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Summary
Ribosomes and spliceosomes are ribonucleoprotein nanomachines that catalyze translation of mRNA
to synthesize proteins and splicing of introns from pre-mRNAs, respectively. Assembly of ribosomes
involves more than 300 proteins and RNAs, and that of spliceosomes over 100 proteins and RNAs.
Construction of these enormous ribonucleoprotein particles (RNPs) is a dynamic process, in which
the nascent RNPs undergo numerous ordered rearrangements of RNA-RNA, RNA-protein, and
protein-protein interactions. Here we outline similar principles that have emerged from studies of
ribosome and spliceosome assembly. Constituents of both RNPs form subassembly complexes,
which can simplify the task of assembly and segregate functions of assembly factors. Reorganization
of RNP topology, and proofreading of proper assembly, are catalyzed by protein- or RNA- dependent
ATPases or GTPases. Dynamics of intermolecular interactions may be facilitated or regulated by
cycles of posttranslational modifications. Despite this repertoire of tools, mistakes occur in RNP
assembly or in processing of RNA substrates. Quality control mechanisms recognize and turnover
misassembled RNPs and reject improper substrates.

Introduction
Ribosomes and spliceosomes are two of the best characterized large RNPs, multimolecular
complexes that contain both RNA and protein constituents. Mature ribosomes in eukaryotes
consist of two RNP subunits, the large subunit containing 47 different proteins and three
rRNAs, and the small subunit containing 32 proteins and one rRNA. Assembly of these
molecules into ribosomes begins with synthesis of rRNA in the nucleolus, followed by proper
folding of nascent rRNA, to enable its modification (methylation or pseudouridylation),
processing by exo- and endonucleases, and binding to ribosomal proteins. More than 180
assembly factors and 100 small nucleolar RNPs (snoRNPs) associate with pre-rRNA to
catalyze ribosome assembly [1]. The snoRNPs catalyze posttranscriptional modifications of
pre-rRNA, primarily at sequences that ultimately form or surround the active site of mature
ribosomes. Each snoRNP contains four core proteins (including the modifying enzyme) plus
a unique snoRNA, which targets the modifying enzyme via snoRNA-pre-rRNA basepairing
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[2]. After each assembly factor and snoRNP completes its function, it must somehow dissociate
from pre-rRNPs, to be recycled for construction of other ribosomes. Ribosomal proteins also
play a role in assembly of ribosomes, and remain integral components of ribosomes, together
with rRNA, to also function in the dynamics of protein synthesis.

Preribosomes traffic from the nucleolus through the nucleoplasm to the cytoplasm, undergoing
additional steps in maturation at each point, to finally assemble into functional subunits (Figure
1). In order to be exported to the cytoplasm, preribosomes must be sufficiently small to fit
through nuclear pores. Presumably this is achieved by release of most of the assembly factors
prior to nuclear export, as well as changes in pre-rRNP conformation [3,4]. Both pre-40S and
pre-60S particles are directed specifically to and through nuclear pores by multiple export
receptors, including Crm1/Xpo1 in concert with Ran-GTP [5–8]. Successful navigation
through the hydrophobic environment of FG repeats of nucleoporins, by preribosomes likely
to contain a hydrophilic exterior, may be aided by binding of the alpha-helical HEAT repeat
protein Rrp12 to the surface of pre-rRNPs [9].

Spliceosomes contain five small nuclear ribonucleoprotein particles (snRNPs) plus more than
100 other splicing factors [for review, see 10 and references therein]. During each cycle of
splicing, these factors assemble de novo on the pre-mRNA substrate. An intron is defined by
sequences at the 5′ splice site, the branch site, and the 3′ splice site. These sequences participate
in the two transesterification reactions in splicing—5′ splice site cleavage and exon ligation.
After catalysis, the spliceosome dissociates the products and disassembles, so that the
spliceosome can be reused in splicing of another pre-mRNA (Figure 2).

Here we outline common principles underlying construction of these complex RNPs, revealed
by studies of the assembly of ribosomes and the assembly and function of spliceosomes.

Coupling transcription to assembly of RNPs and processing of RNAs
Pre-rRNA processing and ribosome assembly, as well as pre-mRNA processing and
spliceosome assembly, occur co-transcriptionally and are physically linked to transcription of
the respective RNAs. Proteins involved in 5′ mRNA capping, pre-mRNA splicing, and 3′-end
formation of mRNA bind to RNA polymerase II, transcription factors or chromatin. Certain
ribosome assembly factors bind not only to pre-rRNA but also to rDNA chromatin. These
physical interactions between the transcription and RNA processing machinery enable
reciprocal, functional coupling of transcription, RNA processing, and RNP assembly. These
concepts have been reviewed recently [11,12], and will not be discussed further in this review.

Subcomplexes and hierarchical assembly of RNPs
The complexity of assembling the enormous ribosome and spliceosome RNPs is reduced in
part by preassembling subcomplexes. More than a dozen subassembly complexes of
preribosomal molecules have been discovered [reviewed in 1,13]. Five of these subcomplexes,
t-UTP/UTP-A, UTP-B, UTP-C, the Mpp10 complex, and the U3 snoRNP, form independently
of each other, then associate with the pre-rRNA in a hierarchical, stepwise fashion to complete
the 90S preribosome [14••]. The tUTP complex proteins, which bind to rDNA and are necessary
for transcription of pre-rRNA [15], are the first assembly factors to bind to pre-rRNA. The
remaining complexes assemble via two independent pathways: the U3 snoRNP, UTP-B
complex, and Mpp10 complex bind to rRNA after tUTP, to form a stable intermediate. The
UTP-C complex assembles in a parallel pathway.

Many of the proteins in these SSU processome subcomplexes contain predicted protein-protein
interaction domains or RNA binding motifs, and none contain predicted enzymatic motifs.
Thus, interactions established through these motifs may enable formation of an RNP scaffold
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upon which GTPases, ATPases, and nucleases can act to reconfigure the preribosome to
catalyze rRNA modification and processing and particle maturation. Stepwise assembly of
such large and dynamic RNPs may also provide the advantage of temporally and spatially
separating different steps in their biogenesis [14••].

Identification of subcomplexes has provided clues about cofactors of assembly factors and
substrates upon which they might act. For example, the discovery of the Rpf2 subcomplex
containing the assembly factors Rpf2, Rrs1, ribosomal proteins rpL5 and rpL11, and 5S rRNA
helped uncover the mechanism for assembly of 5S rRNA into preribosomes [16•]. Three of
the four rRNAs within mature ribosomes are derived by processing of a single primary
transcript, within the assembling particles. However, 5S rRNA is transcribed separately. Rpf2
and Rrs1 were shown to recruit 5S rRNA as well as ribosomal proteins rpL5 and rpL11 into
90S preribosomes. Failure to recruit these molecules blocks maturation of preribosomes several
steps later in the assembly pathway. Because the abortive assembly intermediates lack 5S rRNA
and rpL10, they cannot bind to nuclear export receptors Mex67-Mtr2 [8] or Nmd3 [5],
respectively, and therefore accumulate in the nucleus (Figure 3). This example reminds us how
assembly and export are coupled by creation of binding sites for receptors during biogenesis
of the pre-rRNPs.

As with ribosome assembly, spliceosome assembly is reduced in complexity through the
formation of subcomplexes. For example, the five snRNPs are observed as independent
particles. These particles can be reduced even further; the SF3a and SF3b components of the
U2 snRNP form stable subcomplexes. Conversely, the snRNPs also form higher order
structures. Before interacting with pre-mRNA, the U4 snRNP interacts with the U6 snRNP via
extensive base pairing between the snRNAs and then this complex binds to the U5 snRNP to
form the U4/U6.U5 snRNP. Protein complexes also feature prominently. For example, a large
protein complex, termed the Prp19p complex or NTC, has recently been found to be a major
salt-stable component of purified, catalytically active spliceosomes [17••]. Experimentally, the
U1, U2, U4/U6.U5 snRNPs and NTC were first observed to bind a pre-mRNA sequentially,
but subsequently a U1.U2.U4/U6.U5 snRNP, or penta-snRNP, that includes the NTC was
discovered, potentially a “holospliceosome” [18]. While compelling, the penta-snRNP has not
yet been observed in vivo [19,20] and is not essential in vitro for early spliceosome assembly
steps [21]. Regardless, preassembly of subcomplexes simplifies spliceosome assembly.

Several core splicing factors likely function as scaffolds both to recruit other splicing factors
and to time their recruitment. For example, the C-terminal domain of the U5 snRNP protein
and DExD/H box ATPase Brr2 interacts with at least five splicing factors that bind to the
spliceosome at different stages [22]. Because some of these interactions with Brr2 are
overlapping, Brr2 may necessitate sequential interactions with these factors. Additionally, Brr2
as an ATPase may assume alternative conformations during the splicing cycle that favor one
interaction over another, and thereby time the recruitment and function of specific splicing
factors. While assembly and processing of a genuine pre-mRNA appears to be a largely ordered
process, the spliceosome can also traverse alternative pathways – especially in rejecting and
discarding incorrect substrates (see below).

NTPases and dynamic rearrangements involving RNA and protein
A number of GTPases and ATPases are required for assembly of ribosomes and spliceosomes
[23•,24]. Cycles of NTP binding and hydrolysis could drive assembly forward by several
different mechanisms to recruit or release factors [23•]: (1) by direct binding to a protein to
stabilize or destabilize its association with preribosomes, (2) by direct catalysis of
conformational switches of RNA or RNP structures in preribosomes, or (3) by functioning as
timers for assembly or acting as placeholders to prevent premature association of factors.
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One example is the GTPase Bms1, which binds to the putative endonuclease Rcl1, and is
required to deliver Rcl1 into preribosomes [23•,25,26]. Studies of the binding of Bms1 to its
ligands in the presence of GTP or GDP led to the following model: binding of Bms1-GDP to
Rcl1 could lead to exchange of GDP for GTP and subsequent association of Bms1-GTP-Rcl1
with pre-rRNPs containing U3 snoRNA. Entry into preribosomes or subsequent
rearrangements of the pre-rRNPs, including dissociation of U3 snoRNA, may trigger the
intramolecular GAP of Bms1 to activate GTP hydrolysis. This would enable release of Bms1
from Rcl1, strengthen association of Rcl1 with preribosomes, and trigger subsequent pre-rRNA
processing.

A second example is Rea1, one of three AAA ATPases that catalyze release of assembly factors
from preribosomes [27–29]. Rea1 is found in late nucleoplasmic pre-60S particles, and
functions in late steps of pre-rRNA processing and subsequent nuclear export of pre-rRNPs
[29]. Rea1 may remodel pre-rRNPs to expose the 3′ ends of 7S pre-rRNA to the exosome
complex of nucleases for 3′ trimming. An important breakthrough was the demonstration of
factor release activity by an ATPase in vitro [29]. When pre-60S particles were purified in the
presence of ATP, Rea1 and another assembly factor Nug2 dissociated from preribosomes, but
not when nonhydrolyzable analogues of ATP were used or ATP was omitted.

Nineteen DExD/H-box proteins (DBPs) are involved in ribosome biogenesis in yeast [24].
Likely substrates for these potential RNA helicases are the snoRNAs. Indeed, two DEAD-box
proteins, Has1 and Dbp4, have been implicated in releasing snoRNAs from preribosomes
[30,31]. Inactivation of Dbp4 or Has1 by mutation of residues necessary for ATP binding or
hydrolysis prevents release of several different snoRNAs from pre-rRNPs. Depletion of each
of the remaining 17 preribosomal DBPs results in defects at different steps in pre-rRNA
processing. An important next step will be to discover the specific substrates of these 17 DBPs,
either RNA helices to be unwound, RNP substructures to be remodeled, or proteins to be
recruited into or released from pre-rRNPs.

At least eight DExD/H box ATPases are also required for spliceosome assembly and pre-
mRNA processing. During splicing, the spliceosome dramatically rearranges RNA-RNA and
RNA-protein interactions within the spliceosome or involving the substrate. The DExD/H box
ATPases are strong candidates for, or known catalysts of, these key transitions. The DEAD
box ATPase Prp5 promotes an intramolecular rearrangement of U2 stem IIc to stem IIa that is
required for binding of the U2 snRNP to the pre-mRNA [32•]. After the first cleavage event,
the DEAH box ATPase Prp16 has been implicated in toggling this switch again from the U2
stem IIc state to the stem IIa state, suggesting a role for Prp16 in modulating substrate-
spliceosome interactions during the catalytic phase of splicing [32•,33•]. After exon ligation,
the DEAH box ATPase Prp22, a 3′→5′ unwindase, promotes release of the mRNA product
and appears to do so by binding downstream of the exon junction and then translocating
upstream along the mRNA [34••]. Each of these ATPases has been implicated in promoting
the fidelity of pre-mRNA splicing (see below). Suggesting an explicit parallel with ribosome
assembly, the DEAH box ATPase Prp43 is required for both pre-mRNA splicing and pre-rRNA
processing [35–37]. In splicing, the G-patch protein Ntr1 recruits and catalytically activates
Prp43 to promote intron release [38,39•,40]. The G-patch, a short glycine-rich sequence, is
found in a number of RNA binding proteins, including several that interact with DBPs [41].
In ribosome assembly, a related G-patch protein may similarly recruit and activate Prp43 to
promote pre-rRNA processing and ribosome assembly. The dual role for Prp43 in splicing and
ribosome assembly could provide a mechanism for coupling ribosome biogenesis with gene
expression.

The only integral spliceosomal DExD/H box ATPase, Brr2, is regulated by the sole
spliceosomal GTPase, Snu114. This ATPase promotes both spliceosome assembly, by
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unwinding base-paired U4/U6, and spliceosome disassembly, perhaps by unwinding the
mutually exclusive and catalytically essential U2/U6 interaction, and thereby likely
necessitates tight regulation. Functioning as a classic G-protein switch, Snu114 in the GTP
state promotes Brr2 function while in the GDP state, represses Brr2 function [42•]. While it is
currently unclear what signals control this switch, they likely include the splicing substrate and
the snRNAs, which together can specify the stage in the splicing cycle and thereby dictate a
requirement for activating Brr2. In the future, it will be interesting to determine whether Snu114
also responds to signals outside of the spliceosome and/or whether Snu114 sends signals
beyond the spliceosome. Intriguingly, the close paralog of Snu114 corresponds to the
translation elongation factor EF-2, suggesting another connection between the spliceosome
and the ribosome [43,44]. While EF-2 utilizes GTP hydrolysis to promote work, it is not yet
clear if Snu114 also functions in this way.

Posttranslational modification: another mode to power dynamics
Cycles of posttranslational modifications of preribosomal or spliceosomal proteins add an extra
layer of flexibility and complexity to the dynamics of RNP biogenesis. For example, an isoform
of casein kinase I, Hrr25, is present in pre-40S and pre-60S ribosomal particles and is necessary
for their maturation. Phosphorylation of assembly factor Tif6 by Hrr25 is required for
production of 60S subunits [45]. It remains to be determined whether function of Tif6, or its
association with or dissociation from preribosomes, depends on its state of phosphorylation.
Hrr25-dependent phosphorylation followed by dephosphorylation of ribosomal protein S3, is
necessary for proper integration of rpS3 into preribosomes, and induces remodeling of the
structure of pre-40S particles, perhaps to enable export through the nuclear pore [3••].

Analysis of the SUMO proteome revealed that a number of ribosome assembly factors,
especially those functioning in the nucleolus or nucleoplasm, are modified by sumoylation
[reviewed in 46•]. In addition, screens for mutants defective in ribosome biogenesis, including
those impaired in nuclear export of pre-rRNPs, identified mutants in the SUMO modification
pathway [46•]. Interestingly, the upl1- mutant, defective in the SUMO deconjugating enzyme
that is associated with nuclear pores, exhibited genetic interactions with the mtr2-33 mutant
defective in pre-60S subunit export. By preventing incorrect protein-protein interactions,
sumoylation may enable orderly arrangement of molecules within assembling RNPs.
Desumoylation may be important for efficient nuclear export of nascent ribosomes.

As with ribosome assembly and pre-rRNA processing, efficient spliceosome assembly and
pre-mRNA processing require orderly progression through the splicing pathway.
Posttranslational modifications are emerging as a mechanism to establish order. Cycles of
phosphorylation and dephosphorylation have long been implicated in controlling the splicing
cycle. Recently, direct evidence has revealed a requirement for PP1/PP2A phosphatases in the
exon ligation step of splicing [47•]. Intriguingly, this requirement correlates with
dephosphorylation of the GTPase U5-116 kDa (hSnu114) and the HEAT-repeat protein
SAP155. In each case, dephosphorylation may regulate conformational rearrangements, given
the switch like nature of G-proteins and the conformational flexibility of HEAT-repeat
proteins. Ubiquitylation has also been implicated in splicing and the first direct evidence
revealed conjugation of ubiquitin to Prp8 [48•], a central U5 snRNP component that interacts
with all consensus sequences in the pre-mRNA [reviewed in 49]. The ubiquitylation state of
Prp8, like the guanine nucleotide bound state of Snu114, regulates Brr2-dependent unwinding,
suggesting that ubiquitylation also regulates conformation rearrangements. Ultimately, it will
be important to determine what regulates these regulators, to understand how order is
established in ribosome biogenesis and spliceosome assembly and function.
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Quality control
In many mutants defective in ribosome assembly, pre-rRNAs do not accumulate to levels
predicted if assembly intermediates were completely stable. Rather, these pre-rRNAs undergo
significant turnover [reviewed in 1]. These results indicated the existence of a surveillance
machinery that could recognize and destroy misassembled preribosomes. Indeed, the nuclear
exosome, a complex of ten nucleases that can process or degrade nuclear RNAs, turns over
pre-rRNAs when ribosome assembly is blocked [50,51••]. These RNAs targeted for turnover
include aberrant processing intermediates that form when pre-rRNA cleavage is blocked
[50]. Likewise, normal 27S pre-rRNAs are degraded by the exosome in mutants blocked in
late steps of pre-60S maturation and nuclear export [51••], or in cells treated with 5-FU, an
inhibitor of pre-60S subunit maturation [52].

The TRAMP nuclear polyadenylation complex, which includes the polyA polymerase Trf4,
the zinc knuckle protein Air2, and the DEAD-box protein Mtr4, also is required for pre-rRNA
degradation in vivo [53]. This purified complex can add polyA to RNA in vitro, perhaps to
make it a better substrate for the exosome, and it also activates the processive activity of the
exosome. Consistent with this role of TRAMP in pre-rRNA turnover, pre-rRNAs destined for
destruction are polyadenylated in vivo [54].

Turnover of RNA in abortive ribosome assembly intermediates may occur in a discrete locale
within the nucleolus. Pre-rRNPs destined for demolition, as well as components of the exosome
and the TRAMP complex, are localized to subnucleolar foci called “No-bodies”[51••].
Formation of No-bodies requires the exosome and TRAMP complex. However, a distinct
nucleolar body containing polyA+ RNA is observed in the absence of the exosome enzyme
Rrp6 or Mtr4, but requires the presence of Trf4 [55]. It remains to be determined how abortive
intermediates are recognized for destruction. Dez and collaborators speculate that assembly
factors that fail to be released in a timely manner when assembly is aborted could recruit
TRAMP or the exosome [51••].

As in pre-rRNA processing, exonucleases appear to promote resolution of stalled spliceosomes
through turnover of the substrate; in addition, exonucleases turnover incorrect substrates.
Substrates stalled by cis or trans mutations can be targeted for turnover by nuclear
exonucleases, particularly the exosome [56]. Additionally, incorrect pre-mRNA substrates that
fail to engage the spliceosome are exported to the cytoplasm where they are subject to nonsense-
mediated decay. Remarkably, incorrect intermediates are also turned over by cytoplasmic
nucleases, particularly Xrn1, implicating an energy-dependent mechanism for rejecting,
dissociating and discarding incorrect substrates [57].

Indeed, the spliceosomal DExD/H box ATPases have been implicated in establishing fidelity
through kinetic proofreading in which the DExD/H box protein utilizes the energy of ATP to
compete with the pathway to splicing products (Figure 4, reviewed in 58). In this model, the
spliceosome establishes specificity by favoring a correct substrate on the path to products and/
or favoring incorrect substrates on the competitive branch, which leads to rejection. While the
spliceosomal DExD/H box ATPases promote splicing of a correct substrate, they can
antagonize splicing of an incorrect substrate if they act prematurely. In this way, Prp5
proofreads formation of the U2/branch site interaction [59•], Prp16 proofreads lariat
intermediate formation [60,61] and Prp22 proofreads exon ligation [62••]. Perhaps the
numerous ribosomal DExD/H box ATPases function similarly to proofread rearrangements
and RNA processing steps in ribosome biogenesis. Given the role of spliceosomal DExD/H
box ATPases in repressing incorrect splice sites, it will be interesting to determine whether
these factors can also regulate splice site choice to control alternative splicing.
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Neither Prp16 nor Prp22 reject incorrect substrates by dissociating the substrates, which
requires additional factors [61,62••]. Indeed, the spliceosome appears to reject substrates in
part by rearranging and thereby sequestering the substrates in effectively inactive
conformations [33,61]. After rejecting substrates at the stage of 5′ splice site cleavage, the
spliceosome rearranges to a conformation that resembles the exon ligation conformation [61].
Conversely, after rejecting substrates at the stage of exon ligation, the spliceosome can
rearrange back to an intermediate state or further to the 5′ splice site cleavage conformation
[33,61]. Moreover, consistent with the conservation of phosphodiester bonds in splicing, the
spliceosome can reverse both steps of splicing [63•], suggesting that splicing could improve
fidelity through self-correction. Unless pre-rRNA processing similarly conserves
phosphodiester bonds, errors in pre-rRNA processing are likely catastrophic.

An evolutionary connection between the spliceosome and the ribosome?
The evidence that the catalytic function of the spliceosome evolved from self-splicing group
II introns is compelling [64 and references therein]. In particular, there are strong similarities
of group II intron domains V and VI with U6 and U2 snRNAs, respectively. However, the
origins of the other snRNAs and the spliceosomal cofactors is less clear. An attractive
hypothesis is that the evolving spliceosome borrowed activities already established to support
the assembly and function of a mature ribonucleoprotein machine – the ribosome. For example,
U4 snRNA shares intriguing similarities with the box C/D snoRNAs. Specifically, both bind
Snu13 and while box C/D snoRNAs bind Nop56 and Nop58, U4 binds the highly homologous
Prp31 [65 and references therein]. Perhaps in the evolution of the spliceosome, a snoRNA that
functioned to modify rRNA evolved a separate function in base pairing with the catalytic
domain of a group II intron to downregulate its activity, giving rise to base pairing of U4 with
the catalytically central U6 snRNA. Given the role of Prp43 at the earliest stages of pre-rRNA
processing when snoRNPs modify pre-rRNA [35–37], the recruitment of Prp43 to the evolving
spliceosome may also be rationalized by an evolutionary connection between U4 snRNA and
box C/D snoRNAs. Additionally, U5 snRNA shares similarities with tRNA [66], the GTPase
Snu114 shares similarities with EF-2 [43], and the DExD/H box ATPase Brr2 shares
similarities with Slh1, a protein involved in repressing translation of mRNAs lacking a polyA
tail [67]. Deeper studies will reveal whether such parallels hold at a mechanistic level and
provide support for a role for ribosomal factors in taming group II introns and evolving a mature
spliceosome.

Conclusions
Many challenges lie ahead to develop a higher resolution view of the dynamics of RNP
assembly. Further experiments will reveal additional interactions between components of
assembling ribosomes and spliceosomes and the order in which these encounters occur. A
critical next step is to determine how the order is defined – whether by obligatory, sequential
steps and/or by the relative rates of different reactions that define a landscape of kinetically
accessible pathways. To better understand how NTPases drive assembly or monitor substrate
transitions, we will need to identify their cofactors and targets and define their enzymology,
both outside of an RNP and within an RNP. We will need to define which DBPs are RNPases
and which are helicases and determine if any function simply as ATP-dependent RNA-binding
proteins. We will need to discover which GTPases perform work and which act as molecular
switches and then elucidate their mechanisms. We are only beginning to appreciate the impact
of posttranslational modifications on RNP assembly and we need to reveal their frequency,
timing, and mechanistic roles. Studies of splicing have largely preceded those of ribosome
biogenesis and in many cases will inform future studies. As research on ribosome biogenesis
blossoms, it should in turn guide future studies in splicing.
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Fig. 1.
Maturation of preribosomes in Saccharomyces cerevisiae. Ribosome biogenesis begins in the
nucleolus, where pre-rRNA is transcribed and packaged into the 90S pre-rRNP, together with
a subset of ribosomal proteins and ribosome assembly factors. Subsequent steps of maturation
occur in the nucleolus, nucleoplasm and cytoplasm. The 90S pre-rRNP is converted into the
66S and 43S particles by cleavage within the pre-rRNA. There are at least six consecutive 66S
precursors to mature 60S ribosomal subunits, distinguished by the consecutive pre-rRNA
processing intermediates contained within them. The 43S pre-rRNP containing 20S pre-rRNA
is exported to the cytoplasm where mature 40S subunits are formed.
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Fig. 2.
The spliceosome cycle. The spliceosome assembles de novo on a pre-mRNA transcript,
catalyzes intron removal, dissociates the products and disassembles to permit recycling for
subsequent rounds of splicing. Numerous ATP-dependent steps require factors belonging to
the DExD/H box family of proteins. Revised from Cell 1998 92:315–326, with permission
from Elsevier.
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Fig. 3.
Coupling assembly of ribosomes with their export to the cytoplasm. Assembly factors Rpf2
and Rrs1 are necessary for incorporation of 5S rRNA and ribosomal proteins rpL5, rpL10, and
rpL11 into 90S preribosomes in the nucleolus. Subsequently, nuclear export receptor Mex67-
Mtr2 can bind to 5S rRNA in preribosomes, Nmd3 can bind to rpL10 in pre-rRNPs, and Arx1
can associate with nascent ribosomes, in the nucleoplasm. Mex67-Mtr2, Nmd3, and Arx1 then
function to direct preribosomes to and through nuclear pores into the cytoplasm. Nmd3 does
so via binding to Xpo1/Crm1.
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Fig. 4.
A general mechanism for proofreading RNP transitions by DExD/H box ATPases. In the
kinetic proofreading scheme, k1 (for S→P, shown in green) represents the rate of a chemical
reaction, such as exon ligation, a binding event, such as binding of U2 to the branch site
consensus, or potentially a conformation change; k2 (for S→SR, shown in red) represents the
rate of rejecting a substrate. Specific discrimination against an incorrect substrate can be
established by a slower k1 and/or a faster k2. Note that the DExD/H box ATPase expends
energy to reject an incorrect substrate but also expends energy to promote a genuine product
(P→P′), if the DExD/H box ATPase functions after, rather than before, the step under
inspection. It is currently unclear what determines whether the DExD/H box ATPase acts
before or after the proofread step and how the ATPase antagonizes splicing before while
promoting splicing after the proofread step.
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