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Abstract
The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium
falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no
sequence similarity with other eukaryotes. This feature impairs the identification of important
proteins participating in the regulation of the cell cycle. There are several open questions that concern
cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear
divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle.
Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of
proliferation, are striking features of some Plasmodium species, the molecular basis of which remains
to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate
the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases
in the signal transduction and in the responses it triggers.
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1. Introduction
The molecular mechanisms responsible for eukaryotic cell cycle control are likely to have been
highly conserved during evolution. There is indeed evidence that fundamental principles are
conserved between yeast and mammals [2]. However, yeast and metazoans are both members
of the same phylum (Opisthokont) [3] and much more detailed analysis in different eukaryotic
groups is needed before a full picture can be established. In addition to its importance in
fundamental biology, research into cell cycle control carries a strong potential for application
in drug discovery. Many elements of the cell cycle control machinery are important targets for
the development of new drugs against cancer and other pathologies. The many unusual features
of eukaryotic pathogens (including Plasmodium spp.) suggest that cell cycle control could be
selectively targeted to create a new range of anti-parasitic drugs.

Plasmodium has a complex life cycle alternating between two hosts (1) mosquitoes, in which
sexual reproduction occurs, and (2) a vertebrate, where Plasmodium invades and multiplies
asexually in erythrocytes and hepatocytes. The parasite undergoes major metabolic and
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morphological changes as it exploits its two hosts, with periods of intensive cell division as it
multiplies during sporozoite formation (sporogony) in the mosquito gut wall, and in the liver
and red blood cells (schizogony) of the vertebrate host.

The intraerythrocytic phase is the cause of malaria pathogenesis. This phase consists of cycles
of invasion, multiplication and reinfection. It begins with the invasion of erythrocytes by
merozoites and continues into growth (ring and trophozoite stages), formation of multiple new
merozoites (schizont stage) and finally release into the bloodstream of merozoites that in turn
will infect new erythrocytes.

In Plasmodium falciparum, the most virulent of the four Plasmodium species that infect
humans, and in the rodent malaria parasite P. chabaudi, the erythrocytic cycle events usually
occur synchronously during in vivo infection but synchrony is lost in in vitro cultures,
presumably because some defining factor present in the host is absent from the culture medium.
There are artificial ways of restoring synchrony of P. falciparum in vitro, such as temperature
elevation [4] or the addition of sorbitol [5] which, however is not related to normal control
since it entails the killing of all but ring stages. Of greater biological significance is the reported
modulation of synchrony of P. falciparum by host tryptophan-derived molecules [6].

The cell cycle comprises a range of highly ordered events that lead to mitosis and the formation
of new cells. Regulation of these conserved processes is critical to normal cellular growth,
differentiation and replication. According to Hammarton et al.[7] merozoites and rings are in
G1, and the S phase begins when the parasite is at trophozoite stage, while in schizont stage,
merozoites are produced by successive rounds of poorly understood mitosis [1]. To regulate
these processes cells employ several mechanisms including phosphorylation, transcription
control and degradation of regulatory proteins by the proteasome complex.

2. Receptors: the upstream part of signaling pathways
In many instances the sensing of environmental cues and ensuing signal transduction are crucial
to initiate the cell cycle and/or cell differentiation [8]. These occur when a stimulus binds to a
receptor and promotes downstream responses such as transcription regulation, alterations in
metabolism, cell proliferation and apoptosis, all mediate by second messengers and effectors.
Cells may sense a range of stimuli such as hormones, light, growth factors, cytokines and other
molecules, and each cell type may express its own repertoire of receptors detecting specific
signals. The more spread family of receptor is GPCR (G-protein coupled receptors) which are
involves in a range of physiological processes.

Many organisms use external molecular signals to drive cell differentiation. Examples include
several species of amoebae, which modulate encystation by sensing hormones such as
catecholamines by means of transmembrane receptors [9], and fungi that secrete molecules
inducing cell differentiation [10]. Indole is an important signaling molecule not only in
eukaryotes, but also in bacteria, where it has been implicated in quorum sensing processes
[11] and in the cell cycle control of Escherichia coli [12].

Within cells, second messengers like calcium and cAMP are able to promote a range of
intracellular responses. An increase in cytosolic calcium concentration is caused by the release
of calcium from intracellular pools such as the endoplasmic reticulum [13], mitochondria
[14] and acidocalcisomes [15,16] and also by influx through the plasma membrane. In
Plasmodium there are several reports from different labs implicating calcium signaling at
several stages of the life cycle, including erythrocytic schizogony, gametogenesis, ookinete
motility, [17,18]. Moreover increase of intracellular second messengers concentration as
cAMP and calcium are involved in a range of signaling events in Plasmodium signaling such
as in tryptophan-derived response [19,20] and in sporozoite apical regulated exocytosis [21].
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cAMP also inhibits maturation of merozoites in RBCs [22] and in is able to promote sexual
differentiation [23–25].

Since Martin et al. [26] reported that gametocytes of P. falciparum produce InsP3 during
exflagellation it is possible that calcium increase via PLC could be caused by InsP3.
Furthermore Passos and Garcia [27] promote in vitro calcium increase by adding InsP3 in P.
falciparum culture.

Another second messenger, cGMP and subsequently PKG activation together with calcium
release are crucial for xanthurenic acid-induced gametogenesis into mosquito [28].

As already mentioned, synchrony of erythrocytic schizogony in some Plasmodium species
occurs in vivo and is lost in vitro. In P. falciparum, treatment of trophozoites with melatonin
activates a calcium/cAMP-dependent response that, at least in vitro, is able to synchronize their
intraerythrocytic stages [29]. Other tryptophan-derivatives such as tryptamine, N-
acetylserotonin, and serotonin also promote changes in the Plasmodium cell cycle [20,30]. N1-
acetyl-N2-formyl-5-methoxykynuramine (AFMK), a product of melatonin degradation, is able
to synchronize P. chabaudi and P. falciparum proliferation [31].

Furthermore, in P. chabaudi, erythrocyte rupture and reinvasion occur approximately between
midnight and 3 a.m., which coincides with the circulating melatonin peak level. When P.
chabaudi infects pinealectomized mice, which lack melatonin, synchrony is lost but melatonin
administration is able to restore it; this effect of melatonin is inhibited by the addition of
luzindole (a melatonin antagonist) [19]. Administration of a suboptimal concentration of the
anti-malarial drug, chloroquine in addition to luzindole reduces significantly the mortality of
mice infected with P. chabaudi [32].

Calcium release caused by melatonin treatment also activates several cysteine-proteases acting
in erythrocyte rupture, hemoglobin and cytoskeletal proteins degradation [33]. Interestingly,
it has been found in the laboratory of one of the authors that in contrast to P. chabaudi and P.
falciparum, asynchronous P. berghei is insensitive to melatonin with respect to both [Ca2+]
increase and cell cycle modulation [34].

In vertebrates, melatonin receptors belong to the family of G-protein coupled receptors
(GPCRs), also called seven transmembrane (7TM) receptors [35]. This family is widespread
in eukaryotes. To mention just two examples, Dictyostelium discoideum uses GPCR signaling
for many cellular processes including development [36], and the parasitic helminth
Schistosoma mansoni uses a GPCR to sense histamine and to trigger cell responses via calcium
and cAMP [37].

Madeira et al. [38] identified four putative serpentine receptors in P. falciparum and their
functions are under analysis. Their predicted roles in sensing extracellular signals, possibly in
the form of host hormones or other molecules, make these four putative receptors potentially
very interesting, and elucidation of their detailed function may shed light on how the parasite
modulates its life cycle in response to its environment Fig. 1 depicts schematic model for
molecular signaling machineries in Plasmodium.

It has been proposed that hormones might influence malarial infection, for example in pregnant
women infected with P. falciparum [39].

Although trimeric G-proteins are not found in Plasmodium genome, experiments with cholera
and pertussis toxin brought evidences about its expression at the intraerythrocytic stage [25].
The inhibition of Gαs protein with peptides diminished P. berghei parasitemia [40]. On the
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other hand it is reported that Gαs present in erythrocytes is recruited to the malarial vacuole
[41].

The knowledge of the downstream mechanisms involved in signal transduction pathways in
Plasmodium is fundamental to understand parasite biology. Protein kinases (PKs) are an
important family of proteins that are expected to regulate diverse cellular activities. In the
sections below we present a brief overview of current knowledge on Plasmodium kinases.

3. Protein kinases: signal transducers
The P. falciparum genome sequence contains 85 or 99 protein kinases (PK)-related sequences,
depending on the study [42,43]. The number is rather low in comparison to the size of the
kinome in Saccharomyces cerevisiae: while the yeast genome contains a similar number of
total genes to that of P. falciparum, it possesses significantly more PKs. This low number might
be attributed to the intracellular lifestyle of the parasite, which is likely to receive less
environmental cues than a free-living unicellular eukaryote. However, complex life cycle
stages of malaria parasites in mosquito and the vertebrate host entail intricate regulatory
mechanisms where protein kinases are expected to be key molecules. Therefore, it is possible
that malaria PKs may possess particularly complex cellular functions. Given that many
Plasmodium PKs have atypical features compared to their eukaryotic homologues they are
predicted to be promising targets for antimalarial development [42,44].

3.1. Calcium modulated protein kinases
Calcium-mediated intracellular signaling is increasingly being found to be important for an
assortment of cellular function in apicomplexans, and calcium signaling has been implicated
in the response of Plasmodium to melatonin [29,45]. A major class of downstream effector of
Ca2+-mediated signal transduction in Plasmodium is the CDPK family. These proteins have a
conserved NH2-terminal ser/thr protein kinase domain that is fused to a COOH-terminal
calmodulin-like domain containing four EF-hand calcium-binding sites; proteins sharing a
similar domain organization are found in plants and Alveolates, but not in metazoans. The
majority of PfCDPK genes exhibit significant expression in the sexual stages [42]. Elegant
reverse genetics work in P. berghei by Billker et al. showed that CDPK4 is a key enzyme in
male gamete formation, regulating entry into S phase during gametocyte activation [17].
CDPK4 also exhibits a potential role in sporogonic development because there is a significant
reduction of mosquito infectivity of ookinetes derived from ΔCDPK4 macrogametes [17]. The
Plasmodium CDPK3 is exclusively expressed in the ookinetes [46]. Although cdpk3 disrupted
P. berghei lines exhibited normal exflagellation and development into ookinetes, their
transmission efficiency is severely affected as evidenced by reduction of the number of oocyst
in the midgut [46,47]. The reason for this drop in oocyst number was shown to be due to a
defect in gliding motility [46,47]. CDPK6 is another CDPK that is dispensable for the asexual
cycle; P. berghei parasites lacking CDPK6 are competent for sporozoite formation, but the
sporozoites are significantly less infective for hepatocytes than wild-type parasites [48]. In
contrast, PfCDPK1 is essential for erythrocytic schizogony [49] and is localized to parasite or
parasitophorous vacuolar membrane [50], consistent with a proposed role in motility. The
targeting of PfCDPK1 to these membranes was found to be dependent on the N-terminal dual
acylation and basic residue motifs. Interestingly, Raf kinase inhibitor protein (RKIP) ortholog,
which is also a protein kinase C (PKC) substrate in mammals, modulates PfCDPK1 activity
in vitro [51]. Whether or not PfCDPK1 functions like PKC in Plasmodium remains to be
established, but these results highlights atypical properties of Plasmodium kinases that cannot
be discerned simply based on homology because many of these proteins are expected to possess
parasite-specific functions. It is interesting to note that a receptor for activated protein kinase
C (PfRack) has been identified in Plasmodium [52].
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The importance of Ca2+ in the intracellular signaling of malaria parasites is exemplified by the
existence of a novel Ca2+/calmodulin-regulated protein kinase B (PfPKB). Unlike the
mammalian PKB, the PfPKB does not contain the N-terminal pleckstrin homology domain
that interacts with phosphoinositides to regulate its activity. Instead this novel N-terminal
region of PfPKB exhibits Ca2+-dependent interaction with calmodulin for its activation [53].
Involvement of phospholipase C (PLC) in PfPKB activation was suggested as U73122, a
specific inhibitor of phospholipase C, inhibited kinase activity [53]. Recently, it has been shown
that treatment with a peptide inhibitor that competes with calmodulin binding to PKB and
A443654, a small-molecule inhibitor of PKB, inhibits invasion of merozoites [54]. PfPKB was
also shown to phosphorylate PfGAP45, a glideosome-associated protein, suggesting its role in
invasion [54].

It has been also shown that the cGMP-dependent protein kinase (PKG) in P. falciparum may
function upstream of events that mobilize Ca2+ and is likely to be a key regulator of
gametogenesis [28]. While the anticoccidial PKG inhibitor compound 1 inhibits gametocyte
rounding up and subsequent exflagellation, gametocytes in which inhibitor-insensitive PKG
has been incorporated in the genome, through allelic replacement, rounds up normally [28].

It is evident that Ca2+ is an important second messenger that regulates various cellular processes
in Plasmodium (Fig. 1). To elucidate the cellular response to Ca2+ signals in malaria parasites
it will be important to understand the mechanism by which the Ca2+ level is regulated and the
role of different Ca2+-regulated proteins.

3.2. Cyclic nucleotide-dependent pathway
Cyclic nucleotide monophosphates, cAMP and cGMP are important second messengers in
eykaryotic cell synthesized by adenylyl cyclases (PfAC) and guanylyl cyclases (PfGC),
respectively. Malaria genome encodes two distinct PfACs [55]. PfACα contains six potential
transmembrane domains at the N-terminus that have structural features of voltage-gated K+

channel and a C-terminal adenylyl cyclase domain. The unique features of PfACα suggest that
the changes in ion conductance may be coupled to cAMP synthesis. The PfACβ is related to
a family of soluble ACs found in photosynthetic bacteria and humans [56]. It has been shown
that cAMP may have a role in sexual differentiation of the parasite [24,57]. In eukaryotes, one
of the major roles of cAMP synthesized by ACs is to activate cAMP-dependent protein kinase
(PKA) by binding to the inhibitory regulatory subunit PKAr. P. falciparum PKA catalytic
(PKAc) [58] and the regulatory subunits have been characterized [59]. Using patch-clamp
technique in infected erythrocytes, it has been shown that either addition of PfPKAr or
overexpression of PfPKAr in trans leads to down-regulation of host cell anion conductance.
Furthermore, PfPKAr overexpressing line exhibits reduced growth, which could be corrected
by increasing the intracellular cAMP level [59].

Two guanylyl cyclases, PfGCα and PfGCβ with catalytic activity have been identified in P.
falciparum [60]. Interestingly, the PfGCs appear to be bifunctional as they also contain P-
ATPase domain at the N-terminal extension [56,60]. The PfGCα gene is expressed in both
asexual and sexual stages [61] and cannot be deleted [62] suggesting its essentiality. Although
previous pharmacological studies suggested the role of cGMP in exflagellation, recently it has
been shown that the disruption of PfGCβ has no effect on gametogenesis [62]. However,
disruption of phosphodiesterase PfPDE) δgene affects gametogenesis. This suggests the
importance of PfPDE in maintaining the level of cGMP during sexual development of the
parasite.
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3.3. MAP kinase pathway
The mitogen-activated protein (MAP) kinases play a central role in coordinating activity of
multiple intracellular mediators. P. falciparum genome encodes two homologues of MAP
kinases [42], pfmap-1 and pfmap-2, and both loci have been disrupted to understand their
function. While pfmap-1 knock-out lines do not have any phenotype in erythrocytic schizogony
and sporogony, pfmap-2 is essential for asexual growthand the loci can only be disrupted when
an episomal copy of pfmap-2 is present suggesting its essentiality [63]. Interestingly, the P.
berghei homologue of PfMAP-2 was shown to be nonessential in asexual stages and
gametocytes but is important for male gamete formation [64,65]. It is noteworthy that there
are no unambiguous orthologues of MAP kinase kinase (MAPKK) or MEK in P. falciparum.
PfPK7 appears to be a novel chimeric protein whose C-terminal region has identity with MEKs,
whereas the N-terminal lobe shows homology to fungal protein kinase A [66]. Furthermore,
PfPK7 does not contain the activation site in its T-loop and is insensitive to MEK and PKA
inhibitors [67]. Recent determination of PfPK7 structure at 3.7Å resolution showed, however,
that its structure is similar to TAO2 kinase, a MAP3KKK [68]. Although PfPK7 was not
essential for the asexual growth, malaria parasites in which pfpk7 locus was disrupted grows
slowly with a reduced number of merozoites per segmenters compared to the wild type [66].
PfPK7 deficient parasite lines also have severe defects in oocysts production [66].

Recently, it has been suggested that PfNek3, one of the P. falciparium homologue of NIMA-
like kinases that are involved in cell cycle regulation, particularly G2/M transition, in
eukaryotes [69] activates PfMAP2 in vitro through phosphorylation, a feature that had
previously been described for Pfnek-1 [70–72]. These results underscore unique function of
Plasmodium kinases that will be difficult to perceive by homology analysis. NIMA-related
kinases (NEKs) usually regulate cell cycle progression in eukaryotes [73]. Plasmodium
genome encodes four homologues of these proteins that are expressed mainly in gametocytes
[74]. Although PfNek4 is expressed in gametocytes, its disruption in the P. berghei has no
influence in gamete formation or fertilization of gametes but differentiation of zygotes to
ookinetes is interrupted [75]. PbNek4 was shown to be essential for the replication of diploid
zygote genome before meiosis ensues.

3.4. CDK-like kinases and other putative cell cycle kinases
Although the developmental stages of malaria parasite are unique and complex, it is expected
that proteins belonging to the CDK-related subfamily will be key regulators in the
Plasmodium similar to eukaryotic cell cycle. Among the Pf protein kinases clustering within
the CMGC group (to which CDKs and MAP kinases belong), PfPK5 clusters with CDK1/2
and Pfcrk-1 with CDK10/11. PfPK5 was the first CDK-like kinase characterized in P.
falciparum with 60% identity to human CDK1 [76]. PfPK5 is expressed throughout
erythrocytic schizogony, and immunoprecipitation experiments using synchronized parasite
extracts showed that PfPK5 activity peaks at the schizont stage around 36 h post-invasion
[77,78]. PfPK5 also colocalizes with the nuclear stain [78]. The structure of PfPK5 has been
determined to a resolution of 1.9Å [79]. PfPK5 has structurally homology to human CDK2,
the only other monomeric CDK structure solved.

PfPK6 is novel protein showing identity to both CDKs and MAP kinases by differential display
RT-PCR of mRNA samples undergoing transition from ring to schizonts [80]. Molecular
modeling data suggests that PfPK6 is more closely related to the CDKs [81,82] rather than
MAP kinases. The PSTAIRE motif is replaced by a SKCILRE sequence in PfPK6, but the sites
of regulatory phosphorylation are conserved. PfPK6 appears to be a novel cyclin-independent
kinase. Another CDK-related kinase identified was Pfmrk, a homologue of the Mo15/CDK7
CDK-activating kinase [83]. Recombinant Pfmrk displays very little histone kinase activity as
a monomer, but can be activated by the presence of human cyclin H and Pfcyclin-1 [84,85].
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Recently, it was shown that Pfmrk is activated by PfMAT1 homologue in presence of cyclin,
similar to what is observed with CDK7/cyclinH-MAT complex in other eukaryotes [86].
Pfcrk-1, Pfcrk-3, and Pfcrk-5 are other CDK-like kinases [81]. Pfcrk-1 is not expected to be a
functional homolog of eukaryotic CDK1/2; instead it belongs to the p58GTA gene family that
is a negative regulator of cell growth [87]. Pfcrk-1 exhibits peak expression in gametocytes,
but the P. berghei orthologue was shown to be essential for completion of the asexual cycle
[88]. Four P. falciparum cyclin homologues, Pfcyc1–4, have been identified [84,89]. Pfcyc1
has maximum homology to the cyclin H family, an activator ofCDK7. As expected, Pfcyc1
activated Pfmrk (a putative CDK7 homologue) [85] but, surprisingly, Pfcyc-1 also activated
PfPK5 [84]. Members of the cyclin H family are specific activators of CDK7 and not CDK1
or CDK5 (to which PfPK5 has the highest homology). PfPK5 has also been shown to be
activated by mammalian cyclin A, p25 and RINGO [74,84,89]; such promiscuity for various
cyclin-related proteins has not been reported for mammalian or yeast CDKs. Both p25 and
RINGO are non-cyclin CDK activators from vertebrates. Three additional cyclins, Pfcyc2,
Pfcyc3, and Pfcyc4 have been identified recently [90]. Pull-downand co-immunoprecipitation
experiments showed that these cyclins associate with histone H1 kinase activity in parasite
extracts. Furthermore, Pfcyc3 activates PfPK5 in vitro.

3.5. Novel FIKK kinases
Of all PfPKs identified, the presence of a novel family of 20 PKs is particularly noteworthy
[42,90]. This family of kinases is termed FIKK based on a conserved amino acid sequence
motif present [42]. All family members contain a non-conserved N-terminal domain and a
conserved kinase domain in the C-terminus. The FIKK kinases contain all residues that are
important for catalytic activity except the Glycine triad in subdomain I. The N-terminal domain
is not conserved among paralogs and this region contains a stretch of hydrophobic residues
corresponding to a predicted trans-membrane or signal sequence [90].A recently described
host-targeting (HT) signal motif RxSRILAExxx [91] is present in six FIKK paralogs, whereas
the Plasmodium export element (Pexel) RxLx(D, E, Q) [92] can be detected in all FIKK
paralogs downstream of the signal sequence. Because HT/PEXEL motifs have been shown to
mediate export of proteins beyond the parasitophorous vacuole into the erythrocyte cytoplasm
[91,92], it is expected that FIKK kinases are trafficked to erythrocytes. Indeed, GFP-fusion
protein of one of the FIKK kinases, FIKK12, was shown to be exported to the erythrocytes
and associates with Maurer’s clefts [93]. Although protein kinase activity of FIKK12 was
detected in immunoprecipitates [93], recombinant FIKK 11 and FIKK 10.1 did not show any
protein kinase activity using a peptide phosphorylation motif array [Turk and Chakrabarti,
unpublished]. FIKK kinases may have a role in parasite-induced signaling events, given that
members of this family are exported into the erythrocytes, associate with Maurer’s clefts, and
one of the paralogs, R45, is trafficked to the host cell membrane [94].

4. Concluding remarks
The knowledge of signaling transduction pathways in Plasmodium is fundamental to aid the
design of new strategies against malaria. The finding that Plasmodium possesses serpentine
receptors [38] opens new possibilities to dissect the upstream mechanisms through which
Plasmodium senses the environment. On the other hand, the use of second messengers by
parasites such as cAMP and calcium has long been suggested in the literature and finding their
target could bring invaluable information regarding Plasmodium cell biology. Together with
downstream mechanisms for signaling in Plasmodium they will provide a more complete
picture of how Plasmodium signaling handling machinery is put in action.

Precise delineation of Plasmodium protein kinase functions as key regulators of cellular events
will be a major challenge of the post-genome project era. It is apparent from earlier discussions
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that it will be difficult to ascertain physiological roles of Pf kinases simply based on homology
because many of these proteins are expected to possess parasite-specific function as a means
of regulating complex life cycle events. Therefore, characterization of physiological function
of Plasmodium kinases will not be a mere repetition of what is already known in model
organisms but will provide novel parasite specific information and fill a major gap in our
understanding of the malaria parasite life cycle. Studies on the malarial protein kinases, their
regulators and substrates will also provide new avenues of drug design targeting
intraerythrocytic stages. Targeting protein kinase substrates rather than typical ATP-binding
pocket will allow us to inhibit specific physiological events. Although targeting protein–protein
interactions can be challenging because of complexity and diversity of binding surfaces, there
have been recent progresses towards developing such therapeutic intervention approaches
[95]. One such method is known as ‘fragment assembly’ that probes large chemical space as
seen with interacting surfaces between proteins [96–98]. Alternatively, interfering
peptidomimetics can also be developed. A long-term goal of this project is to use similar
approaches can be utilized to identify molecular entity targeting malaria parasite kinases.
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Fig. 1.
Schematic pathway of signaling in Plasmodium. AC adenylate cyclase, camK calcium/
calmodulin kinase B, PDE phosphodiesterase, PLC phospholipase C, PKA protein kinase A,
PKG protein kinase G PV parasitophorous vacuole, N nuclei, SR serpentine receptor.
Tryptophan-derivatives are able to increase citoplasmic calcium through PLC. Calcium
increase activates adenylate cyclase that convert AMP in cAMP once the concentration of such
molecule is augmented in response to calcium increase by melatonin. cAMP is able to bind the
regulatory subunit of PKA (cyclic AMP-dependent protein kinase) leading to an allosteric
change in conformation which causes unleashing of the catalytic subunits becoming it activated
and able to phosphorylate its targets. The molecular downstream effects of calcium and PKA
in this pathway are proposed.
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