the duration of the pulses usually applied
to permeabilize cells or tissues is 100 ms), but the membrane
remains permeable for several minutes. Electroporation
mechanisms are still under investigation (Teissié et al., 2005).
Several models have been proposed (Neumann et al., 1982;
Tsong, 1991), the more recent based on electric (Kotnik and
Miklavcic, 2000) and molecular dynamics (Tieleman, 2006)
simulation.

Under appropriate electrical parameters, the destabilization
of membrane structure is completely reversible, ensuring the
survival of the transiently permeabilized cells. Another prop-
erty of this method comes from the fact that pulses are too
short to provoke thermal effects, contributing to the revers-
ibility of this phenomenon (Tsong and Su, 1999). When very
high intensity fields are delivered to the cells, the changes in
membrane structure can become permanent, resulting in the
loss of the cell viability due to the generation of large, long-
lived ‘holes’ in the membrane. This electroporation is termed
irreversible and may be produced in the absence of thermal
effects (Davalos et al., 2005). Recent molecular dynamics
simulations have suggested that pores could indeed be gen-
erated, but these simulations are performed with numerical
values of the transmembrane potential difference much larger
than those necessary to obtain physiological reversible cell
permeabilization (Tieleman et al., 2003).

One of the most frequent applications of cell electroperme-
abilization in vitro and in vivo is the electric pulse mediated
transfer of nucleic acids, also termed DNA or gene electro-
transfer or electro-gene therapy. It has been applied in a large
number of tissues like the skeletal muscle (Aihara and

Miyazaki, 1998; Mir et al., 1998; 1999), human prostate
cancer xenograft, skin (Mikata et al., 2002), tumours (Rols
et al., 1998), cornea (Blair-Parks et al., 2004), brain (Kondoh
et al., 2000) and liver (Suzuki et al, 1998). It has also been used
to transfect fungal (Robinson and Sharon, 1999) and plant
tissues (Dekeyser et al., 1990). The tissues, genes and type of
experimental or therapeutic applications have been reviewed
elsewhere (André and Mir, 2004; Mir et al., 2005). Long-term
expression of the luciferase reporter gene can be detected for
at least 9 months after DNA electro-transfer into muscle (Mir
et al., 1998). Recent studies have shown the efficiency of this
technique when transferring nucleic acids other than DNA
plasmids, such as mRNA, to chronic lymphocytic leukemia
cells (Van Bockstaele et al., 2008) or siRNA to tumours in vivo
(Golzio et al., 2007).

While permeabilization is sufficient to ensure a good transfer
of drugs, especially in vivo (see below), efficient and safe gene
electro-transfer requires both target cell permeabilization and
DNA electrophoretic transport towards the permeabilized
membranes. It is thus necessary to deliver either trains of long
(several milliseconds) identical pulses or combinations of per-
meabilizing high voltage (HV) short electric pulses and of
electrophoretic low voltage (LV) long electric pulses (Satkaus-
kas et al., 2002; Satkauskas et al., 2005). For example, in skeletal
muscle, one HV pulse of 800 V·cm-1 and duration of 100 ms and
4 LV pulses of 80 V·cm-1 and duration of 100 ms result in very
high level of expression (André et al., 2008).

The therapeutic use of the delivery of electric pulses in
patients is, at present, confined to the transfer of anti-cancer
drugs to tumour cells in vivo. Electrochemotherapy (ECT)
combines the administration of an anti-tumour agent, like
bleomycin or cisplatin, to the delivery of electric pulses to the
tumours. Since the first clinical trial (Mir et al., 1991), clinical
devices have been developed and clinical trials (Marty et al.,
2006) allowed for the development of standard operating
procedures of ECT for cutaneous and subcutaneous tumours
(Mir et al., 2006). ECT is now routinely used for the treatment
of cutaneous and subcutaneous tumours in humans (Sersa
et al., 2008) and, more recently, in pet animals (Cemazar et al.,
2008). But these results have paved the way for the clinical use
of gene electro-transfer in humans. DNA electro-transfer is
reaching the clinical stage as several clinical trials to transfer
genes in tumours and in muscle are ongoing (Heller and
Heller, 2006).

Discussion

We report six different physical methods of gene (and drug)
transfer in cells or tissues. All methods have their advantages
and limitations, and the choice of one over the others essen-
tially depends on the proposed therapeutic application. All
of them permit the delivery of therapeutic materials into cells
by combining two effects: (i) the reversible alteration of the
plasma membrane, which allows the passage of the molecules
of interest directly into the cell cytosol; and (ii) the movement
of the nucleic acids to the permeabilized plasma membrane or
to the inside of the cell. These two effects can be achieved in
one or two steps, depending upon the method and its physi-
cal basis.
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The one step methods are the biolistic method, the jet
injection and the hydrodynamic injection. In these methods,
the DNA carriers (beads or liquids) not only carry the nucleic
acids, but they are also responsible for the penetration of the
DNA to inside the cell. Therefore, the DNA carriers bring the
DNA close to the cell and are involved in the crossing of
the plasma membrane. In all cases, energy is transferred to the
DNA carriers. In the biolistics method (the ‘gene gun’), a
kinetic energy is given to the small beads: they can cross the
cell membrane and bring the DNA coated on their surface to
the cell interior. In the jet injection method, the high-pressure
fluid jet brings the DNA to and across the membrane. In the
hydrodynamic injection, the high-injected volume causes an
increase of the hydrodynamic pressure, especially in liver,
thus inducing the permeabilization of the membrane and
allowing the entrance of the DNA into the cells. All these
methods do not need previous injection of DNA or other
molecules close to the tissue to be treated, because the DNA is
present in the solution or on the particles directly injected.

The multistep methods are the ultrasound, the magnetic
field and the electric pulse mediated gene transfer approaches.
The first step is the injection of the nucleic acids either intra-
venously or locally (almost mandatory for the electro-transfer,
even though electro-transfer in liver at low levels of expres-
sion has been obtained by intravenous injections of DNA).
The intravenous route of administration is suitable in the case
of the magnetofection. The magnetic particles can be concen-
trated in particular areas of the body by magnets before a
second event allows for their uptake by the cells. In all cases,
the liquid in which the DNA is dissolved is not responsible for
the permeabilization of the cell membranes or of the crossing
of the membrane. In the case of the electro-transfer, these two
functions are achieved by the electric pulses as described
above; while in the case of the magnetofection or the sonopo-
ration, they are achieved by these approaches alone or after
combination with a second physical method. In this respect,
these two methods can be combined with adjuvants: the
sonoporation with echocontrast agents and the magnetofec-
tion with transfection reagents. It was shown that transgene
expression can be increased 100-fold depending on the type
of echocontrast agents that are coupled to optimize ultra-
sound physical parameters (e.g. delivered energy, frequency).
(Zarnitsyn and Prausnitz, 2004). Under these favourable con-
ditions, sonoporation permitted gene expression in 75% of
the HL60 cells transfected in vitro (Gac et al., 2007) and trans-
gene expression was evident in all treated animals in vivo (Li
et al., 2003).

More precisely, in the case of the multistep methods, we
must distinguish permeabilization of the cell membrane
(achieved by electroporating electric pulses or cavitational
ultrasounds) and transfer of the DNA close or across the
permeabilized membrane. This second step can be achieved
by the magnetic forces dragging the iron oxide nanoparticles,
by the electrophoretic component of the electric pulses, or by
the mechanical energy carried by the ultrasonic forces com-
bined with microbubbles from echocontrast agents which can
collapse and produce the necessary pressure for molecules to
penetrate into the cells.

Another step is required for efficient transfection: transport
of the DNA from the plasma membrane to and across the

nuclear membrane. Some of the physical methods presented
here do little to address this step, but other strategies might be
coupled with these physical approaches to address this trans-
port, such as the inclusion of nuclear localization sequences
in the sequence of the DNA molecules, or the formation
of complexes with peptides presenting the nuclear import
sequence, or the treatment of the cells by nuclear pore-
enlarging molecules, such as trans-cyclohexane-1,2-diol.
However, these strategies are beyond the scope of this review.

Concerning the transfection rates and the efficiency of the
transfected gene expression, there is a general consensus that
viral methods are, very often, more efficient than the non-
viral methods listed here. However, the levels reached by
hydrodynamic injections or by electro-transfer are important
and in many cases are most likely sufficient to induce a
therapeutic effect. The particular interest of the biophysical
methods for gene transfer is that unmodified, naked DNA can
be used. This provides a real simplification of the vector
preparation, which can be considered as a chemical product
for which the quality control and quality assurance proce-
dures are well known. The production of DNA under GMP
conditions is achievable, and safe products can be obtained.
Conveniently applied, these methods are also safe by them-
selves. For example, electric pulses can be safely delivered as
models of the electric field distribution in tissue have been
produced and validated. Significant experience has been
acquired in large animals and in humans by the application of
electroporating pulses to treat solid tumours by ECT.

It is important to recall that the methods described have
preferential targets and limitations, mainly due to the physi-
cal mechanisms on which these treatments are based. First of
all, while the skin is a convenient target for the gene gun and
jet injection, skin is not suitable for hydrodynamic injection.
The low-depth penetration of particles in tissues by gene gun
mediated delivery does not exceed 4 mm into the skin
(Zelenin et al., 1997), though it is sufficient for skin DNA
vaccination (Luz Garcia-Hernandez et al., 2008) or for the
transfection of thin tissues, such as plant leaves (Remacle
et al., 2006). If large volumes of tissue are considered, then the
gene gun and the jet injection are not adequate as they only
allow for the treatment of small areas or volumes. On the
contrary, the methods that require the preliminary injection
of the DNA in the tissue, such as electro-transfer, can be
limited by the feasibility of this injection. It must be noted
that intravenous DNA injection has been used for electro-
transfer into liver cells (André et al., 2008). The ability to place
the electrodes around the treated tissue may also limit the
application of gene electro-transfer. This limitation may be
overcome by using sonofection and magnetofection, as they
do not require a direct physical contact between the devices
and the tissues. Nevertheless, to apply these methods (par-
ticularly gene electro-transfer and magnetofection) on inter-
nal organs it is necessary to bring the devices delivering the
physical energy close the target tissue. In this respect, the type
of device used for the treatment can also modulate the effect
on the gene expression. In the case of the gene gun approach,
helium powered or gunpowder, hand-held or stand-alone
systems do not give the same results. In electro-transfer, the
choice between plate electrodes and needle electrodes with
different geometries can be important depending on the
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shape, size and location of the treated tissue. Finally, the high
volume injected in the hydrodynamic method limits the use
to small animals or to organs that can be easily isolated from
the rest of the body by means of clamps on the afferent
arteries and efferent veins.

Some of these methods are also relatively new in their
application to gene transfer and all the potential side effects
are not yet known. For example, the long-term presence of
gold beads in tissues after gene gun bombardment has not yet
been studied, and their toxicity is not well known. The same
is true for the magnetic nanoparticles used in magnetofec-
tion, although so far they have not proved to be toxic for the
treated tissues (Plank et al., 2003). These methods must still be
considered as investigational tools: even though a few clinical
trials have already been performed (or are in progress for some
of them), none has already become a routine technique.

In summary (see Table 1), all the physical methods we pre-
sented here have the common potential to deliver gene into
cells and tissues by bringing the DNA across the plasma mem-
brane into the cell cytosol. The high and rapid level of the
foreign gene expression is likely to be due to the direct trans-
fer of the DNA into the cytoplasm and into the nucleus,
ensuring its integrity against enzymes. Although all these
techniques have both positive and negative features in their
efficiency, they can all find their use as physical methods to
deliver specific genes into tissues.
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Table 1 Summary of the physical methods presented here

Methods Target tissue(s) Mechanism(s) Naked DNA
alonea

Single step methods Biolistics (gene gun) Skin (mainly used for DNA
vaccination), muscle, liver,
heart, brain, cornea

Heavy metal particles coated with naked
DNA plasmid and propelled into the cells.
Necessary acceleration is made by gas
discharge in a gun.

Yes

Jet injection
(needleless injection)

Skin, muscle, mammary cells;
method also used for
vaccination, insulin delivery,
local anaesthesia

Local injection of a liquid by means of a
device that uses high pressure to force
the microdroplets of the liquid to
penetrate the skin or mucous membrane.
Uptake of DNA into cells is a
consequence of the pressure due to the
high volume locally delivered into the
targeted tissue.

Yes

Hydrodynamic
injection

Liver, muscle, lungs, kidney,
spleen, heart

In rodents, rapid intravenous injection in
the tail vein of a high volume of solution
in just a few seconds. Organs linked to
the inferior vena cava capture the
injected DNA due to the high volume
injected and the resulting pressure. In
large animals, target organs are clamped.

Yes

Multistep methods Ultrasound-mediated
gene transfer

Muscle, carotid artery, liver,
solid tumours, kidney, heart,
skin

Application of ultrasound (frequencies from
1 to 3 MHz and intensities of 0.5 to
3 W·cm-2) increasing the permeability of
the membrane due to the acoustic
pressure. Efficiency is improved by the
adjuvant use of ultrasound contrast
agents containing microbubbles which
can easily collapse and produce local
high pressure.

Yes/No

Magnetic field-mediated
gene transfer

Airway epithelium, synovium,
tumours

Super-paramagnetic iron oxide
nanoparticles (SPION) coupled to DNA in
a cationic polymer to bring the DNA
close to the targeted tissue by a magnetic
field. Uptake of DNA/SPION complexes
into the cells is by non-specific
endocytosis.

No

Electric pulse mediated
gene transfer

Muscle, skin, tumours, cornea
brain, liver, embryos, lung,
tendons, spleen, cartilage,
testis, ovaries, bladder,
adipocytes . . .

Exposure of living cells or targeted tissues
to short and intense electric pulses
inducing a position-dependent
modification of the transmembrane
potential difference. Transient
permeation structures are generated at
the cell membrane level due to
electrocompressive forces induced by the
potential difference and the field effects
on water and membrane dipoles.

Yes

aNot considering the carrier physiological fluid in which DNA is dissolved.
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