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pathological measurements and risk of dementia.  Conclu-
sions:  Armed with analytic techniques to adjust for selection 
bias and to ensure generalizability of results from popula-
tion-based neuropathological studies, researchers should 
consider incorporating information related to selection into 
their data collection schemes.  Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Population-based neuropathological (NP) studies of 
dementia and Alzheimer disease (AD) rely on measure-
ments obtained from study participants who undergo au-
topsy. While scientific interest often lies in understand-
ing associations in the general population, mechanisms 
at play during the study may lead to the observed autopsy 
sample no longer being representative. As such establish-
ing generalizability, or external validity, of results beyond 
the study sample requires careful consideration of poten-
tial selection bias.

  Recently, Zaccai et al.  [1]  conducted a comprehensive 
review of population-based NP studies of dementia and 
identified six such studies: the Hisayama study, the Cam-
bridge City over 75 Cohort Study, the Vantaa 85+ Study, 
the Medical Research Council Cognitive Function and 
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 Abstract 

  Background:  The interpretation of neuropathological stud-
ies of dementia and Alzheimer’s disease is complicated by 
potential selection mechanisms that can drive whether or 
not a study participant is observed to undergo autopsy. Not-
withstanding this, there appears to have been little empha-
sis placed on potential selection bias in published reports 
from population-based neuropathological studies of de-
mentia.  Methods:  We provide an overview of methodologi-
cal issues relating to the identification of and adjustment for 
selection bias. When information is available on factors that 
govern selection, inverse-probability weighting provides an 
analytic approach to adjust for selection bias. The weights 
help alleviate bias by serving to bridge differences between 
the population from which the observed data may be viewed 
as a representative sample and the target population, identi-
fied as being of scientific interest.  Results:  We illustrate the 
methods with data obtained from the Adult Changes in 
Thought study. Adjustment for potential selection bias yields 
substantially strengthened association between neuro-
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Ageing Study, the Honolulu-Asia Aging Study and the 
Cache County Study of Aging and Memory’s. While the 
review identified three major mechanisms related to se-
lection (nonresponse, attrition/death and willingness for 
brain donation), it also noted that none of the reviewed 
studies had reported attempts to generalize beyond the 
study sample. In the absence of adjusting for selection, 
therefore, one can only interpret the results from these 
studies as pertaining to a population of autopsied indi-
viduals; to date, we are aware of only one population-
based study of NP risk factor associations for dementia 
that attempted to adjust for potential selection  [2] . Be-
yond the context of population-based studies, previous 
attempts at generalizing results based on autopsy data 
have been limited  [3–5] .

  We therefore see an opportunity to review method-
ological issues related to bias in autopsy-based NP studies 
of dementia and AD. Specifically, we consider two key 
aspects of selection bias: identification and adjustment. 
Identification is facilitated via a structural framework for 
characterizing selection bias, developed by Hernán et al. 
 [6] , while adjustment is performed using inverse-proba-
bility weighting. We illustrate the methods with a study 
of NP risk factors for dementia among participants in the 
Adult Changes in Thought (ACT) study.

  Methods and Materials 

 The problem of adjusting for potential selection bias can use-
fully be cast as a missing data problem; some individuals are se-
lected into the sample to have complete data, while other indi-
viduals are not selected and consequently have missing informa-
tion. As such, methods developed for missing data problems 
provide convenient tools for handling selection bias. In the fol-
lowing we provide a general description of the techniques, appli-
cable in any setting where selection bias may be an issue. Prior to 
doing so, and to provide a concrete setting for motivation, we pro-
vide a brief description of the ACT study.

  Adult Changes in Thought 
 The ACT study is an ongoing population-based longitudinal 

study of incident AD and dementia, among individuals aged 65 
years and older, from a population base of 23,000 members of 
Group Health Cooperative (GHC), a large health care provider in 
King County, Wash.  [7] . Between 1992 and 2004, enrollment of 
participants consisted of two phases: an initial cohort enrolled 
from 1992 to 1994 and an expansion cohort enrolled from 2002 
to 2004. For all enrollees, demographic, medical history and 
functional status information was collected at baseline and at sub-
sequent biennial follow-up visits. A blood sample was obtained 
from consenting enrollees at baseline to permit apolipoprotein E 
 (APOE)  genotyping. At each visit study participants were evalu-
ated with a protocol-based examination using the Cognitive Abil-

ities Screening Instrument (CASI)  [8] . At each follow-up visit, a 
CASI score of 85 or less triggered a comprehensive dementia 
workup, with clinical dementia diagnosis following Diagnostic 
and Statistical Manual of Mental Disorders, Fourth Edition 
(DSM-IV) criteria  [9] . Based on these criteria, enrollees were re-
quired to be dementia free at baseline; subsequent diagnoses of 
dementia were therefore taken to be incident cases. Follow-up of 
participants continued until the first of a diagnosis of dementia, 
withdrawal or death. For participants that withdraw from ACT 
but remain members of Group Health Cooperative, a separate 
protocol has been established for postwithdrawal verification of 
dementia and vital status. As ACT is ongoing, analyses presented 
here consider data collected up until December 31, 2006.

  Participants were also asked for consent for brain autopsy at 
the first follow-up examination for the original cohort and at 
baseline for the expansion cohorts. For participants who had not 
decided whether or not to provide consent, additional requests 
were made at subsequent biennial visits. In accordance with state 
law, next-of-kin were also required to file informed consent for 
autopsy after death. For autopsied individuals, evaluation of NP 
measures followed established methods and was performed 
blinded to the dementia diagnosis  [2] .

  Notation 
 Suppose interest lies in determining the association between 

an outcome Y (e.g., clinical dementia diagnosis) and a risk factor 
X (e.g., some NP measure), adjusting for a set of potential con-
founders, C. A common approach used to characterize the asso-
ciation is to construct a regression model; let  �  = E[Y  �  X,C] de-
note the mean of the outcome, given the risk factor of interest and 
potential confounders and assume

  g( � ) =  �  0  +  �  x  X  +  �  c  C , (1)

  where g() is the link function  [11] . Common link functions in-
clude the identity for linear regression, the log for Poisson regres-
sion and the logit for logistic regression. Having identified a mod-
el that characterizes the question of interest, the primary (statisti-
cal) goal is to estimate, and perform inference on, the unknown 
parameter  �  = ( �  0 ,  �  x ,  �  c ). 

 Estimation 
 Towards estimation of the  �  regression parameters, research-

ers have a variety of statistical tools at their disposal. Here we 
consider semiparametric estimating equations, with an alterna-
tive being fully parametric maximum likelihood. Given a sample 
of size n, an estimate of  �  can be obtained by solving the equa-
tion 

1

1
U 0,

n
T
i i i i

i
D V Y� �                                                  (2)

 where D i  is the derivative of  �  i  with respect to  �  and V i  is the as-
sumed variance of Y i . Intuitively, the solution to equation 2 is the 
value of  �  such that the observed and expected total outcomes (Y i  
and  �  i , respectively) are, on average, equal. 

 Provided model 1 is correctly specified, equation 2 is unbiased 
(i.e. has zero expectation) regardless of the choice of V, an impor-
tant robustness property not enjoyed by maximum likelihood-
based approaches. Hence, the corresponding estimate of  �  can be 
shown to be consistent (asymptotically unbiased), again regard-
less of the choice of V i   [12] . Estimation of standard errors for the 
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 �  estimates is straightforward, with the ‘sandwich estimator’ 
well-known to be robust in the sense that valid inference is ob-
tained, even if the variance V i  is misspecified  [12] .

  Selection Bias 
 Having solved equation 2 to obtain an estimate of  � , the pre-

cise interpretation of the estimate depends on several factors in-
cluding the link function, the form of X and choice of C. The in-
terpretation also requires consideration of the sampling frame 
and, in particular, an understanding of factors that govern wheth-
er or not an individual is observed in the study sample. Towards 
this it is useful to define two populations: the target population 
and the sampling population. The target population refers to the 
population of scientific interest, typically identified a priori and 
characterized by the hypothesis under investigation, together 
with inclusion/exclusion criteria. The sampling population refers 
to a (potentially hypothetical) population from which the ob-
served sample may be viewed as being representative. For exam-
ple, in the ACT study one could take the target population to be 
the population of individuals who are dementia-free at age 65. For 
the analysis of the autopsy data, the sampling population would 
be a population of individuals who are dementia-free at age 65, 
subsequently died and had an autopsy.

  In settings where the observed (sample) data are obtained via 
random sampling, the target and sampling populations can eas-
ily be seen to be equivalent. Beyond random sampling, however, 
the two populations are often not equivalent so that conclusions 
drawn on the basis of the observed data, while clearly pertaining 
to the sampling population, may not generalize to the target pop-
ulation. The mechanism driving differences between the two 
populations can be generically referred to as the  selection mecha-
nism , although it is often the case that it involves several separate 
underlying mechanisms (such as refusal, dropout and death). Bias 
introduced by interpreting results based on the observed data, a 
sample from the sampling population, as pertaining to the target 
population is referred to as  selection bias  and, as we expand upon 
below, the extent to which such bias exists in any given application 
will depend on the nature of the selection mechanism  [6, 10] .

  Towards characterizing differences between the target and 
sampling populations, and hence the selection mechanism, let R 
be a binary indicator of selection; R = 1 denotes selection into the 
sample and R = 0 nonselection. Using this notation, the subset of 

data for which R = 1 is taken to be a random sample from the sam-
pling population. Returning to the study of autopsy data from 
ACT, individuals that underwent autopsy would have R = 1, while 
those who did not would have R = 0.

  Parallel to viewing selection bias in terms of differences be-
tween the sampling and target populations, one can also consider 
characterizing selection bias in terms of the associations corre-
sponding to each population. To see this, note that in any given 
data situation one does not actually estimate the components of 
model 1, but rather the components of

  g( �   *  ) =  �    *   0  +  �   *   x      X  +  �   *   c        C , (3)

  where  �  *  = E[Y  �  X,C,R = 1] denotes the mean outcome,  condi-
tional on having been selected into the observed data.  The param-
eters in model 3 can be distinguished from those of model 1 in 
that they are stratum-specific with respect to R and, hence, per-
tain to the sampling population. Model 1 is marginal with respect 
to R (i.e., averages across those selected and those not) and there-
fore pertains to the target population. Selection bias occurs when 
one is interested in estimating  � , but  �  *   0   � . 

 Recently, Hernán et al.  [6]  developed a framework within 
which the causal structure of selection bias may be characterized. 
Specifically, suppose the selection mechanism depends on a set of 
covariates L, selection bias (i.e.  �  *   0   � ) results when L contains 
 both  (1) X or a cause of X  and  (2) Y or a cause of Y. That is, selec-
tion into the observed sample is  jointly  driven by the exposure, or 
a cause of exposure,  and  the outcome, or a cause of the outcome. 
If selection into the observed sample is independent of either of 
these, no adjustment is necessary.  Figures 1  and  2  illustrate the 
framework in the context of two simple examples. Specifically 
 figure 1  illustrates Berkson’s paradox, often attributed to studies 
of hospitalized populations, where conditioning on R = 1 (i.e. hos-
pitalization) can create an association between two diseases, even 
if they are independent in the general population.  Figure 2  illus-
trates the potential for selection bias in a case-control study. Since 
the case-control design is typically employed in the context of a 
rare outcome, selection is naturally driven by case status. In set-
tings where actual participation of invited enrollees is driven by 
a confounder of the exposure/outcome relationship, selection bias 
can be induced. Hernán et al.  [6]  provide an excellent and detailed 
exposition, with further illustrations and discussion.

R

Hospitalization

X Y

Disease 1 Disease 2

  Fig. 1.  Directed acyclic graph illustrating potential selection bias 
arising from Berkson’s paradox. 

C0

Confounders Selection

X Y
?

R

Exposure Outcome

  Fig. 2.  Directed acyclic graph illustrating potential selection bias 
in the context of a case-control study. 
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  Weighted Analyses 
 In settings where adjustment is necessary, inverse probability 

weighting provides a means to obtain consistent estimates of  �  
(i.e. the parameters in model 1)  [13] . Suppose the underlying se-
lection mechanism depends on L via the model  � ( � ) = P(R = 1  �  L), 
where  �  is an unknown parameter vector. Practically, it is com-
mon to specify  � ( � ) as a logistic regression model. Key to adjust-
ing for differences between the target and sampling populations, 
therefore, is that all components of L must be observable on all 
individuals, including those not selected. In the missing data lit-
erature, this corresponds to the ‘missing-at-random’ (MAR) as-
sumption  [14] . In observational studies, the latter is not verifiable 
from the data alone and will typically rely on scientific input and 
the published literature.

  Given an estimate, an estimate of  �  (from model 1) is obtained 
by solving the weighted estimating equation 

1

1
U , 0,  

n
T

i i i i i
i

ˆ ˆw D V Y� � � �                                  (4)

 where the weight  w  i ( �  ̂  ) =  �  i (  �  ̂     ) –1  is the inverse estimated probabil-
ity of selection for the i-th individual in the sample. The introduc-
tion of the weights (essentially) generates  w  i (  �  ̂     ) duplicates of the 
i-th individual, the effect of which is to create a pseudosample 
that, heuristically, we would have observed had ‘selection’ not oc-
curred. As such, the pseudosample may be viewed as a random 
sample from the target population so that the estimate obtained 
by solving equation 4 is interpretable in terms of the scientific 
population of interest. Practically, incorporation of weights into 
the estimating equation is straightforward in most statistical 
packages. 

 For inference, standard errors and 95% confidence intervals 
(CIs) could be constructed using a sandwich-based estimate. Rob-
ins et al. [ 13 , section 6.4] provide analytic expressions for the stan-
dard error that accounts for the estimation of   �  ̂     . The calculation 
is complex, however, and not readily implemented. The bootstrap 
provides a practical alternative that is easily implemented in most 
statistical packages. In the following, we present bias-corrected 
and accelerated (BCa) CIs, shown to be more accurate than stan-
dard percentile-based bootstrap interval estimates  [15] . Briefly, 
the calculation is a relatively straightforward extension of the 
usual BCa calculation with the key difference being that the boot-
strap samples are taken from the entire dataset (i.e. those with
R = 0 and R = 1). Consequently, the selection model parameters  �  
are reestimated for each bootstrap replicate, as are the weights. 
Although not presented here, a detailed description of the algo-
rithm is available from the corresponding author upon request.

  Results 

 To illustrate the methods, we consider their applica-
tion to the autopsy data from ACT. While ACT is a rich 
research resource and provides the opportunity to inves-
tigate a range of questions relating to neuropathology of 
dementia for simplicity we examine the cross-sectional 
association between NP measures and dementia. In par-
ticular, we consider the association among individuals 

currently alive. Within this context, the sampling popu-
lation is taken to be a hypothetical population from which 
autopsied individuals are a random sample, while the tar-
get population is taken to be those currently alive and 
enrolled in ACT. In an evaluation of selection bias in an 
autopsy case series from the Alzheimer’s Disease Patient 
Registry, Tsuang et al.  [5]  considered a similar target pop-
ulation. A key difference between their choice and the 
one presented here is that they combined individuals that 
died without autopsy together with those alive and en-
rolled. As such, while similar, their choice of target popu-
lation corresponds to addressing a different question, and 
would consequently require a separate assessment of the 
MAR assumption. Beyond the specific choices of this pa-
per and of Tsuang et al.  [5] , there are a multitude of other 
potential choices; care is therefore required in the assess-
ment of the implications of a specific choice in terms of 
the scientific question being addressed.

  Cohort Characteristics 
  Table 1  provides baseline characteristics of ACT par-

ticipants. Of the 3,390 enrollees, 3,044 (90%) have at least 
one follow-up visit; 216 (6%) died prior to a subsequent 
follow-up while 130 (4%) withdrew from the study prior 
to their first follow-up visit. Of the 3,044 enrollees with 
at least one follow-up visit 466 (15%) had a clinical diag-
nosis of dementia during follow-up (also see  fig. 3 ). At 
baseline the data are complete with the exception of 
APOE genotyping, missing for approximately 11% of 
participants. Generally, older participants (at baseline) 
are more likely to have a dementia diagnosis during the 
course of follow-up, as are whites, those less educated and 
those with at least one APOE  � 4 allele.

  Of the 3,044 participants with at least one follow-up 
visit, 979 (32.2%) had consented to autopsy. Consent rates 
did not differ significantly between the two cohorts 
(31.8% for the original cohort and 33.4% for the expan-
sion cohort; p = 0.429); further, rates did not differ ac-
cording to gender, and baseline marital status. Consent 
rates did differ significantly between whites and non-
whites (33.8 vs. 19.0%; p  !  0.001), across baseline age stra-
ta (increasing linearly from 29.8% among those  ̂  70 
years to 42.1% among those  1 90 years; p = 0.002) and by 
education (increasing from 22.8% among those with less 
than a high school education to 39.3% among those with 
a college degree).

   Table 2  provides demographic information, obtained 
at last known follow-up, according to the vital status and 
whether or not an autopsy was performed. Also shown 
are characteristics reported as being predictive of selec-
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tion in autopsy studies of dementia  [1] . We find that of the 
variables we considered, each of cohort membership, de-
mentia status, age, gender, race, education, marital status 
and depression are associated (at the 0.05 level) with vi-
tal/autopsy status, at the last known visit. We also find 
that participants who die are generally more likely to be 
demented, older, male, nonwhite, and not married. Fur-
ther, ‘alive-withdrawn’ and ‘dead-no autopsy’ individuals 
tend to be less well educated; 18.1% have less than a high 
school education compared to 9.2% among the ‘alive-en-
rolled’ and ‘dead-autopsied’ individuals.

  We focus on four key NP measures: (1) Braak stage, a 
staging criterion for AD based on neurofibrillary tangles 
 [16] , (2) cerebral microvascular infarcts, focal lesions at-
tributed to ischemia and found only on microscopic ex-
amination  [17] , (3) neocortical Lewy bodies, abnormal 
aggregates of protein that develop inside nerve cells, and 
(4) cystic infarcts, which derive from artery and arteriole 
obstruction. The left-hand side of  table 3  provides fre-
quencies for the four NP measurements among the au-
topsied individuals, by dementia status at last known vis-
it. Note that 33 individuals were excluded from the non-
demented group, since their deaths occurred more than 
2 years after their last visit date and they may have devel-
oped dementia between their last study visit and death. 
Of the remaining 214 autopsied individuals, 87 (40.7%) 
were clinically diagnosed with dementia.

  Unweighted Analyses 
 Unweighted analyses of the autopsy data, using esti-

mating equation 2, are reported in  table 3 . Shown are rel-
ative risk (RR) estimates based on a log-linear model for 
the binary dementia outcome; again we note that these 
estimates correspond to the  �  *  parameters of model 3 
which, as we explore below, may or may not equal  � . All 
four NP measurements were included in the model si-

Table 1. Baseline characteristics for ACT participants with at least 
1 follow-up visit

Nondemented Demented

n %a n %a

Total 2,578 466
Cohort

Original 1,899 73.7 418 89.7
Expansion 679 26.3 48 10.3

Age, years
≤70 655 25.4 37 7.9

71–75 814 31.6 101 21.7
76–80 576 22.3 139 29.8
81–85 356 13.8 118 25.3
85–90 141 5.5 50 10.7

>90 36 1.4 21 4.5
Gender

Male 1,045 40.6 187 40.1
Female 1,532 59.4 279 59.9
Missing 1 0

Race
White 2,316 89.9 432 92.7
Nonwhite 261 10.1 34 7.3
Missing 1 0

Education
<High school 298 11.6 79 17.0

High school 627 24.3 142 30.5
Some college 1,134 44.0 178 38.2
College graduate 516 20.0 67 14.4
Missing 3 0

Marital status
Not married 1,169 45.4 228 48.9
Married 1,408 54.6 238 51.1
Missing 1 0

APOE �4 allele
None 1,767 76.7 260 63.6
At least one 538 23.3 149 36.4
Missing 273 57

a Percentages based on nonmissing values.

130

216

3,390 3,044

1,711 (154) Alive and enrolled

288 (17) Withdrawn

798 (208) Dead – no autopsy

247 (87) Dead – autopsy

Withdrawal

Baseline 1st follow-up visit Status at last follow-up visit

Deaths

  Fig. 3.  Flowchart indicating the progres-
sion of ACT enrollees from baseline to sta-
tus at last known follow-up. Among those 
with at least 1 follow-up visit, individuals 
are grouped according to vital status, 
whether or not they had withdrawn and, 
among those that died, whether or not an 
autopsy was performed. Number of pa-
tients with a clinical diagnosis of dementia 
during follow-up is given in parentheses. 
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multaneously, with adjustment for cohort membership, 
age (via a natural smoothing spline 4 degrees of freedom), 
gender, race, education and presence/absence of any 
APOE  � 4 alleles.

  The results indicate statistically significant associa-
tions between dementia and Braak stage (V/VI vs. 0–IV; 
RR 3.06, 95% CI 2.18, 4.29), the number of cerebral mi-
crovascular infarcts ( 1 2 vs.  ̂  2; RR 2.21, 95% CI 1.59, 
3.06), and the number of cystic infarcts ( 6 1 vs. 0; RR 1.41, 
95% CI 1.01, 1.97). Although the point estimate for the 
presence of neocortical Lewy bodies is suggestive of an 

effect, the unweighted association was not statistically 
significant.

  Selection Models 
 To broaden the generalizability of analyses based on 

the ACT data, one could consider three mechanisms: 
withdrawal, death and autopsy after death. As such, one 
way forward would be to develop separate models for 
the three mechanisms. Each model would provide 
weights specific to the mechanism, with their combina-
tion bridging the gap between the sampling and target 

Table 2. Characteristics of ACT participants at last known follow-up, according to vital status, whether or not they had withdrawn 
and, among those that died, whether or not an autopsy was performed

Alive Dead p valueb

enrolled withdrawn no autopsy autopsy

n %a n %a n %a n %a

Total 1,711 288  798 247
Cohort <0.001

Original 1,106 64.6 271 93.8 590 73.9 160 64.8
Dementia status <0.001

Demented 154 9.0 18 6.2 208 26.1 87 35.2
Age, years <0.001

≤75 241 14.1 61 21.2 96 12.0 24 9.7
76–80 535 31.3 86 29.9 180 22.6 40 16.2
81–85 534 31.2 76 26.4 221 27.7 55 22.3
85–90 292 17.1 50 17.4 183 22.9 69 27.9

>90 109 6.4 15 5.2 118 14.8 59 23.9
Gender 0.001

Female 1,049 61.3 189 65.6 430 53.9 143 57.9
Missing 1 0 0 0

Race 0.001
Nonwhite 181 10.6 35 12.2 72 9.0 7 2.8
Missing 1 0 0 0

Education <0.001
<High school 151 8.8 54 18.8 143 17.9 29 11.7

High school 403 23.6 81 28.1 224 28.1 61 24.7
Some college 752 44.0 128 44.4 326 40.9 106 42.9
College graduate 402 23.5 25 8.7 105 13.2 51 20.6
Missing 3 0 0 0

Marital status 0.037
Married 773 45.2 139 48.3 321 40.2 102 41.3
Missing 1 0 0 0

Depression 0.028
Depressed 211 12.3 49 17.0 128 16.0 37 15.0

APOE �4 allele 0.604
None 1,135 74.3 192 77.4 535 75.2 165 72.4
At least one 392 25.7 56 22.6 176 24.8 63 27.6
Missing 184 40 87 19

a Percentages based on nonmissing values. b �2 test for association between covariate and four-group classification.
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populations. An alternative approach is to directly mod-
el the difference between the sampling and target popu-
lations, averaging over the three mechanisms. The first 
approach is appealing in that it adopts a natural per-
spective towards the underlying selection mechanisms. 
The second approach is appealing in that it is simpler 
analytically, requiring fewer modeling assumptions and 
only a single set of weights. In both cases, however, the 
aim is to develop a set of weights that permit the inter-
pretation of results from the autopsy sample to the tar-
get population (rather than the sample population). As 
part of future work, we plan on exploring the potential 
bias-variance trade-off associated with separating out 
the three models, as well as implications for interpreta-
tion of the corresponding target populations. Here, for 
simplicity, we take the sampling population (i.e. those 
for whom R = 1) to be the ‘dead-autopsy’ participants, 
while the target population is the ‘alive-enrolled’ popu-
lation. Consequently, the selection models presented 
here are for  � (  �  ̂     ) = P(R = 1  �  L) where R = 0/1 denotes 
membership to the ‘alive-enrolled’/‘dead-autopsy’ sub-
samples, respectively.

  Following the framework of Hernán et al.  [6] ,  figure 4  
provides a directed acyclic graph indicating various rela-
tionships between variables associated with dementia 
and selection. For clarity, confounders of the NP risk fac-
tor-dementia association have been separated into two 
groups; those that further act as predictors of the selec-
tion mechanism denoted C 0 , and those that do not, de-
noted C 1 . Finally, Z denotes covariates that are risk fac-
tors for selection but not for dementia. From  figure 4  we 
see that L = (Y, C 0 , Z); it is clear that both of the Hernán 
et al.  [6]  criteria apply, indicating potential selection 
bias.

   Table 4  considers two models for selection: a ‘saturat-
ed’ model based on the published literature and a ‘sparse’ 
model, which only includes those covariates in  table 4  
found to be statistically significant (at the  �  = 0.05 level). 
The results indicate cohort membership; age (see  fig. 5 ), 
race and gender are statistically significantly associated 
with selection (i.e., R = 1). Further, dementia status (the 
outcome for the main analyses) was found to be highly 
associated with selection, with demented individuals 
more likely to be in the ‘dead-autopsy’ group with an es-
timated odds ratio of 5.84 (95% CI 4.16, 8.19).

Table 3. NP risk factors according to dementia status at death, together with results from an unweighted log-
linear model

 Dementia status Unweighted analysisb

nondemented demented RR 95% CI p value

 n %a n %a

Total 127 87
Braak stage

0–IV 121 95.3 42 48.8 REF
V or VI 6 4.7 44 51.2 3.06 2.18, 4.29 <0.001
Missing 0 1

Cerebral microinfarcts
≤2 118 92.9 62 72.1 REF
>2 9 7.1 24 27.9 2.21 1.59, 3.06 <0.001
Missing 0 1

Neocortical Lewy bodies
0 112 95.7 73 90.1 REF

≥1 5 4.3 8 9.9 1.84 0.90, 3.79 0.096
Missing 10 6

Cystic infarcts
0 93 78.2 56 65.1 REF

≥1 26 21.8 30 34.9 1.41 1.01, 1.97 0.043
Missing 8 1

REF = Reference group.
a Percentages based on nonmissing values. b Adjusted for cohort, age, gender, race, education and APOE.
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  Weighted Analyses 
 Based on the selection models reported in  table 4 , we 

evaluated estimated weights for each of the 214 individu-
als in the autopsy sample. As outlined above, the intro-
duction of  w  i (  �  ̂     ) into the estimating equation serves to 
up-weight each individual’s contribution to create a pseu-
dosample. Note, each of the  w  i (  �  ̂     ) weights are greater than 
1.0, since the estimated probabilities from the selection 
model will be between 0 and 1. In this setting the pseu-
dosample may be viewed as a random sample from a hy-
pothetical population of ‘Alive-Enrolled’  and  ‘Dead-
Autopsy’ individuals (i.e. a population for which R = 0 or 
R = 1). This is the usual formulation of the pseudosample 
for missing data problems, where one is interested in re-
covering the analysis one would have performed had all 
members of the sample been fully observed. For the anal-
yses presented here, we identified the target population 
as the ‘alive-enrolled’ population. To recover an analysis 
based solely on these individuals, one must adjust the 
pseudosample to focus on this subgroup (i.e. one for 
which R = 1). This is achieved via an analogous down-
weighting using the same fitted probabilities. The com-

bination of the two weights serves to bridge the gap be-
tween the sampling and target populations; the corre-
sponding estimating equation is equivalent to equation 5, 
but with an alternative weight of  w̃i( �  ̂  ) = (�i( �  ̂  )–1 – 1), 
rather than wi ( �  ̂  ).

   Table 5  reports the results of the weighted analyses; a 
comparison with  table 3  indicates substantial changes in 
RR estimates when one adjusts for selection bias using 
weighted estimating equations. For example, the weight-
ed analysis using the saturated selection model yields a 
point estimate of 7.81 for Braak stage compared to 3.06 
for the unweighted analysis. Similarly, the RR estimate 
for cerebral microvascular infarcts increased from 2.21 to 
4.78. Comparison between the results based on the satu-
rated and sparse selection models indicates robustness of 
the RR estimates to the specification of the selection 
model.

  Also shown in  table 5  are naïve 95% CIs and p values, 
which ignore estimation of the weights, as well as the BCa 
bootstrap intervals and p values. The naïve 95% CIs based 
on the saturated model suggest a statistically significant 
association for neocortical Lewy bodies and cystic in-
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  Fig. 4.  Directed acyclic graph showing the conditional indepen-
dencies for the dementia and selection models. Note, NP risk fac-
tors (X) are only observed on the autopsy sample; all other covari-
ates are observed on all individuals in ACT. Confounders are split 
into two groups: those that influence selection (C 0 ) and those that 
do not (C 1 ). 

  Fig. 5.  Estimated odds ratio association (with pointwise 95% CI) 
between age and risk of ‘selection’, based on the saturated selec-
tion model. The functional form of the association is modeled via 
a natural smoothing spline (4 degrees of freedom), with age 85 
years taken as the referent age group.     
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Table 4. Logistic regression selection models, each modeling the probability of being in either the ‘alive-en-
rolled’ or ‘dead-autopsy’ groups

Saturated model Sparse model

 OR 95% CI p value OR 95% CI p value

Cohort
Original REF
Expansion 0.29 0.18, 0.47 <0.001 0.29 0.18, 0.48 <0.001

Dementia status
Nondemented REF REF
Demented 5.84 4.16, 8.19 <0.001 5.76 4.12, 8.07 <0.001

Agea see figure 5 <0.001 <0.001
Race

White REF REF
Nonwhite 0.32 0.14, 0.73 0.006 0.32 0.14, 0.72 0.006

Gender
Male REF
Female 0.68 0.48, 0.95 0.025 0.67 0.49, 0.91 0.011

Education
High school or less REF
Some college 1.22 0.88, 1.69 0.227

Marital status
Not married REF
Married 1.06 0.75, 1.51 0.749

Depression
Not depressed REF
Depressed 1.26 0.83, 1.91 0.277

REF = Reference group.
a Age modeled via a natural smoothing spline with 4 degrees of freedom.

Table 5. RR estimates based on weighted estimation equations, together with inference using naïve methods 
(i.e. standard sandwich-based standard errors) and inference using the BCa bootstrap

RRa Naïve analysis BCa bootstrap

95% CI p value 95% CI p value

Saturated selection model
Braak stage 7.81 4.05, 15.04 <0.001 3.10, 14.75 <0.001
Cerebral microinfarcts 4.78 2.41, 9.51 <0.001 2.07, 10.13 <0.001
Neocortical Lewy bodies 3.63 1.15, 11.43 0.028 0.45, 19.45 0.170
Cystic infarcts 2.12 1.09, 4.12 0.027 0.94, 4.39 0.068

Sparse selection model
      Braak stage 7.87 4.09, 15.15 <0.001 3.24, 14.81 <0.001
      Cerebral microinfarcts 4.54 2.34, 8.81 <0.001 2.01, 9.29 <0.001
      Neocortical Lewy bodies 3.21 0.86, 11.94 0.082 0.29, 18.00 0.266
      Cystic infarcts 2.10 1.09, 4.05 0.026 0.95, 4.26 0.065

a Adjusted for cohort, age, gender, race, education and APOE.
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farcts, in contrast to the unweighted analyses. There is 
some sensitivity for neocortical Lewy bodies to the selec-
tion model, although given the infrequency of the expo-
sure this could reasonably be attributed to a lack of preci-
sion. Across all analyses, the bootstrap estimates of
uncertainty are greater than those provided by naïve 
analyses; the increase in width of the bootstrap 95% CIs 
ranges from approximately 20 to 100%. For both neocor-
tical Lewy bodies and cystic infarcts, the increase in un-
certainty for analyses based on the combined original 
and expansion cohorts leads to the estimated associations 
no longer being statistically significant. Both Braak stage 
and cerebral micovascular infarcts remain highly statis-
tically significant.

  Discussion 

 In settings where observed data may not be representa-
tive of the target population, Hernán et al.  [6]  provide a 
useful framework with which one can establish if selec-
tion bias is present and, in particular, if  �  *   0   � . Essen-
tially, the characterization reduces to whether or not entry 
into the study (or equivalently the value of R) is jointly 
governed by the outcome and exposure of interest (or 
causes of each). We find distinguishing the (potentially 
hypothetical) sampling population from the target popu-
lations to be a useful, parallel characterization of potential 
selection bias. A third characterization is to consider the 
hypothetical study one would have conducted, had there 
not been any selection. The analyses presented here, for 
example, could be interpreted as mimicking a hypotheti-
cal cross-sectional analysis of individuals currently alive. 
An alternative would be to view the entire initial ACT co-
hort as the target population; the corresponding hypo-
thetical study would be a longitudinal study where we ob-
serve all the NP measurements at baseline and follow in-
dividuals in time, recording incident dementia/AD. We 
are currently conducting a comprehensive analysis that 
considers such a hypothetical longitudinal study and 
moves beyond the cross-sectional associations reported 
here. This analysis will include separate assessments of 
the various underlying selection mechanisms (withdraw-
al, death and consent to autopsy), permitting the evalua-
tion of associations corresponding to the full ACT cohort. 
Separate models for each of the mechanisms, however, re-
quire careful thought and development.

  Substantively, we found that adjustment for selection 
bias strengthened the magnitude of associations observed 
between NP measurements and risk of dementia. As with 

all analyses of autopsy data, however, the interpretation 
of results is limited by only knowing exposure status after 
death, and for cases after the outcome has been observed. 
However, for both AD and dementia there is evidence 
that the pathogenesis includes preclinical stages suggest-
ing a ‘chronic disease’ model. For example, studies have 
shown the presence of abundant Alzheimer neuropathol-
ogy in asymptomatic elderly individuals at least a decade 
before AD dementia is common  [18, 19] , while positron 
emission tomography studies have shown regional brain 
hypometabolism in young individuals at risk with a
pattern similar to that observed in AD/dementia  [20] . 
Further, recent studies with Pittsburgh Compound-B 
[(11C)PIB], a positron emission tomography imaging 
tracer that binds to amyloid plaques in vivo, suggest Alz-
heimer neuropathology occurs in both the preclinical 
state and in mild cognitive impairment  [21, 22] .

  The framework and ideas presented here are broadly 
applicable, and likely useful, in more general settings of 
studies of neurological disorders  [23, 24] . We note, in par-
ticular, that the choice and interpretation of R (and its 
substrata, 0 vs. 1) will depend heavily on the study design, 
as well as the specific question under investigation. Rei-
del-Heller et al.  [25] , for example, examine selection bias 
associated with recruitment procedures in a study of the 
prevalence of dementia. Information based solely on face-
to-face interviews among community-dwelling individ-
uals yielded a prevalence of 5.3%, whereas incorporating 
additional information from proxy interviews and insti-
tutionalized individuals increased the prevalence to 
10.5%. This raises the important point that selection bias 
must be with respect to some underlying population of 
interest and that a careful interpretation of estimates 
may, in fact, indicate no bias. The estimated prevalence 
of 5.3%, for example, can reasonably be interpreted as 
pertaining to the rate among community-dwelling indi-
viduals; with respect to that population, differences in 
reported estimates may not be relevant.

  Finally, we emphasize that when attempting to adjust 
for potential selection bias, the MAR assumption is cru-
cial. Indeed there is an important interplay between the 
question under investigation, the definition of the target 
population, the MAR assumption and the ability to ade-
quately estimate appropriate weights. Unfortunately, the 
MAR assumption cannot be verified empirically and its 
validity relies exclusively on scientific input and knowl-
edge of the target population. For the ACT analyses pre-
sented here, we were able to take advantage of previously 
published work on factors related to selection in autopsy-
based studies of dementia, together with the comprehen-
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sive data collection of the parent cohort study. More gen-
erally, we note that selection bias and traditional con-
founding present similar challenges in observational 
studies, both requiring careful thought at the planning 
stage. We therefore encourage researchers to incorporate, 
as part of their sampling plans, data collection schemes 
aimed directly at understanding and characterizing po-
tential sources of selection bias. Practically, this involves 
a priori identifying the components of L, and ensuring 
they are observed on all individuals.

  Conclusions 

 Although population-based NP studies of dementia 
have a strong potential to suffer from selection bias, pub-
lished reports appear not to have attempted to generalize 

their results beyond their respective study samples. This 
paper reviews and demonstrates methods for identifying 
potential selection bias, as well as the use of weighted es-
timating equations to generalize results to a target popu-
lation of scientific interest. The ACT example presented 
serves to illustrate some of the key concepts and, given 
the current state of the literature on autopsy studies of 
dementia, provides an important step forward. The next 
few years should see additional developments in this 
overlooked but important area.
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