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Abstract
This article examines the current status of Markov processes in single molecule fluorescence. For
molecular dynamics to be described by a Markov process, the Markov process must include all states
involved in the dynamics and the FPT distributions out of those states must be describable by a simple
exponential law. The observation of non-exponential first-passage time distributions or other
evidence of non-Markovian dynamics is common in single molecule studies and offers an opportunity
to expand the Markov model to include new dynamics or states that improve understanding of the
system.
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1. Introduction
Interpretation of physical phenomena in terms of Markov processes is commonplace because
of the useful and convenient properties of Markov chains. This paper examines the ways in
which the Markov property is useful for analyzing single molecule (SM) fluorescence
measurements and discusses common causes of so-called non-Markovian (or memory) effects
by reviewing recent progress in the field.

1.1. Single Molecule Fluorescence
Recent progress in SM spectroscopy has provided new insight into many previously intractable
problems.[1,2] Conformationally heterogeneous systems benefit most from SM measurements
as they often exhibit memory effects. Examples include protein folding and conformational
dynamics,[3,4,5,6,7,8,2] enzymology,[9,10,11,12] ribozyme function,[13] bacterial light
harvesting,[5,14,15] and protein-nucleic acid interactions [16].

A SM system for fluorescence experiments typically includes three components:
• a molecule of interest or assembly thereof,
• at least one fluorescent reporter dye,
• the environment of the molecule(s) and dye(s).
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Non-Markovian behavior can arise due to inadequacy of the Markov process description for
the dynamics in any one or more these three components.

Since the earliest SM measurements, spectral jumps within the inhomogeneosly broadened
distribution have indicated that the dynamics that connect the states of the ensemble often take
place on a time scale that is slow compared to the SM experiment. Such dynamics indicate that
either the dye molecule or its local environment sojourns in individual microstates,
occasionally jumping between them. This transient memory was the beginning of the study of
single molecules in terms of Markov processes.

The temporal history of a SM, in principle, contains the information required to understand the
details of these memory effects. This information is not available from traditional bulk
measurements, where the measured relaxation rate reflects dynamics averaged over the large
number of paths being traveled by the large number of molecules involved. Because the
individual paths cannot be discerned, many inequivalent dynamical models give identical
relaxations. Therefore distinguishing the individual paths or state trajectories is one of the more
promising aspects of SM measurements. Such a path can often be treated as a Markov process.

1.2. Markov processes
The term “non-Markovian process” has become jargon in so many contexts that its meaning
can be ambiguous. A process is any sequential set of events, in this case they are random. There
are two types of random events relevant to SM measurements: random transitions between
states of the system and the random observable photons. A process is considered to be
Markovian if the likelihood of the next event can be predicted based upon knowledge of the
last event only and does not depend on the knowledge of any of the prior events. (See Fig. 1A.)

(1)

If any other information is required, the process is considered to be non-Markovian.

Since the transition probability for a Markov process is only dependent on the identity of the
state, the likelihood of a transition at any instant in time is a constant, and the waiting time
between state transitions is exponential. Using kinetics language, exiting the state follows first-
order kinetics and shows an exponential distribution of first-passage times (FPT). In a Markov
process, this must hold for every state. SM measurements are valuable because they can directly
measure these FPT distributions allowing investigation of memory effects and conformational
dynamics.

In the case of single molecule fluorescence, the FPT distribution for the detection of the photons
is almost never exponential. Knowledge of the fluorescence intensity, photon arrival times, or
excited state lifetimes at one instant will not allow prediction of the likelihood of the next event
because of the dynamics of the system. The purpose of single molecule experiments is usually
to measure those dynamics that influence the fluorescence.

Even though the observable may not be a Markov chain, the underlying dynamics of the single
molecule should be representable by a Markov chain of state transition. When the state of the
system is a hidden Markov process that influences the observable (usually non-Markovian)
process of photon detection (Fig. 1B), Hidden Markov models (HMM) are a natural choice for
analyzing single molecule fluorescence data.[17,18,19] Fig. 2 shows a two-state, two-channel
HMM like that used in [17]. The hidden Markov models for a single molecule experiment must
include not only the connection between the system state and the dye fluorescence, but also
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any photophysical properties of the dye that could modulate the signal in the absence of system
fluctuations.

There are three tasks associated with HMM:[20]
• Determine the likelihood of the data given an initial model.
• Reconstruct the hidden trajectory given the data and an initial model.
• Optimize the model parameters.

To these so-called canonical problems, three more problems are needed in SM measurements:
[17,18]

• Determine the best model.
• Evaluate the completeness of state space.
• Evaluate the consistency of interstate dynamics.

The model selection problem can be solved by Bayesian model selection based on the results
of the three canonical problems.[17] Evaluation of the state space and dynamics requires
statistical comparison of the trajectory reconstruction to the model. Non-Markovian effects
appear when either the state space or interstate dynamics are not accurately treated in the HMM.
Many of these effects can be treated using a semi-Markov process in the HMM.

In a semi-Markov process the transition probability depends on the current state and the time
since the last transition. (See Fig. 1C). Physically this occurs when dynamics exist that do not
influence the observable fluorescence but that modulate the transition rates. If the exchange
times between the semi-Markov cluster of states (microstates) is fast compared to the exchange
time between clusters (Fig. 3B) then a Markov process is recovered. (See Fig. 3A.) If the
exchange time between microstates is slow (Fig. 3C–E) then the FPT will depend on the
particular sequence of microstates accessed and will not be exponential. Only under special
circumstances will the process still be semi-Markovian. When the process is semi-Markovian,
there is no information present that is not in the FPT distribution. Many different hidden
Markov processes will give equivalent semi-Markovian FPT distribution, however.[21]

1.3. Markov processes in SM Fluorescence
The Markov property requires that knowledge of the state of the molecule at a particular time
allows prediction of the likelihood of the molecule’s state at the next instant the time. This
requires two important components. The first requirement is that the description of the state is
complete. The second requirement is that the description of the dynamics that control the
changes between the states is also complete. Because of these requirements it is the behavior
of the system under a particular description that is either Markovian or not. To say that a system
is non-Markovian is saying that the description of the system is incomplete. To be non-
Markovian is to say that to predict the future state of the system we must take into account not
only the current state of the system but also some earlier state of the system. This suggests that
the molecule has some memory of its prior state. That would suggest that the current state of
the molecule depends on the path that the molecule took to get to the current state. This implies
that the description of system currently being used for this state is in fact not a state function
as traditionally defined. In a SM system, memory results from transitions between
indistinguishable states (microstates) that modulate the dynamics of the distinguishable states
(macrostates), and can result in apparent non-Markovian dynamics, even if the underlying
dynamics are Markovian. Therefore the goal should be to increase or improve the description
of the system such that its behavior is, in fact, Markovian.
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Progress in using Markov processes in SM fluorescence can be organized around three
problems:

• Projection of the State onto the Observable.
• Detection of non-Markovian dynamics.
• Explanation of non-Markovian dynamics.

The remainder of this paper will define each of these problems, review recent efforts to solve
them, and discuss future directions for advances.

2. Projection of the State onto the Observable
The projection of the molecular state onto the SM observable accounts for much of the non-
Markovian dynamics observed in SM measurements. SM states must be defined in terms of
their properties in the SM observable. Not all of the hidden states of a molecule will be
distinguishable once projected onto this spectroscopic coordinate. Since the reaction dynamics
of complex system are dependent on an enormous number of coordinates, visualization of such
dynamics and understanding of them is dependent on a reduction of those coordinate to some
subset that reflect the principal factors that determine the behavior of the system. This
inherently simplifies the description of the system to the point where non-Markovian effects
are likely to be observed. Moreover, reaction rate theories make assumptions that are valid for
geometric physical coordinate that may not be valid for the projected spectroscopic coordinate.

2.1. Types of coordinates
To be useful the observable must depend on the state of the system.

(2)

Fluorescence can report on structural changes through changes in polarization, energy transfer
efficiency,[2] electron transfer quenching,[22] or sensitivity to the local environment.[23] In
each case the fluorescence is a rather crude structural measure and must be supplemented with
crytallographic, nuclear magnetic resonance, or computational simulations to guide the
assignment of states and their interconversion dynamics.

Ideally in a single molecule experiment the fluorescence-dependent coordinate will overlap
optimally with the reaction coordinates of the reaction dynamics. When the modulation
fluorescence occurs as a result of resonant energy transfer (FRET) or photoinduced electron
transfer (PET), then the parameters can be interpreted in terms of a donor-acceptor geometric
distance in the molecule, though the reaction coordinate and the FRET or PET coordinate do
not, in general, correspond.

Other molecular motions will lead to non-Markovian coordinates that do not influence the
fluorescence observables, but which may modulate the FPT between states defined along the
spectroscopic coordinate. Exchange between states that are separated along the spectroscopic
coordinate (Fig. 4a) can be resolved, whereas exchange between states that are separated along
some non-Markovian coordinate(Fig. 4b) will not be resolved. Note however, that within an
individual well of the example in Fig. 4b the range of dynamics in the spectroscopic coordinate
will be different between the states suggesting that an example like that in Fig. 4 could still be
resolve with a high enough resolution experiment, perhaps using correlation function analysis
of the “single” level that results from exchange between the two states.
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2.2. SM Resolution Limits
Single-molecule fluorescence measurements have some important fundamental limitations that
restrict the rate, amount, and quality of information obtainable from the system. Recently Fisher
[24] and Shannon[25,18] information theory have been applied to understand the limits of SM
measurements based on the photon stream. The ability of hidden Markov models to recreate a
trajectory can be characterized using Shannon information. [25,18] The average amount of
information that all possible outcomes of the measurement  convey about all possible states
of the system  is the mutual information, ℐ( , ).

The amount of information that the observation communicates about the system is equal to the
decrease in system entropy that occurs as a result of the measurement.

(3)

where the entropy (ℋ) is the expectation value of information:

(4)

Equation 3 is the quantitative expression of the idea that the amount of information delivered
by an experiment is the difference between the uncertainty (as measured by the entropy) before
and after the observation is made. For trajectory reconstruction to be successful, this
information must be great enough to make a state assignment before the molecule undergoes
a state transition.

The information theory formalism for SM measurements is quite useful for developing
expectations regarding the ability of a particular experiment to provide a desired answer. The
information theory formalism would be even more useful if extended to treat the model
assignment problem directly by evaluating the mutual information between a SM observation
trajectory and the model space likelihood function. This would allow the SM measurement
equivalent of a statistical power study giving the investigator an idea of how many molecules
and how much total observation time would be required to evaluate a particular hypothesis.

2.3. States in SM fluorescence
For complex systems in condensed media a state is usually considered to be a macrostate
comprised of a large number of microstates that typically can rapidly exchange on some
timescale of interest (folding, conformational change, etc.) Key to this assumption is that the
exhange within the macrostate be fast enough that the microstates within the macrostate are
ergodic on the timescale of the experiment to be performed.

Protein folding of vesicle-encapsulated adenylate kinase exhibited slow transitions.[6] Such
concerted reactions can be thought of as many sequential point processes where the experiment
is inadequate to resolve the individual transitions. Interestingly the same authors also saw
discrete jumps, suggesting that multiple mechanism could be at play or at the very least that
the projection of the reaction coordinate(s) onto the experimental coordinate is not simple.

2.4. More observables
A simple method to investigate the source of non-Markovian behavior is to use different
labeling or additional labels to change the projection of the molecular states onto the
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spectroscopic coordinate. In addition, hidden Markov models are in common use in single pore
current measurements[26] and are now appearing in the decoding of AFM pulling
measurements [27,28] and tethered magnetic bead brownian motion studies.[29] Dynamic
force spectroscopy of the digoxigeninantibody complex have also shown non-Markovian
effects.[30] Since these measurement methods give different information about the system than
do fluorescence measurements, combination experiments with the appropriate
multidimensional HMMs promise to provide new insight into the dynamics and mechanisms
of complex molecular systems.

3. Detecting non-Markovian Dynamics
Detecting non-Markovian behavior through non-exponential first-passage-time distributions
and/or the correlation functions that depend on them is the first step to refining the
phenomenological picture of the molecular dynamics.

There have been essentially two approaches to quantifying memory effects in SM
measurements: evaluation of correlation functions and reconstruction of hidden state
trajectories to obtain FPT distributions.

The observation time of the single molecule must be ergodic with respect to the non-Markovian
dynamics. The temporal resolution of the experiment must also be shorter than the time scale
of the dynamics. Stated another way, the amount of information delivered about the dynamics
over the course of the entire experiment must be enough to distinguish them. If the dynamics
are too fast, then the observer never gets enough information about the states in question to
distinguish them. If the dynamics are too slow, then the observer cannot observe enough
examples of the transitions in question to determine if the dynamics are Markovian, semi-
Markovian, or non-Markovian. The observation time must be long enough to witness the
dynamics and transition through the stats that give rise to the “non-Markovian” part of the
dynamics. In the fluctuating barrier picture illustrated in Fig. 4.2 and 3e, both the transitions
leading to the barrier fluctuations and the transitions across the barrier must occur during the
observation time of a single molecule. If only a few such transitions are observable for the
same molecule then the molecule to molecule differences must be negligible.

3.1. Correlation and related functions
Correlation analysis is commonly used and can provide a great deal of information regarding
the time scales of fluctuations in the system. Correlation functions are formally defined in terms
of integrals over time with infinite limits.

(5)

(6)

Conceptually this corresponds to replacing the bulk ensemble average with a single-molecule
time average over the observation sequence, O(t). This can provide difficulties for time scales
that are not at least an order of magnitude faster than the average total observation time of a
SM. In practice, a large number of trajectories must be averaged to get adequate mathematical
accuracy for 2-, 3-, and n-time correlation functions.[4,11,31] A SM does not typically sample
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enough of its fluctuation spectrum during a single measurement to allow robust correlation
analysis. The molecule must not only be ergodic on the time scale of the measurement, it must
also fully sample the distribution of wait-times between state transitions for correlation analysis
to be successful. This prevents examining differences between SMs since they will have
sampled different regions of state/path-sequence space. As a result the new information that is
present from the SM measurement is only available from the higher-order correlation functions
(determined from averages over many molecules) that are sensitive to memory effects.[32,
11] Such memory effects on the correlation function can be evaluated using the memory kernel,

(7)

where G(t) is the normalized correlation function and K(τ) is the memory kernel. A power-law
memory kernel has been recently observed in the measurements of fluorescein bound to an
fluorescein antibody.[33] In two essentially identical papers Mori-Zwanzig theory was used
to analyze the time evolution of the optical single-molecule fluorescence excitation spectra of
the LH2-light-harvesting complex observed under cryogenic conditions. They essentially
extracted a memory kernel for each optical wavelength in the spectrum. This memory kernel
measures the influence of the hidden states of the system or “irrelevant” variables as they are
called in Mori-Zwanzig theory.[34,35]

Horseradish peroxidase enzymatic turnovers showed memory effects that were evaluated using
a non-Markovian function (NMF) that can be defined in terms of the first and second order
photon correlation functions as[11]

(8)

the NMF was used to determine the degree to which the intensity trajectory is non-Markovian
directly from photon data. Propagators such as the NMF can be useful, however they are subject
to serious limitations because of the finite length of SM trajectories. Noise and non-ergodic
oscillations become even worse if higher-order functions are used.

3.2. FPT distributions from trajectories
Detection of non-Markovian effects from a FPT distribution, requires that it be statistically
different than that expected from a Markovian process, that is the distribution must differ from
an exponential.

There are several single-molecule methods of determining non-exponentiality in FPT
distributions. In a clever experimental design to obtain a FPT distribution, the fast dynamics
of a polymer were examined by looking at the fluorescence lifetime distribution that measured
the contact time of the dye with a contact quencher[36,37]. Normally, however, the FPT
distribution must obtained from reconstructed state trajectories. Decoding the temporal
sequence of states allows the determination of first-passage-time distributions by constructing
histograms of the all the sojourn times for each state. If the temporal sequence of states is
describable by a Markov chain, then all of these FPT distributions will be exponential.

When a SM trajectory has sufficient contrast between states, thresholds may be applied to
distinguish the states of the molecule. These thresholds are typically chosen manually and can
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introduce subjectivity into the analysis. Runs of each state are tallied to give histograms of the
state dwell times allowing determination of the kinetic parameters by exponential fitting.
Typically this technique is limited to systems showing large modulations of the fluorescence
signal. Binning of the data is also required, and this limits the temporal resolution of the
measurement to be one or two orders of magnitude lower than the photon count rate to
overcome the effects of shot noise. To mitigate the effects of shot noise some investigators
have applied filters to the data prior to applying a threshold. The choice of filter is somewhat
arbitrary, except in the case of the Weiner or optimal filter where it is determined by the power
spectrum of the data.[4] This provides a relatively hands-off analysis method and substantially
improves the time resolution of the experiment by mitigating some of the effects of shot-noise,
but there is still the difficulty associated with choosing a threshold. A better approach is to use
a statistical method, such as hidden Markov models, to decode the trajectory.[17,18,19,38]

3.3. Reconstruction of Dynamics
One of the important problems in HMM is the determination and initialization of the model.
One approach that is fairly standard is to enumerate several models and choose between them.
A hidden Markov model can easily distinguish between a simple two-state system and a two-
state fluctuating barrier system using the Bayes Information Criterion.[17] HMM can give
good results for trajectory reconstruction even when extra hidden states are omitted. HMM
was able to determine the number of dyes in a multi-chromophore system even though the first-
passage-time distributions typically showed evidence of the additional state(s).[18] HMM has
recently been used to decode the sub-steps in the rotary motors of FoF1-ATP synthase. Their
approach seemed to assume an even split of the 3 or 5 levels across the energy transfer
efficiency coordinate.[39]

Another approach to model selection used in single ion channel measurement reconstruction
was to use k-means to determine the model structure.[26] This could be useful in SM
fluorescence data when the number of photons binned is sufficient to give the contrast and
statistics required for k-means analysis. The distance measure used to determine the k-means
makes an implicit assumption of Gaussian statistics for the observables in question. Analysis
by the k-means method is also very sensitive to the number and initialization of the seeds used
in the optimization process.

Still another approach is to treat the system in a Markovian model space that is substantially
larger than that required to explain the system, allowing any new dynamics to be discovered.
Rather than expanding the Markovian model when the data treatment under the initial model
does not conform to Markovian expectations, the model space is given enough flexibility to
fully treat the data and simplified to the minimal model that is Markovian. The basic idea is
that the model is pared down until correct rather than built up until correct. The advantage of
the reductionist approach is that it is less likely that such an approach will bias the model
selection. The disadvantage is that the increased model space substantially increases the
computational effort required for initial data analysis. This approach allowed RecA filament
dynamics to be determined to single monomer resolution using HMM analysis of the FRET
intensity traces.[38] However, there was no explicit discussion of verifying the validity of the
Markov property for that data set.

Whether the model space should be expanded or contracted with the data set depends on the
system in question as well as the philosophy of the investigator. Simple models encourage the
investigator to ignore anomalies or additional dynamics if they are “negligible.” The models
that form the simple starting points for such analyses are typically derived from bulk
measurement and include the tacit assumption that go with them. Single molecule
measurements often show new dynamics that are masked in bulk measurements. Because of
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this any temptation to ignore features of the data should be avoided. The reductionist approach
outlined above chooses the simplest model that is consistent with the data, but no simpler.

3.4. Semi-Markov Testing
Section 2 defined three additional requirements for HMM related to the validity of the Markov
property for the data. These can be partially verified with the following three criteria that are
relevant to any hidden state reconstruction:

• Maximum likelihood found and is reasonable.
• Exponential FPT distributions
• Lack of correlation within a state.

HMM analysis assumes a Markovian model for the system behavior and its coupling to the
dye signal. If the Markovian model is incomplete then one would expect, at the very least, that
the FPT distribution for poorly described states would be non-exponential. In some cases HMM
reconstruction of the trajectory will fail to produce a most likely set of model parameters.
[18] There are many reasons why a HMM may not successfully find a maximum likelihood.
The root cause is usually that state transitions are occurring faster than the information about
the states is accumulating in the HMM.[25,17,18] Other causes could be a poor initial model
for the HMM, too many states in the HMM, and poor initial guesses for the parameters in
HMM.

Once the hidden state sequence has been reconstructed, any state that shows a non-exponential
FPT distribution should be a candidate for evaluation to determine the cause of deviation from
Markovian behavior. If a state is not experiencing dynamics there should be no correlation
between observations that occur during the sojourn in that state. The sojourns in a given state
should therefore be evaluated with a correlation function to determine if there are any dynamics
present that modulate the signal but that might be small relative to statistical variation of the
signal. If such a correlation is present it can be used to not only split the macrostate, but also
estimate the time scale for exchange between the microstates. If no correlation appears, yet
there are still non-exponential FPTD then the next step is to evaluate if the dynamics are semi-
Markovian or not.

Deviation from a semi-Markovian process can be measured by higher-order correlation
functions, propagators, and sequential FPT distributions.[21] The sequential FPT distributions
seem most promising because they directly evaluate the quantity that most-immediately should
deviate from semi-Markovian behavior and are least influenced by finite trajectory lengths.

(9)

A,B(τA, τB) is the joint likelihood function for sequential observation of a sojourn of τA in state
A and τB in state B. If the sojourns in states A and B are independent then Eq. 9 will be zero.
As with all multi-time quantities, the total observation must be long enough to adequately
sample

A,B(τA, τB). If the dynamics are semi-Markovian, then all models that produce the same FPT
distributions are equally valid and will be indistinguishable. Under a semi-Markov constraint,
the FPT distributions are all that is required to choose between models.[21] If the data is non-
Markovian, then the model will be more complex and higher-order quantities are indicated
along with the commensurate increase in experimental data to be acquired.
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4. Explaining non-Markovian dynamics
Finding a situation or system where non-exponential FPTs occur suggests that one should
augment the description of the system. The goal is the minimal description that is Markovian,
so components of the model should be added or changed only when necessary. We will discuss
dynamics in terms of a two-macrostate system with the understanding that generalization to
more macrostates is trivial and discerning dynamics among microstates is one of the goals. To
provide a framework for discussing the points at which the Markovian assumption can break
down and be repaired, we will use the familiar and commonly cited condensed phase reaction
rate theory.[40,41] Dynamics take place on a potential of mean force where motion is resisted
by friction and made stochastic by a randomly fluctuating force. A generalized Langevin
Equation is often used to solve these problems. The first-passage-time is the the amount of
time elapsed before the system passes across a barrier to another state of interest. Note that
even in the simple one-dimensional, two-state, single-barrier Kramers reaction rate theory it
is possible to have a non-exponential FPT distribution. Under most circumstances these non-
exponential processes can be described in terms of a semi-Markov process.

4.1. Modification of State Spaces
Fluctuations in the energy of a macrostate is conceptually identical to the concept of fluctuation
amongst several multiple microstates within a macrostate. The choice of description is a matter
of arithmetic convenience. If both the reactant and product well fluctuate in an uncorrelated
manner then it implies that the equilibrium constant is fluctuating. This would imply that the
system is not stationary. Understanding the fluctuations in terms of changes in microstate
preserves the stationarity of the system/process.

An induction time is a common example of a non-exponential first-passage-time distribution
that has been observed in the photoisomerization kinetics of diarylethene derivatives.[42]
These results were modeled using a progressive reversible model based on the idea of a periodic
potential. This is, of course, but one possible model that produces an induction time. This is a
good example of where additional control experiments might be beneficial in testing the
hypothetical model.

In the SM study of GCN-4 folding, additional exponential components that were present in the
SM data were attributed to non-productive motion in the folded and unfolded free energy well.
[4] To treat this non-Markovian effect measured fluctuations under folded and unfolded
conditions were used to account for additional decay components in the folding/unfolding
correlation function. In Fig. 3b this amounts to separately measuring the dynamics within the
set of A states and within the set of B states before measuring the dynamics between the A and
B sets of states.

4.2. Transition State Structure
If there is a single transition state there will be a single energy associated with it and when the
molecule travels from one stable state through the transition state to another stable states, the
FPT distribution of this phenomenon will be exponential so long as the barrier to the the
transition state is significantly larger than thermal energy. If the molecular state influences the
energy of the transition state it implies that there are, in effect multiple states of the molecule
that can act as the transition state. This multiplicity of an unstable state once projected onto
the SM observable coordinate has the effect of making the FPT distribution non-exponential.
(See Fig. 4.2.) Fluctuating transition states frequently have been invoked to explain non-
Markovian effects.
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Ribozyme FRET docking/undocking kinetics showed highly non-exponential FPT
distributions that were modeled in terms of a discrete set of four states. [43] In particular the
FPT distributions in the high-FRET “Docked state.” The dwell time distribution appeared to
persist for some time, that is “short” docking events seemed to be clustered together implying
long-time dynamics controlling exchange between the multiple microstates. This is consistent
with Fig. 3d if the number of substates is increased and the exchange between substates is slow
and would suggest a semi-Markov picture, though this was not explicitly evaluated.
Conformational dynamics in an signaling protein Cdc42 were modeled with the model in Fig.
3d and combined with computational molecular dynamics to provide atomistic information
about the states and barriers involved.[44] The cycling of single dyes between rapid and slow
blinking has been modeled with the Fig. 3d and solved using a Generalized Bloch Equation
approach.[45]

4.3. Thermal Fluctuations
The multiplicity of a state can be attributed to multiple conformations of the system that have
different stability or reactivity or to inhomogeneous, dynamic interactions with the
environment. In the case of large systems such as proteins, one can imagine that the regions
of the protein away from the active site can behave as the ”environment.” That is to say, the
conformational dynamics of the protein away from the catalytic or active site fluctuate
independently of that site yet their interactions with that site modulate its activity.

Kramers theory includes a memoryless fluctuating force. Recently the appropriateness of this
for explaining conformational fluctuations in proteins has come under serious question. The
observation of fractional Gaussian noise and a power law memory kernel in single proteins
[46,33] suggests that the non-Markovian coordinates in proteins can influence conformational
dynamics through the fluctuating force term of a generalized Langevin equation rather than
through the potential of mean force. A similar idea was put forth to explain motion through
ion channels [47] where fluctuations assist the motion.

One physical interpretation of fractional Gaussian noise is that the fluctuating force that the
moves the system along the reaction coordinate has memory. In order for this to be true the
environment that the system sits in must have long-lived fluctuations of structure that influence
the force that it imparts upon the system. In [33] this is interpreted as being due to the protein
acting as its own source of random forces. The fluctuations of the protein are interpreted in
terms of their impact on the noise part of a generalized Langevin equation.

The work of Xie and coworkers has inspired several recent papers looking at the motion of
single molecules in terms of more complicate view of reaction rate theory, including continuous
time random walks in closed and open single-molecule systems with microscopic reversibility,
[48], generalized Haldane equation and fluctuation theorem in the steady-state cycle kinetics
of single enzymes,[49] non-Markovian fluctuations using a fluctuating bottleneck model,[50]
and the effect of fractional Gaussian noise on the FPT distribution for a Langevin double-well
type process. [51]

4.4. Phenomenology
An important issue is whether the phenomenological description of the non-Markovian part of
the dynamics is best placed on the potential of mean force through either the multiplicity of
one or both of the wells, multiplicity of the transition state, fluctuations of the energy of one
of the wells, fluctuation of the energy of the transition state, fluctuations or multiplicity of the
friction that resists the reaction and dissipates energy fluctuations and fluctuations and in the
random forces that move the reactants along the reaction coordinate. This is one area where
comparison with computational molecular dynamics would be particularly useful.
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An example of the type of study that would be well-suited for comparison to SM measurements
involved Langevin dynamics simulations of the two-state coil-to-hairpin folding of the C-
terminal peptide from the B1 domain of protein G.[53] In their simulations, run at multiple
temperatures and then combined using a thermally weighted histogram averaging method to
obtain a potential of mean force (Fig. 6),[52] they observed multiple pathways and non-
exponential first-passage-time distributions. Careful examination of their trajectories allowed
separation of them into micro-states that recovered exponential first-passage-time
distributions. (See Fig. 6) Consistent with Kramers theory they saw deviation from exponential
behavior at short first-passage-times. What allowed them to split these states was the resolution
of different reaction pathways within the PMF.

Not all graphical state diagrams that can be encoded into a HMM or semi-Markovian equivalent
are valid physical descriptions of molecular phenomena. Recently Wang, et al. discussed the
physical properties of time renewal and detailed balance in terms of semi-Markov processes.
[54] They showed the relationship of these models to single molecule enzyme kinetics. This
is particularly important if one does not wish to formally introduce new states into a hidden
Markov model that has given non-exponential FPT distributions for its state space while still
preserving valid phenomenology.

Expanding on this idea, the micro- and macrostate enthalpies and entropies should depend on
the molecular properties giving the investigator a method, through systematic thermodynamic
investigation, of determining the source of non-Markovian dynamics. In the context of Kramers
condensed phase reaction rate theory, a detailed study of the effect of viscosity on the FPT
distributions of different states can reveal if the dynamics are most influenced by environmental
friction as opposed to self-friction[46,33].

4.5. Experimental artifacts
Finally it should be mentioned that single molecule experiments can give false evidence of
non-Markovian dynamics. As mentioned earlier, inadequate observation time will lead to
oscillations in correlation functions. The total time of observation must be longer than the
averaging time for the process or combination of processes. Another problem can arise if the
molecule returns to the original state too quickly for the experiment to distinguish that a pair
of jumps has occurred, then the dwell time distribution will have small contributions from these
double-jump transitions. In effect this will make all distributions deviate slightly from
exponential behavior, as a result the presence of missed double jumps should be taken into
account explicitly. The presence of missed transits have two types: missed exits and missed
entrances. Their influence on FPT distributions is illustrated in Fig. 7. Missed transitions can
be reduced by increasing the time resolution of the experiment. This is most effectively
accomplished by increasing the average intensity used for the experiment. Eventually the
photophysics of the dyes limit the highest count rate due to photon anti-bunching. This can be
reduced by selecting dyes with shorter excited state lifetimes and higher radiative rates.

The noise spectrum of the laser (and the environment) can introduce correlation into a single
molecule. These effects will show up in correlation analysis in particular. Accounting for these
effects is best done with control experiments. (See Fig. 8)

5. Conclusions and final comments
The value of “discovering” non-markovian effects is not based on some vitalist notion that a
molecule has mystical powers of “memory” but rather because it indicates that a critical piece
of physics has been omitted from the description of the system. In a biological or other
complicated assembly memory must be encoded by some change in structure somewhere in
the system. Ideally one would merely add a label to that structure to make the experiment
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sensitive to the feature that is causing the memory. In practice this can be nearly impossible to
guess unless there are serendipitously fortunate crystallographic or other structural results
available that suggest a mechanism.

The limited amount of direct structural information available from SM fluorescence makes
comparison with traditional structural techniques like crystallography and nuclear magnetic
resonance particularly valuable. Dynamic NMR experiments in particular would be useful for
understanding the system fluctuations that are present and that might be modulating the SM
fluorescence observable directly or indirectly.

Similarly augmenting SM fluoresence with computational molecular dynamics obtained from
replica exchange calculations or umbrella sampling calculations allows identifying the
contribution of non-Markovian dynamics in an explicit way rather than blindly adding arbitrary
states or memory parameters.

There is a need for tools that operate directly on SM data. When operating on reduced data
there is the possibility that the data reduction procedure has biased the data set by assuming
some model that is not appropriate for the system. Even so-called model-free methods of data
reduction, in fact, make assumptions about the behavior of the system. All data reduction
procedures, to be useful, must assume a model of some sort. There are, however great
differences in the way that assumptions are made about the space of possible models. Models
can be explicit or implicit in that they may can specify the number of states or they can let the
number be flexible. They can define the properties of the states or allow the properties to be
adjustable. They can specify the dynamics or let the dynamics be selected.

A recent paper by Gopich et al. developed the theory of the statistics of kinetic transitions with
applications to single-molecule enzyme catalysis did a nice job of looking at the whole system
including the dye and its excitation while still allowing incorporation of non-Markovian
Dynamics.[55] Theoretical tools should operate as closely as possible to the data itself and
allow different types of constraints on the model space. Ideally would operate directly on
photon sequence. Statistically would allow inclusion of instrument effects and allow
consideration of missed transitions. The output should provide statistical evaluation of the
likelihood of different models.

Current theories usually rely on the deterministic knowledge of state or state variable, on
knowledge of FTP distributions and on determination of correlation function to long times.
This is because they often still use an ensemble average over time. To get enough information
single molecule measurements typically are an average over both time and particle. We
concluded above that there are usually several different ways that non-Markovian dynamics
can be resolved. Theory should be able to provide analytical tools that would allow
experimentalists to evaluate which part of the Markovian description is inadequate.

With single molecule experiments the luxury of the law of large numbers that physical scientists
have grown to take for granted (because of large number of molecules present in even a very
dilute sample) must be forsaken in favor of a statistically rigorous approach that is, ironically
enough, more in line with what social scientists must do when performing trials of small
numbers of subjects.

Perhaps it is fitting that as the molecules that physical scientists study become more complex
—as they become closer to showing the complex behaviors of “life” — that such scientists
must characterize the behavior of their experiments in terms of likelihood instead of the
deterministic and complete-ensemble pictures that seem more familiar.
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Fig. 1.
a) The top left diagram shows a traditional Markov process where the observation, Oi, depends
only on the prior observation, Oi−1. b) Single molecules are more often described by a hidden
Markov process since the observation Oi depends not on the value of the prior observation,
Oi−1, but on the hidden state, Si, as shown in the bottom left diagram. c) The diagram on the
right shows a hidden semi–Markov process where the observation, Oi, depends on the hidden
state, Si, and on the time elapsed, ti−1, since the prior observation.
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Fig. 2.
Schematic diagram of a hidden Markov model for single-molecule photon trajectory data using
a two-state exchange model including background and crosstalk. The circles represent the state
of the molecule at the time a photon is emitted/detected into a particular detector (squares).
The model can transition between states depending on the transition probabilities determined
the time elapsed since the previous photon detection event and the kinetic model. Each
transition corresponds to the detection of a photon. The photon can arrive in either channel 1
or channel 2, with appropriate probabilities. The thickness of the transition arrows is intended
to approximately convey relative a priori likelihood of the transition occurring.
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Fig. 3.
Illustration of semi-Markov processes. a) A two state system at equilibrium fluctuates between
the brighter macrostate (A) and the dimmer macrostate (B), but b) there may be many
microstates within the macro states. c) When the dynamics between microstates are slow
enough and those dynamics influence the two-macrostate fluctuation rate, semi-Markovian
dynamics occur. d) The structure of the free energy surface influences semi-Markov dynamics.
In this case the energy of the microstate is set upon exiting the common transition state, and
e) the 2 × 2 fluctuating activation barrier model also shows semi-Markov statistics.
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Fig. 4.
a) The left panel illustrates the potential of mean force (PMF) for an idealized two-state system
where the reaction coordinate (shown as the black-and-white arrow) aligns well with the
reaction coordinate. b) The right panel illustrates the PMF for a two-state system where the
reaction coordinate is not well-aligned with the spectroscopic coordinate. For the PMF above
the single molecule measurement would primarily report on intrastate dynamics. The intrastate
dynamics would appear non-Markovian since they would depend indirectly the unknown state
along the reaction coordinate.
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Fig. 5.
The double well curve represents the potential of mean force for a hypothetical pair of states
in equilibrium separated by a barrier. If the barrier height fluctuates the dynamics between the
two states will appear non-Markovian. The model is, of course, Markovian at higher-order. If
the barrier fluctuates, for example, between two states, then a 4-state potential of mean force
like that on the right may be more appropriate as a description.
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Fig. 6.
The inset is a potential of mean force loosely adapted from [52]. The PMF is displayed as a
contour plot over the two principle coordinates that best described the folding of the G-Peptide
from random coil to beta-hairpin. Several meta-stable states were observed in the transition
state region of the PMF in this study. These intermediates had partial alpha helix character and
contributed to the non-exponentiality of the first-passage-time distribution. (Shown as dark
gray FPT distribution.) When these states were split the FPT distribution for the microstates
(colored FTP sub-distributions) became exponential, except at short times as expected.[53]
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Fig. 7.
Missed transitions can modify the short and long time parts of the FPT distribution. Missed
entrances (green) to a state reduce the short time part of the distribution and missed exits (red)
increase the long time tail of the distribution.
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Fig. 8.
This power spectrum was obtained by correlating the fluorescence from a single particle on an
instrument not isolated from building vibrations. The double peak at ~17 Hz coincide with the
operating speeds of the two air handlers below the lab in question.
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