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Abstract
In earlier studies, we found profound alterations in specific signal transduction pathways such as
mitogen-activated protein kinase signal pathway that mirrored neuronal cell death in Alzheimer
disease (AD). To further delineate the mechanism(s) involved in such aberrant signaling, we
subsequently showed that mGluR2 is increased in pyramidal neurons in the hippocampus of AD and
often co-localizes with neurofibrillary pathology. Based on these data, we suggested that selective
neuronal degeneration in AD may arise through the differential expression and activation of specific
receptor populations, such as, mGluR2. In this study, to examine the mechanisticrelevance of the
above-mentioned in vivo findings, we used cell culture models to show that the activation of mGluR2
leads to the activation of extracellular signal-related kinase (ERK) pathways. Importantly, attesting
to the in vivo significance of our findings, this pro-survival signaling pathway is also found to be
ectopically activated in AD. We also found that the activation of mGluR2 increases the
phosphorylation of tau and that the specific activation of mGluR2 reduces oxidative stress mediated
cytotoxicity in neuronal cells. Taken together our findings strongly suggest that mGluR2 may
participate in mediating the survival of neurons in the face of selective neuronal dysfunction and
degeneration in AD. Additionally, our findings lend support to the notion that tau phosphorylation
is a neuroprotective antioxidant responsetocellular insults.
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1. Introduction
Metabotropic glutamate receptors (mGluRs) have been suggested as therapeutic targets for
neurodegenerative diseases since their unique functions allow modulation of signals via G-
protein dependent pathways and this may alter neuronal functions more precisely than targeting
ionotropic GluRs (iGluRs) (Bruno et al., 2001). In this regard, it is notable that signal
transduction by glutamate receptors is mediated by the activation of the MAP kinase pathways
(Ferraguti et al., 1999) and that these signal transduction pathways are known to be altered in
AD (Webber et al., 2005; Zhu et al., 2003). Additionally, agonists of mGluR lead to an increase
in phosphorylated tau mediated through extracellular signal-related kinase (ERK)-mediated
kinases and several lines of evidence suggest that the differential expression of glutamate
receptors in select populations of neurons accounts for specific neuronal vulnerability (Bruno
et al., 2001).

The activation of Group II mGluRs protects neurons against excitotoxic degeneration by the
inhibition of glutamate release (Buisson and Choi, 1995; Buisson et al., 1996) such that potent
and selective Group II mGluR agonists protect against excitotoxicity in vitro (Kingston et al.,
1999) and global ischemia in vivo (Bond et al., 2000). Since mGluR2 appears to play a role in
the pathogenesis of neuronal cell death and survival, it is not surprising that mGluR2 is
specifically increased in hippocampal neurons in AD (Lee et al., 2004a) and that mGluR2 could
play a key role in the pathogenesis of AD (Lee et al., 2004b). In contrast, the expression level
of mGluR2 in the dentate gyrus granular neurons is unchanged.

Of interest, the aberrant expression of mGluR2 in the hippocampus is closely associated with
phosphorylated tau containing neurofibrillary changes in the pyramidal neurons, which, while
traditionally thoughtof as detrimental (Iqbal and Grundke-Iqbal, 2006), more recently, has been
associated with neuronal survival (Lee et al., 2005; Morsch et al., 1999). In the latter, it is
notable that the activation of mGluR2 by specific agonists activates the ERK pathway
(Ferraguti et al., 1999; Otani et al., 1999), a pro-survival pathway, and that ERK phosphorylates
tau at those sites known to be phosphorylated in AD (Reynolds et al., 2000). Based on this, we
hypothesized that mGluR2 activation sequentially lead to the activation of the ERK pathway,
tau phosphorylation and neurofibrillary pathology in neurons and ultimately neuroprotection.
Given the importance of mGluR2 in cellular viability, such neurons are potentially protected
from the disease process. To test this hypothesis, in this study, we investigated the effect of
mGluR2 activation on cellular viability, ERK activation, and tau phosphorylation in neurons.

2. Results
2.1. The expression of mGluR2 and its effect on ERK in rat primary cortical neurons

While the effect of mGluR2 on ERK pathway activation is known in CHO cells (Ferraguti et
al., 1999; Phillips et al., 1998), the expression pattern of mGluR2 has not been examined in
primary neurons or other neuronal cell culture models. Since primary neurons or neuronal cell
lines such as SHSY5Y cells may provide a more physiologically relevant context to examine
the effect of mGluR2 activation, we first determined the expression of mGluR2 protein in rat
primary cortical neurons. The membrane fraction from DIV 7 to 10 neurons was separated by
SDS-PAGE using a 7.5% acrylamide gel and detected by immunoblot analysis with an anti-
mGluR2 antibody. Two bands were detected similar to immunoblot data from human brain
samples (Lee et al., 2004a) (Fig. 1). The lower band corresponds to the calculated molecular
weight of mGluR2 (~100 kDa) and the upper band is likely a receptor dimer and frequently
appears in immunoblots of mGluRs (Reid and Romano, 2001; Romano et al., 1996). This data
provides strong evidence that rat primary cortical neurons of DIV 7–10 express mGluR2 and,
as such, can be used for our mGluR2 studies. Thus, DIV 7–10 neurons were used for the
following experiments.
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Cultures of rat cortical neurons were treated with LY379268 (10 µM) to test whether the
activation of group II mGluR induces the ERK pathway. The activation of ERK can be
measured using a phospho-specific antibody since the activation of ERK occurs through the
phosphorylation of threonine and tyrosine (202 and 204 of human ERK or 183 and 185 of rat
ERK). After treatment with LY379268, proteins were extracted at the indicated time point and
analyzed by immunoblot with a phospho-ERK specific antibody. The immunoreactivity of
phospho-ERK was significantly increased by LY379268 treatment after 10 min and returned
to background levels at 20 and 30 min (Fig. 2). There was no significant change in the level
of non-phosphorylated forms of ERK demonstrating the specific activation of ERK is through
post-translational modification by phosphorylation rather than regulation of protein
expression.

Since ERK is thought to contribute to tau phosphorylation (Kyoung Pyo et al., 2004; Reynolds
et al., 2000), the major component of neurofibrillary tangles (NFT), we next examined whether
the activation of group II mGluR induces tau phosphorylation in primary neurons.

2.2. The phosphorylation of tau by LY379268 in primary neurons
To determine whether group II mGluR activation by LY379268 contributes to tau
phosphorylation, rat cortical neurons were treated with 10 µM LY379268 and the
phosphorylation levels of tau protein were measured by immunoblot with the phospho-specific
antibody, AT8. After 10 minutes treatment of LY379268, tau phosphorylation was
dramatically increased and thereafter gradually decreased to background levels (Fig. 3). This
finding supports the hypothesis that ERK-mediated tau phosphorylation is induced by group
II mGluR since ERK is temporarily activated at the same time point as tau phosphorylation
and the epitope for the AT8 antibody can be phosphorylated by ERK (Reynolds et al., 2000).

2.3. The establishment of stable cell culture overexpressing mGluR2
Previously, we hypothesized that the increase of mGluR2 in neurons of AD was a compensatory
reaction to protect neurons from cytotoxic stress (Lee et al., 2004a). To test this hypothesis,
we determined whether increased expression and activation of mGluR2 is protective.
Specifically, mGluR2-overexpressing cell model was established using the human
neuroblastoma cell line, SHSY5Y. mGluR2 cDNA was subcloned into a mammalian
expression vector pCep4 which is an episomal expression vector and, as such, excludes artifacts
created by non-specific insertion of the gene into genome. After subcloning, the purified
plasmid, pCep4-mGluR2, was transfected into cells and then selected with hygromycin B.
Additionally, a negative control cell line was also established by transfecting the empty vector.
Selected cell populations were subjected to immunoblot to examine the level of mGluR2. In
the control cell line (SHSY5Y-pCep4), mGluR2 was not detected by immunoblot analysis
suggesting that SHSY5Y cells either do not express mGluR2 or express an amount that is below
the detection limit of immunoblot (Fig. 4). On the other hand, prominent mGluR2
immunoreactive bands were observed in the mGluR2 transfected cells (SHSY5Y-mGluR2).
The two bands, which represent monomer and dimer forms, match the results from human
brains and rat cortical neurons (Fig. 1). Therefore, the SHSY5Y-mGluR2 cell line was used in
the following studies as a tool to study the potential protective function of mGluR2 as well as
to discriminate the function of mGluR2 from mGluR3. Since LY379268 binds and activates
both mGluR2 and mGluR3, the combination of LY379268 and this cell line will delineate the
specific effects of mGluR2 activation.

2.4. The activation of ERK by LY379268 in mGluR2 overexpressing cell line
To examine whether overexpressed mGluR2 in SHSY5Y-mGluR2 activates ERK, protein
levels were measured after agonist treatment. 10 µM of LY379268 increased the
phosphorylation of ERK in SHSY5Y-mGluR2 cells but not in control cells, SHSY5Y-pCep4
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(Fig. 5). Whereas, glutamate, (1 mM), another mGluR2 agonist, also induced phospho-ERK
only in SHSY5Y-mGluR2. Treatment with 10% fetal bovine serum (FBS), a positive control
of ERK activation without glutamate receptor activation, demonstrated equal ERK activation
in both cell lines. These data demonstrate that while the general mechanism of phosphorylation
of ERK is intact in both cells, LY379268-and glutamate-mediated phosphorylation of ERK in
SHSY5Y is specific for cells engineered to express mGluR2.

2.5. The effect of overexpression of mGluR2 or oxidative stress mediated cell death
To address whether the overexpression of mGluR2 has a neuroprotective effect, 100 µM of
hydrogen peroxide, as an oxidative stressor, was added after, or with, mGluR2 agonists and
cytotoxicity was measured by an LDH assay. Basal toxicity of hydrogen peroxide without
agonists was similar in both SHSY5Y-mGluR2 and SHSY5Y-pCep4 cell cultures (Fig. 6).
Thus, the overexpression of mGluR2 itself does not affect cell viability or resistance to
hydrogen peroxide in SHSY5Y cells. Next, the cell viability was measured after, or with,
agonist treatment to examine the effect of mGluR2 activation. For LY379268, each cell culture
was incubated with 10 µM LY379268 for 1 h and then 100 µM hydrogen peroxide was added
into the medium and incubated for 24 h. Treatment with LY379268 significantly reduced
cytotoxicity (~20%) in SHSY5Y-mGluR2 but had no significant effect in SHSY5Y-pCep4
(Fig. 6). To confirm the specificity of mGluR2 activation and exclude any possible non-
mGluR2 specific effects of LY379268, glutamate was applied to each cell type and the
cytotoxicity of hydrogen peroxide was measured again. The cytotoxicity of hydrogen peroxide
was also reduced in SHSY5Y-mGluR2 by pretreatment of 1 mM glutamate for 1 h but the level
of protection was less than in the LY379268-treated group (Fig. 6). The data convincingly
shows that the activation of mGluR2 has a protective effect against hydrogen peroxide-
mediated oxidative stress. Surprisingly, continuous incubation with glutamate after
pretreatment potentiated the cytotoxic effect of hydrogen peroxide (Fig. 6) although this is
unlikely related to mGluR2 activation since the level of potentiation is similar in both cells.
Instead, the deleterious effect of long term incubation of glutamate may reflect excitotoxicity
which is mediated by ionotropic glutamate receptors such as NMDA receptors. Consistent with
this notion, it has been reported that the SHSY5Y cell line expresses NMDA receptors (Nair
et al., 1996).

3. Discussion
In this study, we found that the group II mGluR specific agonist, LY379268, induced ERK
activation in rat primary cortical neurons. Moreover, mGluR2 stably transfected cells, which
overexpress mGluR2 and do not express mGluR3, showed that ERK activation is specifically
mediated by mGluR2 activation. These results demonstrate for the first time that group II
mGluR induces ERK activation in primary neuronal cultures and neuronal cell lines in an
mGluR2-specific manner. Activation of the ERK pathway may provide protection against
apoptosis in some cell types. For example, in PC-12 cells, withdrawal of NGF leads to the
inhibition of ERK and cell death, whereas the constitutive activation of ERK in these cells
inhibits apoptosis (Xia et al., 1995). Additionally, blockade of ERK activation prevents
protection against TNF-α-induced apoptosis that is mediated by FGF-2 in L929 cells (Gardner
and Johnson, 1996). However, ERK can be harmful under certain conditions and ERK is
activated in a number of pathophysio-logically-relevant conditions. For example, ERK
activation specifically occurs in the rat hippocampus after bicucullin-induced seizures and
ischemia (Baraban et al., 1993; Gass et al., 1993). Also, ERK activation plays a direct
mechanistic role in 6-OHDA toxicity which may contribute to the dopaminergic neuronal cell
death that occurs in Parkinson disease (Kulich and Chu, 2001). Finally, given that ERK plays
a significant role in hippocampus-related learning and memory, it is perhaps not surprising that
disease conditions, such as AD (Smith, 1998), which involve the hippocampus (Hirano and
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Iida, 2006) and affect learning and memory, also involve the ERK pathway (Perry et al.,
1999; Zhu et al., 2001; Zhu et al., 2002). In this regard, the stimulation of sAβPP secretion by
NGF is ERK activity-dependent (Desdouits-Magnen et al., 1998). Also very relevant to AD,
ERK can phosphorylate tau protein in vitro in a PHF-tau manner (Reynolds et al., 2000) and
phosphorylation of tau impairs its ability, at least in vitro (Cash et al., 2003) to assemble into
microtubules (Smith, 1998).In the present study, we found that mGluR2 activation increased
tau phosphorylation in primary neurons (Fig. 3). This is consistent with our findings in the AD
brain showing co-localization of mGluR2 and hyperphosphorylated tau (Lee et al., 2004a).
The dual functions of ERK in neuronal cells, i.e., neuroprotection and contribution to NFT
formation, are difficult to reconcile using the established dogma that NFT formation is
deleterious. In this vein, it is of interest to note that CA1 hippocampal neurons survive with
NFT for about 20 years and that NFT may not be obligatory for death of CA1 hippocampal
neurons in AD (Kril et al., 2002; Morsch et al., 1999). Therefore, mGluR2-mediated activation
of ERK, as demonstrated here, and tau phosphorylation not only reflect the pathology found
in AD but could reflect a compensatory response invoked by neurons to cytotoxic stressors
(Lee et al., 2005; Li et al., 2007).

There are many reports of neuroprotection with mGluR, especially by group II mGluR agonists.
For example, agonists for group II mGluR have been reported to protect against apoptotic and
excitotoxic stimuli in vitro (Allen et al., 1999; Copani et al., 1995; Kingston et al., 1999;
Matarredona et al., 2001). These in vitro studies have been supported by reports showing that
group II mGluRs agonists are also neuroprotective in vivo (Bond et al., 2000; Chiamulera et
al., 1992; Miyamoto et al., 1997). However, there are no studies on whether such protective
effects are mediated by mGluR2 or mGluR3. However, in our studies, the cytotoxicity of
hydrogen peroxide was significantly reduced by LY379268 in SHSY5Y-mGluR2 but not in
SHSY5Y-pCep4. This clearly indicates that the activation of mGluR2 in isolation is sufficient
to mediate protection in neuronal cells and, since this involves tau phosphorylation, strengthens
the notion that tau phosphorylation is a protective antioxidant (Nunomura et al., 2001; Smith
et al., 2002).

In summary, the activation of group II mGluR induces ERK activation in rat primary cortical
neurons and the specific activation of mGluR2 also induces the ERK pathway. Importantly,
mGluR2 activation is neuroprotective against oxidative stressors and further studies will help
delineate the specific functions of mGluR2 in neurons. The therapeutic potential of targeting
mGluR2 in AD and other neurodegenerative diseases is obvious.

4. Experimental procedures
4.1. Materials

LY379268, a specific agonist for group II mGluR (EC50mGluR2 = 2.69 nM and EC50mGluR3
= 4.58 nM) was provided by Eli Lilly and Co., Ltd, was dissolved in equimolar NaOH to
facilitate solubility. For immunoblot analysis, anti-mGluR2 (Upstate, Lake Placid, NY), anti-
phospho-ERK (Cell Signaling, Danvers, MA) and anti-phospho-tau (AT8, Pierce, Rockford,
IL) antibodies were used as described previously (Lee et al., 2004a; Perry et al., 1999).

4.2. Cell culture
The SHSY5Y human neuroblastoma cell line was cultured in Opti-MEM I media (Invitrogen)
containing 5% FBS. Hygromycin B (200 µg/ml) was added to maintain stably transfected cell
cultures. Primary cortical neuron cultures were prepared from Sprague/Dawley rat brains at
embryonic day 18. After dissection, the cerebral cortex was dissociated and plated in poly-D-
lysine coated culture dishes and cultured in serum-free Neurobasal medium supplemented with
B27 supplement, 0.5 mM glutamine, and 25 µM glutamate (Invitrogen, Carlsbad, CA). Half
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of the medium was replaced every 3–4 days with Neurobasal medium supplemented with B27
and 0.5 mM glutamine.

4.3. Plasmids and transfection
To subclone mGluR2 cDNA into the mammalian expression vector, mGluR2 cDNA was
excised from pmGR2 (Tanabe et al., 1992) by the restriction enzymes, Hind III and Not I, and
ligated into the mammalian expression vector pCep4 (Invitrogen, Carlsbad, CA). The purified
pCep4-mGluR2 was transfected into SHSY5Y cells using Superfect agent (Qiagen, Valencia,
CA) and selected by incubating with hygromycin B (200 µg/ml) for 4 weeks. After establishing
stable cell cultures, the level of target protein was determined by immunoblot.

4.4. Immunoblot
To detect mGluR2 in primary neurons and stable cell cultures, membrane preparations and
immunoblots were performed as described in the literature with minor modifications (Reid and
Romano, 2001). Briefly, cells were washed twice with ice-cold phosphate-buffered saline and
homogenized with buffer I (0.32 M sucrose, 2 mM EDTA, pH 7.5) plus protease inhibitors
using a 22-gauge needle. The samples were then centrifuged at 1000 ×g for 10 min to remove
nuclei and cell debris and the supernatant was further centrifuged at 30,000 ×g for 20 min. The
pellet was homogenized in buffer II (2 mM HEPES/2 mM EDTA, pH 7.5, containing the
protease inhibitor cocktail (Sigma, St. Louis, MO), again using a 22-gauge needle, and then
kept on ice for 30 min. The membrane fraction was collected by centrifuging at 30,000 ×g for
20 min and then washed twice in TBS-containing protease inhibitor cocktail, and stored at −80
°C. Protein concentration was determined using the BCA method (Pierce, Rockford, IL). For
electrophoresis, samples were dissolved in a sample buffer (pH 6.7) containing 100 mM
dithiothreitol (DTT) and 10 µg of the proteins were separated by SDS-polyacrylamide gel
electrophoresis (PAGE) in a 7.5% polyacrylamide gel.

For phospho-ERK and tau protein detection, the lysis buffer (20 mM Tris-HCl, pH 7.5,150
mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate,
1 mM beta-glycerophosphate, 1 mM Na3VO4, 1 µg/ml leupeptin, 1 mM PMSF) was directly
added to cell culture dishes and keep on ice for 10 min. The samples were then centrifuged at
1000 ×g for 10 min to remove nuclei and cell debris. The protein concentration in the
supernatant was measured by the BCA method and 10 µg of each protein was separated by
SDS-PAGE on a 12% polyacrylamide gel.

4.5. Cytotoxicity test
The cytotoxicity of hydrogen peroxide was evaluated by the LDH assay (Roche, Indianapolis,
IN). Briefly, cell media was collected after each treatment and the collected media mixed with
LDH substrate in a 96-well plate. After incubation for 30 min at room temperature, the optical
density was measured at 490 nm using a microplate reader (Molecular Devices, Sunnyvale,
CA). The measured optical density was then converted after standardization with low (no
treatment; 0% toxicity) and high controls (1% Triton X-100; 100% toxicity) by the following
equation:

Abbreviations
AD, Alzheimer disease; ERK, extracellular signal-related kinase; MAPK, mitogen-activated
protein kinase; NFT, neurofibrillary tangle; PHF, paired helical filaments.
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Fig. 1.
The expression of mGluR2 in rat primary cortical neurons (DIV 7–10). The membrane fraction
rat primary cortical neurons were separatedon a 7.5% acrylamide gel and mGluR2 was detected
by anti-mGluR2 rabbit polyclonal antibody. As expected, the monomer (~100 kDa) and dimer
(~200 kDa) are observed and this staining pattern is the same as found for mGluR2 in human
brain samples.

Lee et al. Page 10

Brain Res. Author manuscript; available in PMC 2009 June 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
LY379268 induces the phosphorylation of ERK (Thr202/Tyr204). A primary cortical neuron
culture (DIV 7–10) was treated with 10 µM LY379268 for indicated time and then the extracted
proteins were subjected to immunoblot with phospho-ERK (Thr202/Tyr204) specific antibody.
The phosphorylation level is increased after 10 min treatment and gradually decreased to basal
level. The immunoblot with an antibody, which detects total ERK level, indicates that the total
protein level of ERK is not changed by LY379268 treatment. The level of β-actin was used to
normalize total ERK and phospho-ERK level. Data in the graph represent means ± SD values
from triplicate samples from at least three separate experiments.
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Fig. 3.
LY379268 induces the phosphorylation of tau in rat primary cortical neurons (DIV 7). The
representative data of immunoblot with AT8 (phospho-tau) demonstrate the increase of tau
phosphorylation by LY379268 treatment. After 10 min treatment with 10 µM of LY379268,
the phosphorylation of tau is dramatically increased and gradually revertstobasal level over the
next 6 h. The antibody for β-actin was used for internal protein loading control.
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Fig. 4.
The expression of mGluR2 in stably transfected cell culture, SHSY5Y-mGluR2 and SHSY5Y-
pCep4. mGluR2 is not expressed in vector transfected cells (1, 3) but is highly expressed in
pCep4-mGluR2 transfected cells (2, 4). The two bands, which are monomer and dimer forms,
match the results from human brains and rat primary neurons (Fig. 1).
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Fig. 5.
LY379268 induces ERK phosphorylation in SHSY5Y-mGluR2 cells. Each cell culture was
treated with LY379268, glutamate and FBS for 10 min and cell lysates was subjected to
immunoblot with phospho-ERK (Thr202/Tyr204) specific antibody. The phosphorylation
level is increased specifically in SHSY5Y-mGluR2 after 10 min treatment of LY379268 and
glutamate but not in SHSY5Y-pCep4. FBS is used as a positive control and clearly shows that
the phosphorylation of ERK by FBS is not different between the two cells. Thus, LY379268
and glutamate mediated ERK phosphorylation is mGluR2 specific. Glu; 1 mM glutamate, LY;
10 µM LY379268, serum; 10% FBS.
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Fig. 6.
The activation of mGluR2 is protective against hydrogen peroxide mediated cytotoxicity.
SHSY5Y-mGluR2 (mGluR2) and SHSY5Y-pCep4 (vector) were incubated with 10 µM
LY379268 for 1 h and then 100 µM hydrogen peroxide was added into the medium and
incubated for an additional 24 h (A). Cytotoxicity was measured with the LDH assay.
Glutamate was similarly applied to the cells and the cytotoxicity of hydrogen peroxide was
also measured (B). The cytotoxicity of hydrogen peroxide was reduced in SHSY5Y-mGluR2
by pretreatment with 10 µM LY379268 or 1 mM glutamate for 1 h. However, continuous
glutamate treatment increased the susceptibility to hydrogen peroxide. Data in the graph
represent means ± SD values from at least three separate experiments and each experiment
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contains five samples for each group. *p < 0.05, compared with hydrogen peroxide treated
group.
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