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This paper considers the propagation of a liquid plug driven by a constant pressure within a rigid
axisymmetric tube whose inner surface is coated by a thin liquid film. The Navier–Stokes equations
are solved using the finite-volume method and the SIMPLEST algorithm. The effects of precursor
film thickness, initial plug length, pressure drop across the plug, and constant surface tension on the
plug behavior and tube wall mechanical stresses are investigated. As a plug propagates through a
liquid-lined tube, the plug gains liquid from the leading front film, and it deposits liquid into the
trailing film. If the trailing film is thicker �thinner� than the precursor film, the plug volume
decreases �increases� as it propagates. For a decreasing volume, eventually the plug ruptures. Under
a specific set of conditions, the trailing film thickness equals the precursor film thickness, which
leads to steady state results. The plug speed decreases as the precursor film thins because the
resistance to the moving front meniscus increases. As the pressure drop across the plug decreases,
the plug speed decreases resulting in thinning of the trailing film. As the plug length becomes longer,
the viscous resistance in the plug core region increases, which slows the plug and causes the trailing
film to become even thinner. The magnitude of the pressure and shear stress at the tube inner wall
is maximum in the front meniscus region, and it increases with a thinner precursor film. As the
surface tension increases, the plug propagation speed decreases, the strength of the wall pressure in
the front meniscus region increases, and the pressure gradient around the peak pressure becomes
steeper. © 2008 American Institute of Physics. �DOI: 10.1063/1.2938381�

I. INTRODUCTION

Liquid plugs form in pulmonary airways due to both
internal and external liquid sources. Internally, the inner air-
way surfaces of the lung are covered by a thin liquid layer.
This liquid layer is unstable and forms a plug due to a cap-
illary instability1–3 if the film thickness is sufficiently large.
When lung-surfactant availability is reduced, this tendency
to form liquid plugs can be increased.4 This occurs particu-
larly near the end of expiration in distal airways, causing the
airways to close due to plug formation. Once formed, the
liquid plug propagates driven by inhaled air and can rupture
under certain conditions or persist under others. During the
airway-reopening process, pulmonary epithelial cells may be
damaged by mechanical stresses associated with fluid
motion5,6 and plug rupture.7

Externally, liquid is instilled into the pulmonary airways
in some medical treatments such as surfactant replacement
therapy �SRT�,8–12 partial liquid ventilation �PLV�,13–19 and
drug delivery.20–29 The formation of a liquid plug in the tra-
chea, before inspiration, is important in creating a more uni-
form liquid distribution throughout the lung.30

Bilek et al.5 investigated surface-tension-induced lung
epithelial cell damage in a model of airway reopening, con-
sisting of a semi-infinite bubble �air finger� propagating in a
narrow fluid-filled channel lined with pulmonary epithelial
cells. They showed that cell damage increased with decreas-
ing reopening velocity and that the presence of pulmonary
surfactant prevented this injury. Based on a computational
model, they concluded that the steep pressure gradient near
the finger front was the most likely cause of the observed

cellular damage. Kay et al.6 showed that cell damage was
directly correlated with the pressure gradient, not the dura-
tion of stress exposure �period for a pressure wave to pass
over a cell�. Repeated reopening and closure caused the cell
layer to be damaged, even under conditions that would not
lead to extensive damage from a single reopening event.

Huh et al.7 investigated mechanical injury of primary
human small airway epithelial cells �SAECs� caused by re-
opening stresses and respiratory crackles in compartmental-
ized microfluidic systems that can produce polarized and dif-
ferentiated small airway epithelium in vitro. The microfluidic
channel was lined with SAECs and a thin liquid film. Dy-
namic propagation and rupture of liquid plugs through the
channel were generated by a microfluidic component. Expo-
sure of the SAECs to physiological fluid mechanical stresses
associated with surfactant-deficient airway reopening led to
significant cellular damage whose severity was elevated with
increasing frequency of plug propagation and rupture. Fur-
thermore, plug rupture that generates explosive pressure and
shear stress waves imposed a higher risk of cellular injury
than plug propagation alone.

Most theoretical studies on plug propagation in liquid-
lined channels or tubes, with or without surfactant, have been
carried out in the Stokes flow regime, neglecting the effects
of fluid inertia, that is, in the limit of zero Reynolds number.
Howell et al.31 analyzed surfactant-free liquid plug propaga-
tion in a prewetted flexible tube in the asymptotic limit of
Ca→0, where Ca=�U /� is the capillary number, � is the
fluid viscosity, � is the surface tension, and U is the fluid
speed. Since the viscous dissipation in the plug core region is
negligibly small as Ca→0, they assumed a uniform pressure
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in the plug core. They identified a critical imposed pressure
drop above which the liquid plug would eventually rupture.
Waters and Grotberg32 asymptotically investigated the effects
of soluble surfactant on liquid plug propagation. They
showed that the driving pressure difference �P for a given
Ca increased with increasing surface elasticity but decreased
with the precursor film thickness. The trailing film thickness
increased with �P, but at a slower rate when the surface
elasticity was large.

Fujioka and Grotberg33 numerically investigated steady
propagation of a liquid plug with a surfactant-free interface.
They showed that the trailing film thickness decreased as the
plug length decreases below the channel width. A capillary
wave developed in the precursor film near the front meniscus
as the Reynolds number increases. In this region, both wall
pressure and shear stress have sharp peaks in the capillary
wave located at the front interface. Particularly, with finite
Reynolds number, these peak stresses are significantly larger
than those at the rear. In addition, the single finger of air has
a trailing film, which increases in thickness as Ca increases.
Therefore, as the finger speed increases, the thickening trail-
ing film moderates the increase of the wall shear stress in the
transition region. These facts suggest that there is a higher
risk of pulmonary epithelial cell damage in the front of the
liquid plug than in the rear.

Subsequently, Fujioka and Grotberg numerically investi-
gated the effect of surfactant on the steady propagation of
a liquid plug within a two-dimensional channel.34 The
Marangoni stress due to the gradient in the surface tension
rigidifies the interface, which causes the precursor film thick-
ness near the meniscus to be thicker than the leading film
thickness and reduces the peaks of wall pressure and wall
shear stress.

In our previous analysis,33 the precursor film thickness
needed to equal the trailing film thickness due to the steady
flow limit. Since the wall pressure and shear stress are
strongly influenced by the film thickness, it is important to
investigate the effect of precursor film thickness on these
stresses. In this study, we perform a numerical analysis for
time-dependent liquid plug propagation in a tube. The plug is
driven by a constant pressure drop between the front and rear
air phases. A constant surface tension is assumed. The effects
of precursor film thickness, initial plug length, pressure drop,
and surface tension on the fluid dynamics of liquid plugs are
investigated.

II. METHOD

A. Model description

In this paper, we investigate the propagation of a liquid
plug inside a circular rigid tube of radius R, as shown in Fig.
1. A pressure difference between the front and rear air fin-
gers, �P*= P

1
*− P

2
*, drives the liquid plug consisting of an

incompressible Newtonian fluid. The gas-phase viscosity is
assumed negligible, so only fluid dynamics in the liquid
phase is considered. A constant surface tension is assumed.
The plug is assumed to be axisymmetric about the center line
of the tube, so that all quantities are uniform in the circum-

ferential direction and the circumferential velocity is zero.
Dimensionless forms of the Navier–Stokes equations and the
continuity equation are
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where u= �uz ,ur ,0�=u* / ��M /�� is the dimensionless fluid
velocity vector: � is the liquid viscosity and �M is the sur-
face tension of the air-liquid interface. p= p* / ��M /R� is the
dimensionless pressure, R is the tube radius, t= t* / ��R /�M�
is the time, z=z* /R, and r=r* /R. The dimensionless param-
eter �=��MR /�2, where �−1/2 is called the Ohnesorge num-
ber, is determined by only the tube geometry and the prop-
erties of the fluid; thus, it characterizes the fluid and tube
size. � is the liquid density. The subscript x in the time de-
rivative indicates that the derivative follows a fixed �z ,r�
point.

The no-slip condition is applied on the tube wall, which
is u=0 at r=1. For the axisymmetric condition, at the tube
center r=0, the radial component of the velocity is zero,
ur=0, and the gradient of the axial velocity in the r-direction
is zero, �uz /�r=0. At the end boundaries in both the precur-
sor and trailing films, a stationary condition is applied:
u=0 and �p /�z=0. At each air-liquid interface, we apply a
kinematic boundary condition,

�u − Ẋ� · n = 0, �4�

where ẋ is the velocity of the interface node point and n is
the unit vector normal to the interface. A balance of normal
forces which accounts for the jump in stress due to surface
tension is

− pn + ��u + �uT� · n = �n − Pan , �5�

where Pa is the air pressure �a=1 or 2�, �=�*R is the di-
mensionless interface curvature, and �=ez�� /�z�+er�� /�r�
+e��� /��� /r.
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FIG. 1. Liquid plug model.
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B. Coordinate transformation

The grid nodes were generated using the elliptic genera-
tion system35 where a uniform computational domain �� ,	�
is mapped inside a plug domain �z ,r� that is determined by
the solution of the two-dimensional Poisson’s equations. Lo-
cal grid adjustment is done to satisfy a local orthogonal grid
at the free surface:36 taking a vertex on the free surface, the
local normal direction is taken into the interior and its first
intersection with an interior cell face is selected as a new
interior vertex. In terms of the transformed variables, the
momentum equation is written as

�� ��Ju�
�t

�
�

+
�

��
���F� − G��u −

B11

J

�u

��
�

+
�

�	
���F	 − G	�u −

B22

J

�u

�	
� = 
 , �6�

where

F = �F� F	�T = Au , �7�

G = �G� G	�T = AẊ , �8�
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and ��=e��� /���+e	�� /�	�. Here A is the transformation
matrix that represents the projected area of a control surface
normal to the ith axis �representing �, 	� onto the jth plane
�representing z, r�. The control volume is J=r−1A, the Jaco-
bian of the transformation. The components of F are the
mass flow rates through the control surface normal to the �
and 	 axes and are defined as the velocities in the computa-
tional space. The primary diffusion terms, which include the
Bij �i= j� components, represent the diffusive fluxes through
the control surfaces normal to the � and 	 axes. The second-
ary diffusion terms, which include the Bij �i� j� components
which are zero if the mesh lines are orthogonal, represent
artifacts from the geometric transformation and are treated as
source terms in the computational model.

The transformed continuity equation is

�� · F = 0. �11�

Assuming that the interface corresponds to the 	 axis, the
unit normal on the 	 axis can then be described by

n =
1

�B11
�A11

A12
� , �12�

and the kinematic boundary condition on the interface �	
grid line� �Eq. �4�� is modified to

�F� − G��S = 0. �13�

C. Numerical procedure

The transformed equations �Eqs. �6� and �11�� are solved
using the SIMPLEST algorithm �SIMPLE with splitting
technique�.37 A kinematic update scheme is employed to up-
date the interface location.38 The velocity field is computed
according to the following algorithm.

�1� The calculation starts from the initial condition de-
scribed in Sec. II D.

�2� The interface shapes are approximated using cubic
splines39 as functions of the arc length along each inter-
face. The normal and tangential vectors are calculated
using the first derivative of the interpolated functions.

�3� Poisson’s equations are solved using the SOR �succes-
sive over-relaxation method� scheme to generate the grid
inside the domain.35 The geometric quantities such as
the transformed matrix can then be calculated.

�4� The grid velocity is computed. In this study, the pre-
dicted grid velocity GP is defined by

GP = AẊP � At1
�XP��� ,t1� − X��� ,t0��/�t , �14�

where t1 is the current time, t0 is the previous time, �t
= t1− t0 is the time step, and XP�� , t1� is the grid point at
the current time, which is updated during iteration steps.

�5� The pressure is solved using the known temporary mass

flux rates F̂, which are computed from the discrete form
of the momentum equation without the pressure term.
The SUPERLU solver40 is used to solve the sparse linear
system.

�6� The momentum equations are solved using the pressure
field pP obtained in step �5�.

�7� The pressure correction equation is solved using the pre-
dicted velocity field FP, which is the solution of the
momentum equations obtained in step �6�.

�8� The velocity field is corrected by FPP=FP+F�. The cor-
rection is determined by the pressure correction values,
p�, obtained in step �7� as F�=−B��p� /aP, where aP is a
diagonal element of the linear system matrix for the mo-
mentum equations. The fluid velocity on the interface,
FS

�P, is not corrected at this step.
�9� The position of the interface is updated using the kine-

matic condition �Eq. �13��. Assuming G=GP+G� and
F=FP+F�, the correction for the grid velocity on the
interface is

GS
�� = FS

�P − GS
�P + FS

��. �15�

The interface grid position is updated by

X���S,t1� = XP���S,t1� + n
RX

�B11

G���t , �16�

where RX is an under-relaxation factor, 0�RX�1, and n
is a unit normal.
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�10� The pressure is solved again using the temporary mass

flux rates F̂PP, which are computed using FPP.
�11� The second correction for the velocity field is made by

applying FPPP= F̂PP−B��p
PPP /aP, where pPPP is the

solution in step �10�.
�12� Reset FPPP→F, X→XP. Steps �2�–�11� are repeated

until F and G converge, which is defined by the differ-
ences from the previous iteration satisfying the conver-
gence criteria.33

�13� Increment time step and go to step �2�.

D. Initial conditions

In this study, the course of liquid plug propagation in an
axisymmetric tube is investigated. Initially, a liquid plug of
length LP0 begins to move by a constant driving pressure,
�P= P1− P2, which is the pressure difference between the
front and rear air phases. The plug length LP is defined as the
distance between the front and rear meniscus tips, where the
tips are always located at r=0 on both interfaces for the
axisymmetric plug. The initial plug shape is approximated by
a hemisphere of radius 1−h2 for front and rear menisci, the
length between both meniscus tips LP0, and a uniform film
thickness of h2 on both sides of the plug. The initial liquid
velocity is set to be zero uniformly. The precursor and trail-
ing films are extended eight times the tube radius.

E. Dimensionless parameters

The dimensionless parameters are �=��MR /�2, the ini-
tial plug length LP0=L

P0
* /R, the pressure drop across the

plug �P=�P* / ��M /R�, and the precursor film thickness h2

=h
2
* /R. Since the properties of Survanta �Ross Labs, Colum-

bus, OH�, which is a highly surface-active and biologically
derived pulmonary surfactant used in SRT, are �
=0.94 g /cm3, �=42 cP, and �M =25 dyn /cm,41 � for SRT
has a range of 1���20 for airway generations from 0 to 13
in an infant lung. In PLV or airway closure, the values of �
are larger than those in SRT, and inertial effects cannot be
neglected. For example, for perfluorocarborn Peflubron
�Alliance Pharmaceuticals, San Diego, CA�, �=1.93 g /cm3,
�=2.1 cP, and �M =18 dyn /cm.41 Thus, the range of � is
approximately 103���104. For plugs created by an internal
source in a surfactant-reduced lung, assuming �=1 g /cm3,
�=10 cP, and �M =50 dyn /cm, � has a range of 102��
�5103 for airway generations from 0 to 16 in an adult
lung. In the present study, since we focus on a compromised
lung, higher surface tension is assumed and hence �=1000 is
used.

The inspiratory positive airway pressure typically used
for conventional mechanical ventilators is approximately
10 cm H2O. If this pressure acts on one side of a liquid plug
in airways ��P*�10980 dyn /cm2�, the dimensionless
pressure drop �P is O�10� at the airway of R�0.1 cm and
surface tension of 50 dyn /cm. However, the actual �P will
be smaller than this value due to pressure dissipation in the
upper airways. In this study, for most of the computations,
�P=1 is used.

The liquid film thickness in the small airways in the lung
is approximately 0.02 of the airway radius according to mea-
surements on guinea pig lungs by Yager et al.42 Unhealthy
lungs commonly produce excessive bronchial secretions,
which increase the film thickness to 0.2 of the airway
radius.43 The precursor film thickness employed in the
present study ranges from 0.01 to 0.13, and 0.05 is used as a
base value.

According to a linear stability analysis for a thin film
that coats the inner surface of a circular tube, the wavelength
that maximizes the film growth rate is 23/2� of the tube ra-
dius. Assuming an airway lined by a liquid film with thick-
ness of 0.1–0.2 of the radius, if a plug forms, the length of
the plug will be approximately 1. In this study, the initial
plug length, LP0=1, is used as a base value.

F. Definition of plug rupture

When a liquid plug propagates, if the mass deposited to
the trailing film is greater than the mass gained from the
precursor film, the plug becomes shorter and shorter and
eventually ruptures. At the time of plug rupture, the front and
rear interfaces contact with each other, but the current nu-
merical method cannot resolve this situation. When the inter-
faces become close, the inner iteration step �see Sec. II C,
step �12�� does not converge. In this study, we assume that
the plug ruptures at this moment. For the present study, the
inner iteration failed when LP becomes below 510−3.

G. Numerical mesh and time step

Since we employ a boundary fitted mesh, the mesh
changes as the interface deforms. The grid structure is the
same as our previous papers.33,34 The number of node points
is determined based on the previous studies. For the initial
plug length LP0=1 case, 6201 total node points, 9 node
points in film depth, 241 node points on each free surface,
and 41 node points between the front and rear menisci tips is
employed. The number of node points is fixed during each
computation.

A time step of �t=0.0982 ��2� /64� is used for all com-
putations and is considered sufficiently small for the present
problem since the range of the dimensionless velocity is
small �Ca�0.05�. We have examined the LP and Ca behav-
iors for three different time steps, �t=2� /32, 2� /64, and
2� /128, for h2=0.05, �P=1, �=1000, and LP0=1. At
t=100, LP=0.852, 0.858, and 0.860, and Ca=0.0283,
0.0283, and 0.0283; at t=200, LP=0.524, 0.554, and 0.558,
and Ca=0.0360, 0.0356, and 0.0353; at t=270, LP=0.230,
0.279, and 0.281, and Ca=0.0414, 0.0401, and 0.0401, for
�t=2� /32, 2� /64, and 2� /128. The difference between
2� /64 and 2� /128 was insignificant.

III. RESULTS

A. Effect of precursor film thickness

Figure 2 demonstrates how the plug length and speed
change as the plug propagates for the various precursor film
thicknesses h2 at �=1000 for an initial plug length of LP0

=1 and other initial conditions, as described in Sec. II D. The
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course of LP is plotted in Figs. 2�a� and 2�b�, where �a� is a
magnified plot for 0� t�50 of �b�. The course of Ca is
plotted in �c� and �d� in the same manner. At t=0, a constant
pressure drop across the plug, �P=1, is prescribed and the
plug begins to propagate. The dimensionless plug speed is
Ca=�U /�M, where U is defined as the average of u

z
* at both

meniscus tips. Here we examine the plug propagation for
seven different values of the precursor film thickness h2.
When the trailing film thickness is thicker than h2, the plug

loses mass and LP decreases. On the other hand, when the
trailing film thickness is thinner than h2, the plug gains mass
and LP increases.

According to the steady plug propagation analysis, the
trailing film thickness is mainly a function of the capillary
number Ca.33 The steady solutions for h2=0.09 and 0.10 are
plotted in Figs. 2�b� and 2�d�, which are obtained by apply-
ing the procedure described in Ref. 33. At t=0, the plug is
accelerated by the pressure difference across it, and Ca in-
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FIG. 2. Course of plug length and speed for different precursor film thicknesses. �P=1, LP0=1, and �=1000. When LP→0, zP→7.24, 8.17, 10.5, 16.1, and
44.4 for h2=0.01, 0.03, 0.05, 0.07, and 0.09.
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creases. Figure 2�a� shows that, for 0� t�8, LP for all h2

�except for h2=0.13� remains almost unchanged; then LP for
h2�0.05 is locally minimum between 10� t�20 and maxi-
mum in between 20� t�40. For h2�0.03, LP is maximum
in between 10� t�15. Up to t�100, the initial disturbance
in LP decays. For t�100, LP increases for h2�0.10 or de-
creases for h2�0.09 �Fig. 2�b��. Figure 2�c� shows that, until
t�10, Ca for all h2 increases similarly. For 10� t�20, the
slope of the increasing Ca becomes gentle in turn from
smaller h2, and then Ca increases with similar slope until t
�40. Figure 2�d� shows that, until t�50, Ca increases al-
most similarly. For t�50, the slope of Ca for h2�0.05 be-
comes gentle compared to the slope for h2�0.07. Ca for
h2�0.07 increases similarly until t�150. For h2�0.10, Ca
begins to decrease for t�150 because the total viscous re-
sistance within the plug core increases due to the rising LP,
as Fig. 2�b� shows.

Compared with the steady solution for h2=0.10, where
h1=0.10, �P=1.0, �=1000, LP,S=1.15, and CaS=0.0375
shown in Figs. 2�b� and 2�d�, the unsteady solution of Ca for
h2=0.10 increases close to CaS but decreases without attain-
ing to CaS after LP becomes greater than LP,S. For h2

�0.09, after the initial disturbance, for t�100, LP decreases
since the trailing film thickness becomes thicker than h2 as
Ca increases. For these cases, LP decreases toward zero re-
sulting in plug rupture. In this computational model, how-
ever, the moment of plug rupture cannot be resolved. We
stopped the computation when it meets the condition de-
scribed in Sec. II F. For h2=0.01, 0.03, 0.05, 0.07, and 0.09,
this happened when LP=2.9710−3, 4.0410−3, 4.23
10−3, 4.8510−3, and 4.7510−3. The decreasing rate of
LP can be determined by the difference between the precur-
sor and trailing film thicknesses multiplied by the plug
speed, Ca. So, basically, the plug ruptures earlier for smaller
h2. However, since Ca at a fixed t decreases as h2 decrease,
the rate of mass loss for h2=0.01 is smaller than that for
h2=0.03. Thus, the time to rupture for h2=0.01 is longer than
for h2=0.03. Compared with the steady solution for h2

=0.09, where h1=0.09, �P=1.0, �=1000, LP,S=2.1, and
CaS=0.0291, the unsteady solution of Ca for h2=0.09 in-
creases and becomes larger than CaS; therefore, LP decreases
without reaching LP,S.

Figure 3 shows snapshots of the streamlines and pressure
fields at �a� t=50, �b� t=200, and �c� t=300 for h2=0.05 of
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which LP and Ca are shown in Fig. 2. The horizontal axis for
each plot, z�=z−zP, is a relative coordinate, where zP is at
the middle of both meniscus tips. The streamlines are drawn
in the velocity field relative to the plug speed, Ca; the rela-
tive flow field is �uz−Ca,ur�, where Ca is the average of uz at
both meniscus tips. In the film far ahead or behind the plug,
since the liquid is static, the relative velocity is �−Ca,0�.
Thus, the streamlines in these static regions distribute corre-
sponding to uniform flow. In the core, the streamline pattern
shows a recirculation. Some streamlines that start from the
meniscus interface are directed toward the trailing film,
which indicates that the plug is losing mass.

At t=50, some of the streamlines end on the rear inter-
face �see close-up plot�. This indicates that this region of the
rear interface is moving outward and the rear meniscus is
elongating toward the tube axis. On the tube center axis, an
inner stagnation point appears near the front interface tip �see
close-up plot�. A saddle point appears in the rear transition
region at t=200 and 300 �see close-up plots in Figs. 3�b� and
3�c��. When the plug length becomes very short, at t=300,
LP=0.15 �Fig. 3�c��, the inner stagnation point on the tube
centerline is located at the middle of both tips.

In this study, since the pressure in the front air phase is
set to zero as a reference pressure, the pressure in the pre-
cursor film far ahead of the plug is −�1−h2�−1. The pressure
in the rear air phase is P1=1, so the pressure in the trailing
film is approximately 1− �1−h1�−1. In the plug core, the pres-
sure is lower due to the surface tension on the curved inter-
face. The pressure is lowest at the front transition region
between the front meniscus and the precursor film. From the
core near the rear meniscus to the trailing film, the liquid
pressure increases in the transition region. Because at t=50
both meniscus shapes are still deforming from the initial
hemisphere shape, the pressure profile in both transition re-

gions changes between t=50 and 200. Between t=200 and
300, the pressure fields in both transition regions are almost
the same.

If the trailing film thickness matches exactly the precur-
sor film thickness, LP remains constant with time. Figure 4
shows the streamlines and pressure fields for the steady plug
propagation of h2=0.10. There are four stagnation points ap-
pearing on the interface in the half plug domain, which are at
the meniscus tips and off the tips.33

Figure 5 shows the instantaneous streamline and pres-
sure fields at t=300 for h2=0.13. For this case, LP increases
as the plug propagates since the trailing film thickness is
much thinner than h2 �Fig. 2�b��. Since LP increases, some of
the streamlines intercept on the interfaces, but the streamline
pattern is different from the case shown in Fig. 3 in which LP

is decreasing. Figure 5 shows a saddle point that appears
near the front meniscus interface and an inner stagnation
point that appears on the centerline near the rear meniscus.
The locations of the saddle and stagnation points are on the
opposite side, as compared to those in Figs. 3�b� and 3�c�.

Figure 6 shows an instantaneous profile of �a� the
streamlines and pressure field and �b� the velocity and pres-
sure field in the precursor film near the front meniscus for
h2=0.03 at t=232. The plug length is LP=0.3. In the core, a
recirculation is observed in the streamline pattern. Some
streamlines that start at the meniscus interface are directed
toward the trailing film, indicating that the plug is losing
mass. The pressure is lowest where the front meniscus inter-
face contacts to the precursor film. The details for this are
shown in Fig. 6�b�, where the velocity profiles �uz ,ur� and
the pressure field within 0.5�z��0.82 are plotted. The ve-
locity is zero at r=1.0 due to the no-slip condition. For z�
�0.68, the velocity vectors are directed toward the
z�-positive direction since the pressure gradient for z�,

0.5 0.5999
0

0.8 0.9

0.7
0.75

-1
.5

-1.2 -1 -0.8
0.6

0.8

-0.6 -0.5
0

-1.75

-1
.5

-2-1

z'

r

-3 -2 -1 0 1 2
0

0.5

1

P: -7 -6 -5 -4 -3 -2 -1 0 1

FIG. 4. Flow and pressure field for the steady propagation of plug. h1=h2=0.10, �P=1, �=1000, LP,S=1.15, and CaS=0.0375.

1.1 1.2

0.7

-1.4 -1.3
0.7

0.8

-0.95 -0.9
0.0

0.1

-1.75

-1
.5-1 -2

-1

-0
.5

z'

r

-2 -1 0 1 2
0.0

0.5

1.0

FIG. 5. Streamline and pressure field at t=300 for h2=0.13. �P=1, LP0=1, LP=1.90, Ca=0.034, and zP=8.87.

062104-7 Unsteady propagation of a liquid plug Phys. Fluids 20, 062104 �2008�



�p /�z�, is negative. The pressure is minimum at z�=0.69,
and �p /�z� for z�0.71 is positive. This induces the flow to
be directed toward the z�-negative direction. Since the fluid
in this region is drained by this reverse flow, the film is a

minimum thickness at z�=0.76 where the reverse flow veloc-
ity is maximum.

For h2=0.01, as shown in Fig. 7�a�, the streamline pat-
tern and the pressure profiles are similar to those for the h2
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=0.03 case. In this case, the plug length becomes LP=0.3 at
t=245. The pressure is smallest at z�=0.66. Figure 7�b�
shows that the minimum pressure value is even smaller than
that for h2=0.03. The flow pattern is similar to that for h2

=0.03, but the velocity gradient in r is much steeper because
of the thinner precursor film thickness.

B. Wall pressure and shear stress

Figure 8 shows the pressure distributions along the wall
for h2=0.01, 0.03, 0.05, and 0.09 at t=245, 232, 263, and
959, respectively. At these times, the plug length for each
becomes LP=0.3. The plug speeds at these times are Ca
=0.026, 0.034, 0.040, and 0.047. Pwall is minimum in the
front transition region around z�=0.63–0.65. The absolute
value of this negative peak in Pwall increases as h2 decreases.
The pressure gradient around the peak becomes steeper as
well.

Figure 9 shows the dimensionless wall shear stress dis-
tributions for the cases shown in Fig. 8. The wall shear
stress, �w=�uz /�r, in both ends is zero because both films are

static at the far ends. In the front meniscus region,
z�=0.5–0.7, �w has peaks for both positive and negative di-
rections because the direction of uz changes in this region, as
shown in Figs. 6 and 7. The sign of �w changes at the point
where the pressure is lowest. The absolute values of the posi-
tive and negative peaks increase as h2 decreases. The posi-
tive peaks appear at z�=0.6 for h2=0.03 and 0.01. At this
location, Figs. 6�b� and 7�b� show that the distance between
the meniscus surface and the tube wall is narrower for h2

=0.01 than for h2=0.03. Since the gap between the moving
front meniscus surface and the tube wall is narrower for
smaller h2, the positive peak of �w increases. The plug speeds
decrease as h2 decreases, but the narrowing gap increases the
shear rate at these points. The drag force is the integration of
�w; thus, the flow resistance increases in this region signifi-
cantly as h2 decreases. In the rear meniscus transition region
and the plug core, z�=−2.0–0.2, the difference in �w for h2 is
insignificant. As h2 increases, Ca increases but �w increases
weakly because the trailing film thickness increases with Ca
and the wall shear rate does not increase as much as Ca.

C. Initial plug length

Figure 10 shows the effect of the initial plug length LP0

on plug length and speed as a function of time for LP0=0.5,
1, 2, and 15. The remaining parameters are fixed as �P=1,
�=1000, and h2=0.05. The steady solution of LP,S=11, �
=1000, h2=0.05, �P=1, and Cas=0.0093 is plotted for com-
parison. As LP0 increases, since the total mass of the plug
and the viscous resistance in the core region also increase,
the initial acceleration decreases. The plug speed at the time
of rupture is almost independent of LP0. The time to rupture
is not a simple linear function of LP0. Comparing LP0=1 and
2, the rupture time for LP0=2 is more than twice that for
LP0=1. For LP0=0.5, 1, and 2, the times that the decreasing
LP becomes 0.25 �corresponding LP /LP0=0.5, 0.25, and
0.125� are t=97.8, 277, and 792, respectively. The corre-
sponding Ca are 0.0377, 0.0406, and 0.0407, respectively.
Since the plugs with LP0=1 and 2 propagate with almost the
same speed, the influence of the initial condition can be con-
sidered to be diminished by this time. If LP0 is sufficiently
long, there will not be a sufficiently large value of Ca at
which the trailing film becomes thicker than the precursor
film. A critical value of LP0 can exist at which the plug may
not rupture under fixed �P and h2. If Ca is maintained below
the steady solution value, which is Cas=0.008 under the con-
dition in Fig. 10, the trailing film thickness is always less
than h2=0.05. The steady solution is achieved when LP,S

=11. Therefore, if LP�11, LP increases as the plug propa-
gates. For LP0=15, Ca increases, then decreases for t�900
without attaining 0.008 because of the large viscous resis-
tance in the core.

D. Pressure drop

Figure 11 shows the plug length and speed versus time
for three different values of the pressure drop across the
plug, �P=1, 0.5, and 0.1. The remaining parameters are
fixed as LP0=1, �=1000, and h2=0.05. The steady solution
of LP,S=1, �=1000, h2=0.05, �P=0.36, and CaS=0.0093 is
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plotted for comparison. For all cases, LP decreases then in-
creases initially, then it decreases �or increases� monotoni-
cally �see close-up in Fig. 11�a��. For �P=1, the plug speed,
Ca, increases with the steepest slope among these three
cases. So the plug length LP decreases toward zero with the
shortest time among them. For �P=0.5, LP goes to zero, but
it takes a longer time than for �P=1. For �P=0.5, the Ca
curve is quite different from that for �P=1; Ca increases
initially, and then remains almost unchanged, indicating that
�P balances with the viscous dissipation across the plug. For
�P=0.5, LP continues to decrease since the trailing film is
thicker than the precursor film of h2=0.05 for this level of
Ca�0.015. Since the plug shortens, the viscous resistance in
the core decreases gradually and Ca gently increases as the

plug propagates. For the steady solution, CaS=0.0093, the
trailing film thickness equals h2. Thus, for Ca�CaS, the trail-
ing film thickness is smaller than h2 and the plug persists
propagating without rupture. For �P=0.1, LP increases and
Ca plateaus at an even smaller value than for �P=0.5. For
this plateau level of Ca which is less than CaS, the trailing
film thickness is thinner than the precursor film thickness,
h2=0.05. Since this plug elongates, the viscous resistance in
the core increases and Ca gently decreases as it propagates.
For a fixed LP0 and h2, a critical value of �P can exist, above
which the plug will rupture.
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E. Effect of surface tension

The effect of surface tension on plug propagation is ex-
amined for a fixed pressure drop and precursor film thick-
ness. Since the dimensionless parameters, � and �P, depend
on the surface tension, these parameters are chosen at a fixed
�P�=�P*��R2 /�2� so that �P*, �, R, and � are fixed. Fig-
ure 12 shows the plug length and speed versus time for three
different surface tension cases at a fixed pressure drop, �P
�=500, h2=0.05, and LP0=1. As � increases, the surface
tension on the interface increases. The time is rescaled as
t /�= t*�� / ��R2��; the dimensionless plug speed is redefined
as Re=Ca�=�RU /�, which is the Reynolds number. The
steady solution of LP,S=1, �=1500, h2=0.05, �P=0.33, and
ReS=12 is plotted for comparison. For all cases, after the
initial transition in LP �see close-up in Fig. 12�a��, LP de-
creases with time and eventually the plug ruptures. The time
to plug rupture is longer for larger �, which indicates that a

larger surface tension delays plug rupture. Since the plug
speed, Re, at a fixed time is larger for smaller � �Fig. 12�b��,
LP decreases more rapidly for the smaller surface tension
case. Also, since the capillary number, Ca=Re /�, is larger
for smaller �, the trailing film thickness is thicker for the
smaller surface tension case. The total distances that the plug
propagates are zP=5.45, 8.02, and 41.5 for �=250, 500, and
1000, respectively. The plug propagation length increases
with � because the smaller rate of mass loss results in a
longer time for plug propagation. If the surface tension is
larger than the steady solution as ��1500 and �P�0.33,
the trailing film thickness is smaller than h2 and the plug will
persist in propagation without rupture, which is similar to the
�P=0.1 case shown in Fig. 11.

Figure 13 shows the wall pressure and shear stress dis-
tributions when LP=0.3 for three different surface tension
cases. The plug speeds are Re=26, 21, and 17 at t /�=0.20,
0.42, and 2.3 for �=250, 500, and 1000, respectively. The
dimensionless pressure and shear stress are rescaled as
Pwall�= P

wall
* ��R2 /�2� and �wall�=�

wall
* ��R2 /�2�. As the sur-

face tension increases, the pressures in both the precursor
and trailing films decrease because the net force of the cir-
cumferential component of the surface tension reduces the
liquid pressure. As the surface tension increases, the negative
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peak in pressure that appears in the front transition region
decreases �more negative�, and the steep pressure gradient
around the peak becomes even greater. In the rear transition
region, the pressure gradient becomes steeper with �. For the
wall shear stress, since the plug speed decreases as the sur-
face tension increases, the positive peak in wall shear stress
in the front region decreases. The capillary numbers for these
cases are Ca=0.11, 0.041, and 0.017 for �=250, 500, and
1000. Since the minimum film thickness in the front transi-
tion region decreases as Ca decreases,33,44,45 the negative
peak in wall shear stress decreases �more negative� as the
surface tension increases. In the rear transition region, the
positive peak and the wall shear stress gradient increase with
surface tension.

IV. DISCUSSION

When a liquid plug propagates through lung airways,
airway epithelial cells are damaged by excessive mechanical
stresses induced by the motion of fluid and surface
tension.5–7 In this study, we have shown that the strength of
the wall pressure and shear stress in the front transition re-
gion of the plug increases as the precursor film thins. The
magnitude of these stresses is much larger than those in the
rear transition region. Assuming an airway of R�0.2 cm and
�M �50 dyn /cm in a surfactant-reduced lung, the dimen-
sional shear stresses for h2=0.01 and Ca=0.026 shown in
Fig. 9 are about 50 dyn /cm2 at z�=−0.8 in the rear transition
region and 350 dyn /cm2 at z�=0.6 in the front transition
region where �w attains a positive peak. The pressure gradi-
ent in the front transition region is extremely large; the maxi-
mum �Pwall /�z is 104 with a dimensional value of
13 dyn cm−2 /�m. These values are large enough to induce
lung epithelial cell damage.5,6

As the surface tension increases, since the total resis-
tance across the plug increases, the plug propagation speed
decreases for a constant pressure drop across the plug, but
the plug propagates a longer distance �see Fig. 12� since the
trailing film is thinner. The wall pressure within the plug
varies significantly and the variation increases as the surface
tension increases �see Fig. 13�. The wall pressure peaks in
the front transition region. The magnitude of the peak wall
pressure increases and the pressure gradient around the peak
becomes even steeper as the surface tension increases. In the
rear transition region, the pressure gradient also becomes
steeper as the surface tension increases. When lung-
surfactant availability is reduced, liquid plugs form and
propagate more frequently.4 Therefore, airway epithelial cell
damage may occur with higher probability for a larger region
of an airway in surfactant-reduced lungs due to diseases such
as respiratory distress syndrome �RDS�. Lung airway length
is approximately four to eight times the airway radius.46 For
most of the cases investigated in this study, the distance that
plugs propagate until rupture is longer than the airway
length. Hence, the plug will split at bifurcations into two
shorter plugs and continue propagating into the two daughter
tubes.47,48

The plug gains fluid from the leading front film and de-
posits fluid into the trailing film. If the trailing film is thicker

than the precursor film, the plug volume decreases as it
propagates and the plug will finally rupture. Although the
trailing film thickness varies as functions of Ca, Re, and LP,
it is primarily dependent on Ca.33 In this study, since we
investigate unsteady plug propagation driven by a constant
pressure drop across the plug, Ca varies with time, and it
depends on the inertia and the resistance in the plug. The
resistance across the plug can roughly be divided into three
regional contributions; the front transition region, the core
region, and the rear transition region. The resistance in the
front transition region varies depending on the precursor film
thickness. As Fig. 8 shows, the positive peak in wall shear
stress within the front transition region increases as h2 de-
creases, indicating an increase in the resistance. The resis-
tance in the core region depends on the plug length LP. As-
suming Poiseuille flow in the core, the resistance is a linear
function of LP. In the rear transition region, although the wall
shear stress increases as Ca increases, the resistance de-
creases because the trailing film thickness increases with Ca.

When a plug propagates in a steady state under a given
�P, h2, and �, the plug length LP,S must be a definite length
so that there is enough resistance in the core region to main-
tain the plug speed to be CaS, which causes the trailing film
thickness to equal h2. When �P increases �decreases�
slightly from a steady state, Ca increases �decreases� and
consequently h1 increases �decreases�, and hence LP de-
creases �increases� as the plug propagates. Since the resis-
tance in the core decreases �increases� as LP decreases �in-
creases�, Ca increases �decreases� further. This may be
similar when h2 increases �decreases� slightly from a steady
state. Since h1 is less �greater� than h2, LP increases �de-
creases�. Ca decreases �increases� as LP increases �de-
creases�, which causes h1 to decrease �increase�. So h1 be-
comes even smaller �larger� than h2. To clarify a stability
criterion, further analysis is required.49
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