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Abstract

Maternal environment has been demonstrated to produce considerable impact on offspring growth. However, few studies
have been carried out to investigate multi-generational maternal effects of elevated CO2 on plant growth and development.
Here we present the first report on the responses of plant reproductive, photosynthetic, and cellular characteristics to
elevated CO2 over 15 generations using Arabidopsis thaliana as a model system. We found that within an individual
generation, elevated CO2 significantly advanced plant flowering, increased photosynthetic rate, increased the size and
number of starch grains per chloroplast, reduced stomatal density, stomatal conductance, and transpiration rate, and
resulted in a higher reproductive mass. Elevated CO2 did not significantly influence silique length and number of seeds per
silique. Across 15 generations grown at elevated CO2 concentrations, however, there were no significant differences in these
traits. In addition, a reciprocal sowing experiment demonstrated that elevated CO2 did not produce detectable maternal
effects on the offspring after fifteen generations. Taken together, these results suggested that the maternal effects of
elevated CO2 failed to extend to the offspring due to the potential lack of genetic variation for CO2 responsiveness, and
future plants may not evolve specific adaptations to elevated CO2 concentrations.
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Introduction

Over the next century, the atmospheric CO2 concentration is

projected to rise from the current level of about 370 parts per

million (ppm) to between 540 and 970 ppm [1]. Given that CO2 is

the raw material of photosynthesis, this global change will have

profound effects on the structure and function of future plant

populations [2–8]. A typical experimental approach used in most

CO2 experiments to predict how future plants will respond to

these changes is to expose individual plants or plant communities

to ambient and elevated CO2 within a part, or one generation and

compare their responses [3,9–15]. Even several long-term studies

of trees, lasting up to 30 years, are still limited to one generation

[16–18]. A major assumption in such experiments is that the

responses of plants to elevated CO2 within one generation can be

similar to those observed over many generations. However, an

experimental test of the assumption is currently unavailable.

Earlier investigations frequently used seed-propagated annuals

as the experimental materials and revealed that maternal

environmental conditions became manifest in seed characters

which, in turn, may influence the performance of the offspring by

altering seed germination, seedling survival and growth [19–24].

In other words, plastic response to the environment may extend to

an individual’s offspring, influencing offspring trait expression

[20,25]. As a consequence, most of the previous studies

investigating the responsiveness of plants to elevated CO2 within

one generation failed to notice the maternal effects on the offspring

growth and the predictions based on the results from such

experiments can be challenged. It is necessary, therefore, to

illustrate the importance and necessity of examining CO2 response

of plants over more than one generation to make accurate

predictions about biological consequences of increasingly rising

atmospheric CO2 concentration.

Here, we carried out a fifteen-generation selection experiment

and a reciprocal sowing experiment (over 5 years in total) using

Arabidopsis thaliana (wild-type Columbia) as a model plant to

examine multi-generation maternal effects of elevated CO2 on

plant growth and development. Arabidopsis is an ideal plant for

investigating this issue for three main reasons. First, the short

generation time allows us to study the responses of many

generations over a reasonably short period of time. Second, its

small size makes it possible to grow a large population of plants

under controlled CO2 conditions. Finally, the life history and

allocation strategy of Arabidopsis is common to numerous annuals

that have a short generation time and allocate a high proportion of

their resources to reproduction. Thus, the responses of Arabidopsis

may provide valuable insights into the responses of various annuals

to the rising atmospheric CO2 concentration [2,26].

On the basis of our studies over the past several years [27–29],

this study is part of a series examining multi-generational maternal
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effects of elevated CO2 on Arabidopsis. Our overall aim is to reveal

the physiological, cytological, and reproductive responses to

elevated CO2, to determine if elevated CO2 can produce maternal

effects on plant growth and development across fifteen genera-

tions, and to test if the responses of plants to elevated CO2 within

one generation will be similar to those observed over many

generations.

Results

Reproductive responses to elevated CO2

The date of opening of the first flower was significantly affected

by the CO2 treatment (Figure 1). On average, plants grown at

elevated CO2 concentrations flowered about three days earlier

than those grown at ambient CO2 concentrations in each

generation. However, within the same CO2 treatment, the average

number of days to first flowering in any two generations was

similar, and no significant difference was observed in flowering

time among the 15 generations. For example, the average number

of days to first flowering in any generation averaged around 40.5

for the populations at elevated CO2 and 44 for those at ambient

CO2. Taken together, within an individual generation, CO2

treatment resulted in a significant change in flowering time,

whereas no significant changes in flowering time were detected

among generations within the same CO2 treatment.

The number of seeds per silique and silique length did not

change significantly in response to CO2 treatment (Figure 2A and

B). However, we detected significant treatment effects on the

number of siliques and the number of seeds per plant (Figure 2C

and D). The average number of siliques and seeds per plant across

generations in the elevated treatment were significantly higher

than those in the ambient treatment. For example, the average

number of siliques and seeds per plant exposed to elevated CO2

concentrations were about 36% and 37% higher, respectively,

than those exposed to ambient CO2 concentrations. In the same

CO2 treatment, however, the number of siliques and the number

of seeds per plant did not differ significantly across generations.

Across generations, the average number of siliques per plant in the

elevated and ambient CO2 treatments averaged around 280 and

206, respectively. Similarly, the average number of seeds per

treatment across the 15 generations averaged around 13,000 for

elevated CO2 and 9,500 for ambient CO2.

The reproductive mass, total mass per plant, and percentage of

reproductive mass per plant were higher with elevated CO2 than

with ambient CO2 concentrations. However, these traits did not

change significantly across generations in either treatment

(Figure 3). On average, the total mass and reproductive mass

per plant when grown at elevated CO2 levels were about 1020 and

470 mg, respectively, representing increases of about 27% and

36% over those grown at ambient CO2 concentrations. A similar

trend was observed for the relative proportion (%) of reproductive

mass per plant, increasing from about 43% in ambient CO2 to

about 46% in elevated CO2, indicating that more mass was

allocated to reproductive growth at elevated CO2 concentrations.

Within the same CO2 treatment, each of these traits was similar

across 15 generations, demonstrating that changes in the traits

induced by elevated CO2 failed to transfer from one generation to

the next via reproduction.

Responses of stomatal and photosynthetic traits to
elevated CO2

Elevated CO2 significantly reduced stomatal density on both

adaxial and abaxial leaf surfaces of plants grown in generations 1,

8, and 15 and in reciprocal sowing experiments (Table 1). For

example, on average, stomatal density on the adaxial and abaxial

leaf surfaces of plants in these generations was significantly

decreased by 15.5% and 12.1% with elevated CO2, respectively.

However, stomatal density did not change significantly among

these generations in either treatment. For instance, stomatal

density on the adaxial leaf surface averaged about 214 per mm2 at

ambient CO2 concentrations, ranging from 207.2 to 219.4, and

approximately 181 at elevated CO2 concentrations, ranging from

175.4 to 188.4.

Elevated CO2 also significantly reduced stomatal conductance

and transpiration rate, but increased the photosynthetic rate of

Arabidopsis leaves in generations 1, 8, and 15 and in the reciprocal

sowing experiments (Table 2). Relative to that in ambient CO2,

stomatal conductance and transpiration rate in elevated CO2 were

on average reduced by about 41.9% and 34.1%, respectively.

However, compared to ambient CO2, elevated CO2 significantly

Figure 1. Effects of elevated CO2 on the flowering time of
Arabidopsis thaliana over 15 generations. A, On average, plants
grown in elevated CO2 flowered significantly earlier than those grown
in ambient CO2 concentrations within each generation. B, The number
of flowering plants per day was recorded in ambient and elevated CO2

across 15 generations. Error bars represent the standard deviation of
the mean.
doi:10.1371/journal.pone.0006035.g001
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increased photosynthetic rate with an average of 17.1% in these

generations. Although elevated CO2 significantly affected stomatal

conductance, transpiration rate, and photosynthetic rate within

each generation, the three traits did not change significantly

among these generations in either treatment. For example,

stomatal conductance at elevated CO2 ranged from 220.4 to

239.4 mmol m22 s21 in these generations, with an average of

about 227.9, and no significant difference was detected in stomatal

conductance among these generations.

Responses of leaf ultrastructure to elevated CO2

Relative to ambient CO2, elevated CO2 concentrations on

average significantly increased the number of starch grains per

chloroplast profile and area per starch grain by 42.4% and 51.9%,

respectively, in leaves of plants grown in generations 1, 8, and 15

and in reciprocal sowing experiments (Table 3 and Figure 4).

However, each of the traits did not change significantly among

these generations when exposed to either ambient CO2 or elevated

CO2 (Table 3 and Figure 4). For example, the number of starch

grains per chloroplast profile averaged around 1.95 at ambient

CO2 concentrations, ranging from 1.87 to 2.05, and around 2.77

with elevated CO2, ranging from 2.68 to 2.87. The change in area

per starch grain also followed a similar pattern.

Evidence from reciprocal sowing experiments
To evaluate whether Arabidopsis plants exhibited an adaptive

response to elevated CO2, we conducted a reciprocal sowing

experiment in which seeds from the fifteenth generation in each

treatment were grown at both ambient and elevated CO2

concentrations. As a result, we did not detect significant

interactions between the maternal CO2 environment and the

CO2 transplant environment (Figure 5, and Tables 1, 2, 3). Plants

from fifteenth-generation seeds grown under ambient and elevated

CO2 were similar, with no significant differences in several traits

between the two populations under either CO2 treatment regime.

In other words, at a given CO2 concentration, the traits of both

populations were similar to those observed at that CO2 level

during the selection experiment. For example, the average time to

Figure 2. Effects of elevated CO2 on silique length and number of siliques and seeds. A and B, elevated CO2 had no significant effect on
the number of seeds per silique or silique length. C and D, elevated CO2 significantly increased the number of siliques and the number of seeds per
plant. Error bars represent the standard deviation of the mean.
doi:10.1371/journal.pone.0006035.g002
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first flowering was about 44 days in both populations when grown

at ambient CO2 during the sowing experiment and was similar to

that at ambient CO2 during the selection experiment (Figures 1A,

5A). Similarly, the average time to first flowering was about 40.5

days in both populations when plants were grown at elevated CO2,

which was not significantly different from that at elevated CO2

during the selection experiment (Figures 1A, 5A). There were

similar patterns for the change in silique number per plant,

stomatal density in both adaxial and abaxial leaf surfaces, stomatal

conductance, transpiration rate, photosynthetic rate, and chloro-

plast features during the sowing experiment (Figure 5, and

Tables 1, 2, 3).

Discussion

Many studies have investigated plant responses to elevated CO2

on the ecosystem, community, population, plant, leaf, physiolog-

ical, biochemical, and molecular levels over the past two decades,

most of which were carried out on plants grown only for a single

generation of plants [2,24,29–31]. The main results from those

studies indicate that elevated CO2 generally accelerates plant

growth and development [27,32,33], advances flowering time

[31,34,35], reduces stomatal density, stomatal conductance, and

transpiration rate [6,27,36], increases photosynthetic rate and

carbohydrate content [4,27,31], and enhances reproductive output

Figure 3. Effects of elevated CO2 on total and reproductive mass. Elevated CO2 significantly increased total mass (A), reproductive mass, and
the relative proportion (%) of reproductive mass per plant (B). Error bars represent the standard deviation of the mean.
doi:10.1371/journal.pone.0006035.g003

No Maternal Effects of CO2
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by altering flower number, fruit set, and seed production [13]. For

example, Woodward and Kelly [37] reported an average

reduction in stomatal density of 14.3% for 100 species grown

under CO2 enrichment. In addition, Jablonski et al. [13] used

meta-analysis to integrate data on eight reproductive character-

istics from 159 CO2 enrichment papers that provided information

on 79 species and found that, on average, elevated CO2 increased

fruits, seeds, and total seed mass by 19%, 18%, and 25%,

respectively. In the present study, we found that elevated CO2

significantly advanced the flowering time of Arabidopsis, resulted in

more siliques and seeds, reduced stomatal density, stomatal

conductance, and transpiration rate, and increased photosynthetic

rate and the size and number of starch grains in the chloroplast.

These results are consistent with previous reports. However,

silique length and number of seeds per silique were not influenced

by elevated CO2, and it is possible that the two traits are less

plastic than other traits in response to elevated CO2. Given that

the number of seeds per silique changed only slightly with CO2

enrichment, the significant increase in the number of seeds per

plant was mainly attributed to a significant increase in the number

of siliques per plant.

In the current study, it was of great interest to find that within

each of the 15 generations, elevated CO2 had significant effects on

many traits including flowering time, total and reproductive mass,

stomatal density and conductance, transpiration rate, and

photosynthetic rate, but each of these traits in any two of the 15

generations was similarly responsive to elevated CO2. In other

words, no significant difference was observed in each of these traits

across the 15 generations within the same CO2 treatment,

indicating that maternal CO2 had no significant effect on her

offspring performance or transgenerational effects of CO2 were

relatively small in this genotype. Our results led us to reject our

hypothesis that plants in generation m+n would be more

responsive to elevated CO2 than those in generation m (m$1,

n$1). For instance, according to this hypothesis, if the days to first

flowering for elevated CO2-grown plants in generation 1 averaged

around 40.5, then the days for elevated CO2-grown plants in

generation 1+n (n$1) would be significantly shorter than 40.5.

Our initial hypothesis was based on the assumption that elevated

CO2 can exert a selective pressure on plants sufficient to produce

genetic variation, and maternal responses to elevated CO2 may

extend to the offspring and even accumulate via reproduction,

Table 1. Stomatal density of leaves of Arabidopsis plants grown at elevated or ambient CO2 in different generations.

Stomatal density Adaxial surface decrease Abaxial surface decrease

Treatment AC EC AC EC

Generation 1 216.8612.6a 176.3610.0b 18.7% 236.3612.8a 204.3610.5b 13.5%

8 207.2612.3a 183.269.7b 11.6% 231.7612.6 a 202.8611.5b 12.5%

15 219.4611.6a 188.4610.3b 14.1% 237.1611.8 a 210.7610.8b 11.1%

SA* 211.6611.4a 180.569.2b 14.7% 240.2612.1a 213.2611.8b 11.2%

SE* 215.5611.1a 175.4610.1b 18.6% 234.7610.9a 205.9611.2b 12.3%

P-value 0.145–0.869 0.078–0.886 / 0.307–0.921 0.197–0.838 /

Average 214.1 180.8 15.5% 236 207.4 12.1%

The values given indicate means6SD from five plants. Three fully expanded rosette leaves at stage 5.0 were sampled from each of five plants and twenty separate fields
were analyzed in each leaf. Mean values were compared by t-test.
*The seeds used in the reciprocal sowing experiments were from the fifteenth generation grown in ambient CO2 (SA) and elevated CO2 (SE).
Abbreviations: AC: Ambient CO2; EC: Elevated CO2.
doi:10.1371/journal.pone.0006035.t001

Table 2. Stomatal conductance, transpiration rate and photosynthetic rate of leaves of Arabidopsis plants grown at elevated or
ambient CO2 in different generations.

Photosynthetic
features

Stomatal conductance
(mmol m22 s21) decrease

Transpiration rate
(mmol m22 s21) decrease

Photosynthetic rate
(mmol m22 s21) increase

Treatment AC EC AC EC AC EC

Generation 1 385.6623.2a 220.4614.0b 42.8% 8.1660.41a 5.1860.24b 36.5% 14.161.2a 16.361.4b 15.6%

8 410.4625.5a 239.4615.6b 41.7% 8.3260.40a 5.4660.25b 34.4% 14.861.5a 17.261.3b 16.2%

15 377.8621.6a 221.6613.9b 41.3% 7.7960.39a 5.1560.21b 33.9% 13.561.4a 15.861.5b 17.0%

SA* 382.0620.4a 227.8613.3b 40.4% 7.9160.45a 5.3460.28b 32.5% 13.961.4a 16.661.3 19.4%

SE* 406.2622.5a 230.4616.1b 43.3% 8.0560.36a 5.3860.31b 33.2% 14.461.6a 16.961.7b 17.4%

P-value 0.061–0.801 0.078–0.895 / 0.067–0.650 0.067–0.838 / 0.204–0.813 0.162–0.808 /

Average 392.4 227.9 41.9% 8.05 5.30 34.1% 14.1 16.6 17.1%

The values given indicate means6SD from five plants. Three fully expanded rosette leaves at stage 5.0 were sampled from each of five plants were analyzed for stomatal
conductance, transpiration rate and photosynthetic rate. Mean values were compared by t-test.
*The seeds used in the reciprocal sowing experiments were from the fifteenth generation grown in ambient CO2 (SA) and elevated CO2 (SE).
Abbreviations: AC: Ambient CO2; EC: Elevated CO2.
doi:10.1371/journal.pone.0006035.t002
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Figure 4. Effects of elevated CO2 on leaf chloroplast ultrastructure during different generations. Plants were grown in elevated CO2 in
generations 1 (A), 8 (B), and 15 (C), and under ambient CO2 in generations 1 (D), 8 (E), and 15 (F). Note that more and larger starch grains were
observed in chloroplasts of elevated-CO2 grown leaves than in chloroplasts of ambient-CO2 grown leaves in any of the three generations. However,
there was no significant difference in the number and size of starch grains in either treatment among the three generations. Scale bar = 1 mm.
doi:10.1371/journal.pone.0006035.g004

Table 3. Chloroplast feature of leaves of Arabidopsis plants grown at elevated or ambient CO2 in different generations.

Chloroplast feature
Number of starch grains per
chloroplast profile increase Area per starch grain (mm2) increase

Treatment AC EC AC EC

Generation 1 1.9461.28a 2.7661.41b 42.3% 0.9160.49a 1.3960.73b 52.7%

8 1.9061.34a 2.7361.38b 43.5% 0.8660.52a 1.2460.66b 44.2%

15 1.9961.41a 2.8761.43b 44.3% 0.8160.57a 1.2960.72b 59.3%

SA* 2.0561.29a 2.8361.38b 37.9% 0.9360.53a 1.3660.69 46.2%

SE* 1.8761.22a 2.6861.31b 43.8% 0.8460.51a 1.3260.61b 57.1%

P-value 0.074–0.750 0.103–0.792 / 0.079–0.761 0.083–0.723 /

Average 1.95 2.77 42.4% 0.87 1.32 51.9%

The values given indicate means6SD from five plants. Number of starch grains per chloroplast profile was determined according to 300 chloroplasts. Area per starch
grain was determined from 150 starch grains. The fully expanded rosette leaves were sampled at stage 5.0. Mean values were compared by t-test.
*The seeds used in the reciprocal sowing experiments were from the fifteenth generation grown in ambient CO2 (SA) and elevated CO2 (SE).
Abbreviations: AC: Ambient CO2; EC: Elevated CO2.
doi:10.1371/journal.pone.0006035.t003
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influencing the offspring trait expression [2,25]. This assumption,

however, proved to be false, since all 15 generations were nearly

equally responsive to elevated CO2 or maternal CO2 did not

produce significant effects on the offspring. The contradictory

resulted largely from the fact that elevated CO2 may generate

immediate phenotypic change via phenotypic plasticity, but fails to

produce genetic change [9,23,38]. Therefore, our results from 15

generations demonstrated that elevated CO2 significantly affected

many traits and enhanced fitness of Arabidopsis plants within a

single generation, but maternal effects of elevated CO2 did not

influence the offspring trait expression largely due to the potential

lack of genetic variation for CO2 responsiveness. Moreover, the

results from the reciprocal sowing experiments confirmed that

elevated CO2 did not produce detectable maternal effects on

Arabidopsis even after 15 generations

Several studies have used a variety of plant species, including

Arabidopsis thaliana [2], Sanguisorba minor [19], Bromus erectus [23],

Cerastium glomeratum, Leontodon saxatilis, Poa pratensis and Trifolium

repens [39], to investigate maternal effects of elevated CO2 on plant

growth, most of which focused on the responses within a single

generation. For example, Steinger et al. [23] reported the

maternal and direct effects of elevated CO2 on seed provisioning,

germination and seedling growth in B. erectus and found that seed

germination rate and seedling size were not significantly affected

by elevated maternal CO2. Similar results were also observed in

algae, C. glomeratum and P. pratensis [39–41]. Our results from 15

generations and the reciprocal sowing experiments demonstrated

that elevated CO2 failed to produce detectable maternal effects on

the Arabidopsis plants. Although elevated CO2 cannot produce

significant maternal effects on the offspring or transgenerational

effects of elevated CO2 are very small, the mechanism for the non-

detectable maternal effects is poorly understood. A possible

explanation for this is that the advantages obtained such as

increased seed mass at elevated maternal CO2 may be offset by the

reduced concentration of nitrogen (and possibly other nutrients) or

the increase in the C:N ratio [23]. Another explanation may be

that the selective pressure of elevated CO2 concentration is not

high enough to generate genetic changes, unlike certain other

factors including heavy metal contamination, drought, biological

invasion, and global warming [38,42–44].

In summary, elevated CO2 had a significant positive impact on

some reproductive, photosynthetic, and cellular traits of Arabidopsis

in the first generation, but the effect was not significantly

strengthened after additional generations at elevated CO2. In

addition, those traits measured at elevated CO2 were restored

when the fifteenth-generation seeds were grown at ambient CO2

in the reciprocal sowing experiment. In other words, Arabidopsis

can positively respond to elevated CO2 within each generation,

but elevated maternal CO2 had no significant effect on her

offspring across 15 generations. Moreover, our study provides

convincing evidence to confirm the assumption widely accepted in

many previous studies that plant responses to elevated CO2

observed within a single generation are similar to those observed

over many generations. Our results also suggest that future plants

may not produce specific adaptation to increasing atmospheric

CO2 concentrations due to the potential lack of genetic variation

for CO2 responsiveness.

Materials and Methods

Experimental design
Arabidopsis thaliana plants of Wild-type Columbia (the Notting-

ham Arabidopsis Stock Centre, Nottingham University, Notting-

ham, UK) were continuously grown for fifteen generations, each

generation lasting over 14 weeks. Plants were subjected to one of

two treatments: (1) ambient CO2 (370 ppm) in each generation or

(2) elevated CO2 (700 ppm) in each generation, following a well

established protocol [27]. After each generation, we measured

various reproductive, photosynthetic and cellular traits and

compared those traits between the two CO2 treatments. In

addition, the traits in each generation of the same treatment

(ambient or elevated) were compared. Furthermore, we performed

a reciprocal sowing experiment to test if Arabidopsis had evolved

detectable adaptations to elevated CO2 at the end of fifteen

generations.

Selection and reciprocal sowing experiments
During the selection experiment, plants were grown for fifteen

generations in two environment-controlled growth chambers. The

seeds of Arabidopsis thaliana were first grown in the greenhouse, and

seeds from the greenhouse-grown plants were used for the first

generation. Generation m+1 was sown with seeds of plants from

Figure 5. Days to first flower and number of siliques during the
reciprocal sowing experiments. Open and solid bars indicate that
seeds were obtained from the plants of the fifteenth generation grown
at ambient and elevated CO2 concentrations, respectively. Seed source
had no significant effect on days to first flower of plants (A) or number
of siliques per plant (B).
doi:10.1371/journal.pone.0006035.g005
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generation m (14$m$1) and 10% of the seeds from each

individual plant were randomly selected and fully mixed for the

next generation. To determine maternal responses at the end of

fifteen generations in the selection experiment, we conducted a

reciprocal sowing experiment. Seeds from the fifteenth generation

at elevated CO2 were grown in both ambient and elevated CO2

growth chambers, as were seeds from the fifteenth generation at

ambient CO2. For each generation, 35–45 plants were grown in

each CO2 treatment. Plant growth and management followed a

well established protocol [27].

Following previously described methods [24,27,34,45], we used

two chambers in the experiment: one chamber was controlled at

370630 ppm and the other at 700650 ppm. Throughout the

experiment, other environmental factors including temperature,

light, and relative humidity were identical in both growth

chambers. The CO2 concentrations of the two chambers were

swopped, and the pots were moved between chambers and

randomly re-arranged weekly to negate any possible effects

resulting from the chambers and pot position within the chambers

and to minimize the potential for interactive effects between the

chambers and developmental stages of plants.

Determination of reproductive traits
For each generation, the number of days to reach first flowering

was recorded for each plant. Plants were harvested after a 14-week

growth period. The number of siliques per plant was determined

by counting all intact siliques and central siliques that persisted

after seed maturity [2]. The average length (up to 1 mm) of

siliques was determined from 30 siliques randomly selected from

each of ten plants in each treatment. The total number of seeds

per plant was calculated as the total number of siliques per plant

multiplied by the mean number of seeds per silique (determined

from 30 randomly selected siliques per plant). After plant material

was dried to a constant weight at 60uC, vegetative mass,

reproductive mass and total mass were determined, respectively.

Determination of stomatal, photosynthetic and cellular
traits

When bolting had just commenced, i.e. at stage 5.10, fully

expanded rosette leaves of plants in generation 1, 8, 15 and the

reciprocal sowing experiment were respectively sampled for the

analysis of stomatal density and leaf ultrastructure according to

previous reports [27]. In addition, three fully expanded leaves

from each of five plants were selected for the measurement of

stomatal conductance, leaf transpiration rate as well as photosyn-

thetic rate using an LI-6400 Portable Photosynthesis System (LI-

COR Inc., Lincoln, Nebraska, USA). The measurements for

ambient CO2-grown plants were carried out at

1500 mmol m22 s21 photosynthetically active radiation (PAR),

2.0–2.5 KPa vapour pressure deficit (VPD), 22–24uC and

380 ppm CO2, and for elevated CO2-grown plants at

1500 mmol m22 s21 PAR, 2.0–2.5 KPa VPD, 22–24uC and

700 ppm CO2.

Statistics
The data are shown as mean6standard deviation. Data were

subjected to one-way analysis of variance and t-test using software

SPSS 10.0 (SPSS Inc., Chicago, IL, USA) and Excel 2003

(Microsoft Inc.).
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