

NIH Public Access

Author Manuscript

J Am Chem Soc. Author manuscript; available in PMC 2010 May 27.

Published in final edited form as:

J Am Chem Soc. 2009 May 27; 131(20): 6900–6901. doi:10.1021/ja9012134.

The Bifunctional Acyltransferase/Decarboxylase LnmK as the Missing Link for-Alkylation in Polyketide Biosynthesis

Tao Liu[†], Yong Huang[†], and Ben Shen^{*,†,‡,§}

†Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222

‡University of Wisconsin National Cooperative Drug Discovery Group, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222

§Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222

Both α - and β -alkylations contribute to the vast structural diversity displayed by polyketide natural products (Figure 1A).¹ While the α -alkyl branches are typically derived from the extender units, the choice of which is dictated by the acyltransferase (AT) domain of modular polyketide synthases (PKSs),¹ the β alkyl branches often result from the activities of hydroxymethylglutaryl-CoA (HMG-CoA) synthase homologs (HCSs).² For a β methyl branch, HCS catalyzes condensation of acetyl-*S*-acyl carrier protein (ACP) with the β carbonyl group of the PKS-ACP-tethered growing polyketide intermediate to afford an HMG-*S*-ACP intermediate, which is subsequently dehydrated and decarboxylated by two enoyl-CoA hydratase homologs (ECH1 and ECH2) sequentially to afford a β methylated intermediate in either olefinic form (Figure 1B). This pathway has been experimentally confirmed for the biosynthesis of bacillaene (1),³ curacin (2),⁴ and myxovirescin A (also known as TA) (3)⁵, and a dedicated set of three proteins - an ACP, an AT, and a ketosynthase homolog (KS) - has been identified that derives acetyl-SACP from malonyl-CoA for this pathway (Figure 1C). 2-5

A parallel pathway replacing acetyl-*S*-ACP with propionyl-*S*-ACP could be envisaged for βethyl branch introduction, and this proposal has been supported for **3** using chemoenzymatically prepared propionyl-*S*-ACP as a substrate (Figure 1B).^{5b} However, counterparts for propionyl-*S*-ACP biosynthesis from methylmalonyl-CoA, such as the AT and KS enzymes required to generate acetyl-*S*-ACP from malonyl-CoA, are absent from gene clusters known to encode biosynthesis of polyketides with βethyl branches (Table 1); the origin of propionyl-*S*-ACP remains unknown.²⁻⁵

Leinamycin (LNM, **4**), a potent antitumor antibiotic, possesses a β -branched C3 unit, which is a part of its unique five-membered 1,3-dioxo-1,2-dithiolane moiety. We have previously cloned, sequenced, and characterized the *lnm* biosynthetic gene cluster from *Streptomyces atroolivaceus* S-140.⁶ Close examination of the *lnm* cluster revealed a subset of four genes *lnmL*, *lnmM*, *lnmF*, and *lnmK* - encoding an ACP (LnmL), an HCS (LnmM), an ECH1 (LnmF), and a protein of unknown function (LnmK). Counterparts of LnmL, LnmM, and LnmF are present in biosynthetic clusters of polyketides with both β -methyl and β ethyl branches,²⁻⁶ supporting the proposal that the C3 β branch of **4** is likely installed by LnmL/LnmM/LnmF in a mechanistic analogy to the β methyl branch for **1**, **2** and **3**. Homologs of LnmK however can only be found in gene clusters encoding the biosynthesis of ethyl branch-bearing polyketides,

E-mail: E-mail: bshen@pharmacy.wisc.edu.

Supporting Information Available: Full experimental details, Figures S1, S2, Table S1 are available free of charge via the Internet at http://pubs.acs.org.

suggesting LnmK as a candidate for propionyl-*S*-ACP biosynthesis (Table 1) (Figure 1C). Here we report the characterization of LnmK as a bifunctional acyltransferase/decarboxylase (AT/DC) that derives propionyl-*S*-ACP from methylmalonyl-CoA. Hence, LnmK represents a new family of AT/DC enzymes supplying a key substrate for βalkylation in polyketide biosynthesis.

We first overproduced both LnmL and LnmK in *Escherichia coli* BL21(DE3) and purified them to near homogeneity (Figure S1). The purified LnmL was eluted as a single peak upon HPLC analysis (Figure 2A, panel I) and confirmed to be in its apo-form by ESI-MS analysis (Table S1). In vitro phosphopantetheinylation was carried out by incubating apo-LnmL with CoA in the presence of the known promiscuous phosphopantetheinyltransferase Svp,⁷ and the resultant holo-LnmL was confirmed by HPLC (Figure 2A, panel II) and ESI-MS (Table S1) analyses.

We then established that LnmK is a bifunctional AT/DC catalyzing the formation of propionyl-S-LnmL. Holo-LnmL was incubated with [1-14C]acetyl-, [1-14C]propionyl-, [1,3-14C₂] malonyl- or [1,3-14C₂]methylmalonyl-CoA in the presence of LnmK, and the reaction mixtures were subjected to SDS-PAGE and phosphorimaging. LnmK specifically and efficiently catalyzed the loading of methylmalonyl-CoA to holo-LnmL, and no loading was observed with the other acyl-CoAs tested (Figure 2B). To verify the molecular identity of the acyl-S-LnmL species, the reaction was repeated with cold methylmalonyl-CoA, and the resultant product was subjected to HPLC and ESI-MS analyses. A distinct new product was formed (Figure 2A, panel III), ESIMS analysis of which remarkably revealed it as propionyl-S-LnmL (Table S1); LnmK apparently acts as bifunctional AT/DC, catalyzing both methylmalonyl transfer to form the methylmalonyl-S-LnmL intermediate and its subsequent decarboxylation to yield propionyl-S-LnmL (Figure 1C).

We finally determined the precise timing of acyl transfer and decarboxylation events catalyzed by LnmK. The fact that LnmK cannot decarboxylate methylmalonyl-CoA and only loads methylmalonyl-CoA, but not propionyl-CoA, to holo-LnmL, indicates that decarboxylation most likely occurs on methylmalonyl-*S*-LnmL. To directly verify this mechanism, we prepared methylmalonyl-*S*-LnmL via in vitro phosphopantetheinylation by incubating apo-LnmL with methylmalonyl-CoA in the presence of Svp.⁷ Methylmalonyl-*S*-LnmL formation was monitored by HPLC (Figure 2A, panel IV) and confirmed by ESI-MS (Table S1) analyses. Incubation of methylmalonyl-*S*-LnmL with LnmK allowed us to investigate LnmK's DC activity directly. LnmK catalyzes specific and efficient decarboxylation of methylmalonyl-*S*-LnmL to yield propionyl-*S*-LnmL whose identity was confirmed by HPLC (Figure 2A, panel V) and ESI-MS (Table S1) analyses. Taken together, these results unambiguously established that LnmK first transfers methylmalonyl from methylmalonyl-CoA to holo-LnmL to form methylmalonyl-*S*-LnmL and then decarboxylates the latter to form propionyl-*S*-LnmL (Figure 1C).

LnmK homologs are known but to date were all annotated as hypothetical proteins (Figure S2). $^{2-5}$ We now propose LnmK to represent a new family of AT/DC enzymes supplying substrates for β -alkylation in polyketide biosynthesis. To further probe the catalytic mechanism of this newly discovered family of AT/DC enzymes, LnmK was incubated with [1,3-14C₂] methylmalonyl-CoA in the absence of holo-LnmL, and the reaction mixtures were subjected to SDS-PAGE and phosphorimaging. Specific and efficient loading of [1,3-14C₂] methylmalonyl-CoA onto LnmK was observed (Figure 2C), indicative of a transient acyl-LnmK intermediate in LnmK catalysis. This is reminiscent of ATs with Ser at their active sites, ⁸ although no conserved AT or DC active site motif is apparent in LnmK (Figure S2).

In summary, LnmK has been characterized as a bifunctional AT/DC that catalyzes the formation of propionyl-S-ACP from methylmalonyl-CoA, accounting for the missing link for

J Am Chem Soc. Author manuscript; available in PMC 2010 May 27.

the β -ethyl or propionyl branch in polyketide biosynthesis. LnmK therefore could be exploited by combinatorial biosynthesis methods to engineer novel polyketides, especially those with β -alkyl branches. LnmK also represents an emerging family of novel AT/DC enzymes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

We thank Kyowa Hakko Kogyo Co. Ltd., Tokyo, Japan, for the wild-type *S. atroolivaceus* S-140 strain and the Analytical Instrumentation Center of the School of Pharmacy, UW-Madison for support in obtaining MS data. This work is supported in part by NIH grants CA106150 and CA113297.

References

- (a) Staunton J, Weissman KJ. Nat. Prod. Rep 2001;18:380–416. [PubMed: 11548049] (b) Fischbach MA, Walsh CT. Chem. Rev 2006;106:3468–3496. [PubMed: 16895337]
- 2. Calderone CT. Nat. Prod. Rep 2008;25:845-853. [PubMed: 18820753]
- Calderone CT, Kowtoniuk WE, Kelleher NL, Walsh CT, Dorrestein PC. Proc. Natl. Acad. Sci. U.S.A 2006;103:8977–8982. [PubMed: 16757561]
- Gu L, Jia J, Liu H, Hakansson K, Gerwick WH, Sherman DH. J. Am. Chem. Soc 2006;128:9014– 9015. [PubMed: 16834357]
- (a) Simunovic V, Müller R. ChemBioChem 2007;8:497–500. [PubMed: 17330904] (b) Simunovic V, Müller R. ChemBioChem 2007;8:1273–1280. [PubMed: 17583882] (c) Calderone CT, Iwig DF, Dorrestein PC, Kelleher NL, Walsh CT. Chem. Biol 2007;14:835–846. [PubMed: 17656320]
- 6. (a) Cheng Y, Tang G, Shen B. J. Bacteriol 2002;184:7013–7024. [PubMed: 12446651] (b) Cheng Y, Tang G, Shen B. Proc. Natl. Acad. Sci. U.S.A 2003;100:3149–3154. [PubMed: 12598647] (c) Tang G, Cheng Y, Shen B. Chem. Biol 2004;11:33–45. [PubMed: 15112993] (d) Cheng Y, Tang G, Shen B. J. Nat. Prod 2006;69:387–393. [PubMed: 16562841] (e) Tang G, Cheng Y, Shen B. J. Bio. Chem 2007;282:20273–20282. [PubMed: 17502372]
- 7. Du L, Shen B. Chem. Biol 2001;6:507-517. [PubMed: 10421758]
- (a) Reeves CD, Murli S, Ashley GW, Piagentini M, Hutchinson CR, Mcdaniel R. Biochemistry 2001;40:15464–15470. [PubMed: 11747421] (b) Ridley CP, Lee HY, Khosla C. Proc. Natl. Acad. Sci. U.S.A 2008;105:4595–4600. [PubMed: 18250311]

Liu et al.

Figure 1.

(A) Selected polyketides bacillaene (1), curacin (2), myxovirescin A (3), and leinamycin (4) with a- (blue) or β -alkyl (red) branches; (B) a unified pathway for β -alkylation utilizing both acetyl-*S*-ACP and propionyl-*S*-ACP as substrates; and (C) distinct pathways for acetyl-*S*-ACP and propionyl-*S*-ACP biosynthesis.

J Am Chem Soc. Author manuscript; available in PMC 2010 May 27.

Liu et al.

Figure 2.

(A) HPLC analysis of LnmK-catalyzed formation of propionyl-*S*-LnmL: (I) apo-LnmL (\bullet), (II) holo-LnmL (\mathbf{V}), (III) holo-LnmL and propionyl-*S*-LnmL (\bullet), (IV) methylmalonyl-*S*LnmL (\diamond), (V) propionyl-*S*-LnmL. (B) LnmK-catalyzed loading of acyl-CoAs to holo-LnmL and (C) LnmK-catalyzed self-acylation as judged by (I) 4-15% SDS-PAGE and (II) autoradiogram: lane 1, molecular weight standards; lane 2, [1,3-14C₂]methylmalonyl-CoA; lane 3, [1,3-14C₂]malonyl-CoA; lane 4, [1-14C]propionyl-CoA; lane 5, [1-14C]acetyl-CoA.

~
~
-
U
<u> </u>
~
-
<u> </u>

-
0
_
-
<
-
01
L L
_
-
_
10
0
_
$\mathbf{\nabla}$
Ч.
<u> </u>
Ξį
ript

Liu et al.

Table 1 Enzymes that generate acetyl-S-ACP and propionyl-S-ACP and incorporate them into polyketides with β -alkyl branch (methyl for **1**, **2**,

2-6
Ċ
4
5
_,0
4
5
5
5
· =
- 2
- 2
- E
_
님
9
r'
\cup
Ľ
ື
5
_,0
Ч
7
-72
ം
ų.
0
\sim
-
\circ
Ļ,
a
3
2
ਸ

	ECH1 ECH2	PksH PksI	CurE CurF	TaX TaY	TaX TaY	LnmF	
	HCS	PksG	CurD	TaC	TaF	LnmM	
	ACP	AcpK	CurB	TaB	TaE	LnmL	
•	KS	PksF	CurC	TaK	ı		
•	AT	PksC		TaV	ı	·	
	AT/DC	I		ı	TaD	LnmK	
	Compd	1	7	3 (C-12)	3 (C-16)	4	