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Summary
Pre-cancerous and malignant cells can induce an immune response which results in destruction of
transformed and/or malignant cells, a process known as immune surveillance. However, immune
surveillance is not always successful, resulting in “edited” tumors that have escaped immune
surveillance. Immunoediting is not simply the absence of anti-tumor immunity, but is due to pro-
tumor immunity that blocks anti-tumor adaptive and innate responses, and promotes conditions that
favor tumor progression. Several immune pro-tumor effector mechanisms are up-regulated by
chronic inflammation, leading to the hypothesis that inflammation promotes carcinogenesis and
tumor growth by altering the balance between pro-and anti-tumor immunity, thereby preventing the
immune system from rejecting malignant cells, and providing a tumor-friendly environment for
progressive disease.

Introduction
The concept that the immune system can be harnessed as a therapeutic agent to treat established
tumors (immunotherapy) was first proposed in the early 1900’s by Paul Ehrlich. He suggested
that molecules that we now know as antibodies, could deliver toxins directly to cancer cells.
Ehrlich’s “magic bullet” strategy was expanded upon in the 1950’s by Burnet and Thomas.
They hypothesized that the immune system may also protect against nascent cancers by
destroying malignant cells before they developed into detectable tumors, a concept that has
become the immune surveillance hypothesis [1,2]. Although enthusiasm for the validity of
immunotherapy and immune surveillance waned in the 1970’s, subsequent studies
demonstrated that the immune system can protect against tumor onset and be manipulated to
reject established tumors. Revival of the immune surveillance hypothesis led to a re-working
of the initial concept, to include the concept of “immunoediting.” During immunoediting, the
immune system destroys many pre-cancerous and malignant cells; however, some cells escape
the immune response and give rise to progressively growing tumors. Immunoediting is thought
to continue throughout the life of the tumor so that the phenotype of an established tumor has
been directed by the host’s immune response. It has also become apparent that both innate and
adaptive immunity have a “dark” side and can promote tumor progression as well as mediate
tumor destruction. Not surprisingly, chronic inflammation, which has long been associated
with increased tumor risk, is involved in polarizing immunity towards those effectors that
facilitate tumor growth. As a result, the immune system has the potential to either promote or
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delay tumor onset and progression, and the effectiveness of immune surveillance and the
efficacy of immunotherapy depend on the balance between these diametric opposites (Figure
1). After a brief over-view of the observations supporting the concept of immune surveillance,
this article will review the cells that mediate pro-and anti-tumor immunity including a
discussion of how inflammation polarizes innate and adaptive immunity towards either a pro-
tumor or anti-tumor phenotype.

Immune surveillance and immunoediting
Rejuvenation of the concept that the immune system protects against nascent malignant cells
occurred with the demonstration that mice deficient for various components of the adaptive or
innate immune systems were more likely to develop some types of tumors, specifically
sarcomas as opposed to carcinomas, as compared to immune competent mice, when exposed
to carcinogens or transplanted with syngeneic tumor cells. Immune deficiencies included the
absence of B cells and αβ or γδ T cells due to deletion of the recombination-activating gene-2
(RAG2) required for immunoglobulin and T cell receptor gene rearrangements, and the absence
of interferonγ (IFNγ) or the ability to respond to IFNγ, a key mediator of cellular immunity.
Similarly, mice that were knocked-out for perforin, an essential molecule for cell-mediated
cytotoxicity used by most effector cells of the innate and adaptive immune systems, or mice
deficient for natural killer (NK) or NKT cells, effector cells of the innate immune system, were
also more susceptible to spontaneous tumors or had more rapid growth rates of transplanted
tumors as compared to wild type or immune competent mice [3,4].

Circumstantial evidence suggests that immune surveillance and immunoediting also occurs in
cancer patients. Individuals with hereditary or acquired immunodeficiencies have higher
incidences of some types of viral- and carcinogen-associated cancers. Organ transplant patients
maintained on immune suppressive drugs are 3–8 fold more likely to develop cancer than
normal controls, although tumors are not randomly distributed in all anatomical locations [1,
2]. In contrast, ovarian, colorectal [5], and melanoma patients whose tumors have high levels
of tumor-infiltrating lymphocytes have a better prognosis [1,2]. Collectively, experimental
studies and the clinical observations in patients indicate that the immune system can foil
carcinogenesis and mediate regression of established tumor.

CD4+ and CD8+ T lymphocytes
CD4+ and CD8+ T cells are the principal helper and effector cells, respectively, of adaptive
cellular immunity, and many immunotherapy strategies are aimed at activating these cells to
promote tumor cell destruction and long-term immune memory against recurrence of primary
disease or outgrowth of metastases. Type 1 CD4+ T cells (Th1) facilitate tissue destruction and
tumor rejection by providing help to cytotoxic CD8+ T cells, while Type 2 CD4+ T cells T
(Th2) facilitate antibody production by B cells and polarize immunity away from a beneficial
cell-mediated anti-tumor response (Figure 2). CD4+ T regulatory cells (T regs), which are
naturally occurring or antigen-induced, promote tumor immunity by blocking the activation
of CD8+ cytotoxic T cells. Although additional studies are needed to fully characterize the
mechanism(s) by which CD4+ T regs block CD8+ T cell activation, T reg expression of
cytotoxic T lymphocyte antigen 4 (CTLA4), an inhibitory signal for T cells, may be involved
[6]. As for many pro-tumor mediators, inflammation enhances T reg function since
prostaglandin E2 (PGE2) causes differentiation of T regs and increases their immune
suppressive activity [7,8]. In addition to their inhibiting CD8+ T cell activation, CD4+ T regs
block killing by natural killer cells [9], and thereby down-regulate both adaptive and innate
anti-tumor immunity. Although most T regs are CD4+, CD8+ T regs induced by plasmacytoid
DC have been identified in ovarian cancer patients [10].
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Recently identified CD4+ Th17 cells [11,12], may also promote tumor progression. Th17 cells
are induced by IL-23, a cytokine closely related to IL-12 and whose receptor shares the
IL-12Rβ1 with IL-12 [13]. Upon activation by IL-23, Th17 cells produce IL-17 which
exacerbates inflammation by inducing IL-6, TNFα, G-CSF, and other acute phase proteins
[14]. IL-23 itself, has been shown to reduce CD8+ T cell infiltration into tumors, thereby
promoting tumor growth [13,15] (Figure 2). Earlier experiments using IL-17-transfected tumor
cells were inconclusive as to whether IL-17 promoted tumor growth or tumor rejection [16,
17]. This ambiguity may be explained by a recent study showing that Th17-induced IL-6 blocks
CD4+ T regs [18]. Additional experiments are clearly necessary to clarify the roles of IL-23,
Th17 cells, IL-17, and regulatory T cells in tumor progression.

B lymphocytes
Tumor-reactive monoclonal antibodies can have significant anti-tumor efficacy when
passively administered to cancer patients. In contrast, most cancer vaccines or other therapies
that are aimed at inducing tumor-reactive antibodies are largely ineffective in promoting tumor
rejection, although there are exceptions [19]. More recent experiments indicate that activated
B cells and their soluble products, presumably antibodies, can also facilitate carcinogenesis.
Using a transgenic mouse model in which the human keratin 14 promoter drives expression of
early region genes of human papilomavirus 16, B cells were shown to promote a chronic
inflammatory microenvironment that recruits innate immune cells and factors to the tumor site,
thus establishing a stromal environment that supports de novo carcinogenesis. Thus, humoral
immunity can enhance malignant transformation by activating the innate immune system
[20,21].

Macrophages
Macrophages are part of the innate immune system and play important roles in all aspects of
immunity. They are an exceptionally heterogeneous population of cells. Similar to CD4+ T
cells, macrophages can contribute to tumor destruction or facilitate tumor growth and
metastasis, depending on their phenotype (Figure 3).

Macrophages that are “classically activated” by IFNγ and bacterial lipopolysaccharides destroy
tumor cells through their production of nitric oxide and type 1 cytokines and chemokines. These
macrophages also function as antigen presenting cells to activate cytotoxic CD8+ T [22]. In
contrast, macrophages activated through the “alternative” pathway with IL-4, IL-13 and/or
TGFβ promote tumor progression by enhancing angiogenesis and producing type 2 cytokines
and chemokines [23]). Because of the similarities in cytokine profiles, Mills coined the
terminology “M1/M2” after the Th1/Th2 paradigm for classically-activated and alternatively-
activated macrophages, respectively [24]. This jargon was further developed by Mantovani
and colleagues, although they are careful to point out that macrophages are a continuum of
phenotypes with M1 and M2 being the polarized extremes [25,26].

Most progressively growing tumors are infiltrated by large numbers of macrophages. These
tumor-associated macrophages (TAMS) are a key component of the tumor stroma and are
essential for the angiogenesis and matrix remodeling that supports progressively growing
neoplasms. Using a spontaneous mouse mammary tumor model, the transition from pre-
malignant to malignant phenotype was associated with increased blood vessel formation, and
that the elimination of TAMS blocked the neoangiogenesis, while early infiltration of TAMS
enhanced angiogenesis [27]. Metastasis is also enhanced by TAMS when they promote the
intravasation of tumor cells into local blood vessels, as graphically shown by intravital
multiphoton imaging of live mammary tumors in situ [28]. As shown in human ovarian cancer,
TAMS also promote tumor progression by blocking the activation of tumor-specific T cells by
their expression of B7-H4, a negative regulator of T cell activation [29]
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Since TAMS promote tumor progression, they are often called M2 macrophages. Gene
profiling of TAMS and alternatively-activated peritoneal macrophages (M2) has confirmed
that TAMS and M2 macrophages express many of the same molecules; however, TAMS also
express some IFN-inducible genes that are characteristic of M1 macrophages, indicating that
they are intermediate in the continuum of macrophage phenotypes [30,31].

Natural killer (NK) cells
NK cells are components of the innate immune system that interact with adaptive immunity
through their production of cytokines that modulate dendritic cell (DC) and cytotoxic T cell
maturation. They are well recognized for their ability to directly lyse MHC class I-deficient
tumor cells through the engagement of their activating receptors and lack of engagement of
their inhibitory receptors. However, a subset of NK cells are also cytotoxic for activated
CD8+ T cells [32] and DC [33], and thereby can reduce CD8-mediated anti-tumor immunity.
In addition, NK cells have been shown to inhibit DC-mediated antigen presentation through a
non-cytotoxic mechanism [34], and elimination of NK cells increases activation of tumor-
specific CD8+ T cells following immunization [35].

NKT cells
NKT cells, which express both NK and TCR, bridge the innate and adaptive immune systems.
They are usually CD4+ and respond to lipid and glycolipid antigens as presented by non-
classical MHC class I CD1d molecules. Until recently there was confusion as to whether NKT
cells promote tumor rejection or enhance immune surveillance. NKT cells prevent the spread
of B16 melanoma metastases and promote immune surveillance in mice treated with the
carcinogen 3-methyl-cholanthrene. However, CD1d knockout mice, which lack CD1d-
restricted NKT cells, reject recurrent fibrosarcomas and are resistant to the 4T1 mammary
carcinoma. These apparently conflicting findings were resolved when it was found that type I
NKT cells, which express the invariant Vα14Jα18 TCR Vβ chain, mediate tumor rejection,
while type II NKT cells, which express a non-Vα14Jα18 TCR Vβ chain, promote tumor growth
[36].

Myeloid-derived suppressor cells (MDSC)
MDSC are a morphologically and functionally heterogenous population of cells of myeloid
origin that are elevated in almost all patients and experimental mice with cancer [37]. They
suppress both innate and adaptive anti-tumor immunity by inhibiting CD8+ and CD4+ T cells,
NK and NKT cells, and by blocking DC maturation [38–41]. MDSC suppress T cells through
their production of arginase and/or reactive oxygen species (ROS); however, there is variability
in which mediator(s) is used depending on the tumor model [38,42,43]. MDSC heterogeneity
is further demonstrated by the requirement for CD80 expression for suppression by some
MDSC [44] and the absence of CD80 on other MDSC [45,46]. Likewise, the IL-4Rα is required
for the IL-13-induced activation of some MDSC [47]; however, equally suppressive MDSC
have been isolated from IL-4R-deficient and wild type mice [40]. Suppression requires MDSC
to T cell contact, and for suppression of CD8+ T cells, MDSC nitrate tyrosines of the CD8+ T
cells’ TCRs, thereby rendering the T cells incapable of activation by peptide-MHC I complexes
of antigen presenting cells [48].

In addition to inhibiting anti-tumor immunity by blocking T cell activation, MDSC also induce
CD4+ T regs through an IL-10 and IFNγ-dependent process that is ROS-independent [49].
They also polarize immunity towards a tumor-promoting type 2 phenotype by secreting high
levels of IL-10 and shutting down macrophage production of the Type 1 cytokine, IL-12.
Macrophages in turn, up-regulate MDSC production of IL-10 further favoring tumor
progression [50].
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MDSC are similar to other immune system cells in that chronic inflammation heightens their
pro-tumor activity. IL-1β and IL-6 increase the accumulation and suppressive activity of
MDSC [46,51,52], while reductions in these cytokines reduce MDSC levels [52]. PGE2 is one
of the inflammatory inducers of MDSC, since co-cultures of c-kit+ mouse bone marrow stem
cells with PGE2 produce immune suppressive Gr1+CD11b+ MDSC [53], and
cyclooxygenase-2 (COX-2) produced by human lung cancer cells up-regulates arginase
expression in human MDSC [54].

Conclusions
The immune system has the capacity to either block tumor development and deter established
tumors, or to promote carcinogenesis, tumor progression, and metastasis. Which of these
conditions prevails depends on the balance between the pro- and anti-tumor mediators of both
innate and adaptive immunity. Presumably, there are unifying mechanisms that orchestrate
immunity towards tumor promotion vs. tumor destruction. Since many of the tumor-promoting
elements of the immune system are induced by, or themselves cause, inflammation, chronic
inflammation may be a key process that polarizes immunity towards a tumor-promoting
phenotype [55]. Accordingly, chronic inflammation would produce an immune suppressive,
tumor-friendly environment that would negate immune surveillance and be permissive for
carcinogenesis. As tumor growth progressed and tumors themselves produced pro-
inflammatory molecules, innate and adaptive immunity would be further polarized towards a
tumor-promoting phenotype, creating an ideal environment for further tumor growth and
metastasis (Figure 4). Chronic inflammation has long been associated with increased risk of
tumor onset and progression, and is known to enhance angiogenesis and tissue remodeling,
and promote protein and DNA damage through oxidative stress, processes that are integral to
tumor progression [55–57]. By polarizing immunity towards a tumor-promoting phenotype,
inflammation not only promotes the genetic and histological changes that facilitate
carcinogenesis, but it also deters immune surveillance, thereby functioning as both an initiator
and a protector for neoplastic cells.
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Figure 1.
Tumor immunity is a balance between immune mediators that promote tumor progression vs.
mediators that promote tumor rejection. CD4+ T regulatory cells, Type 2 CD4+ T cells, Type
2 natural killer T cells, myeloid-derived suppressor cells, M2 or tumor-associated
macrophages, B cells, and possibly mast cells promote tumor progression, while CD8+ T
lymphocytes, type 1 CD4+ T lymphocytes, natural killer, type 1 natural killer T cells, M1
macrophages, and immune killer dendritic cells promote tumor destruction.
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Figure 2.
CD4+ T lymphocytes are induced by cytokines to produce cytokines that either promote tumor
progression or mediate tumor elimination. Type 1 CD4+ T cells are induced by IL-12 and
IFNγ to produce IFNγ which promotes the differentiation and expansion of CD8+ T cells that
are cytotoxic for tumor cells. In contrast, IL-4 polarizes CD4+ T cells towards a type 2
phenotype that produces IL-4, IL-5, and IL-13 which help B cells produce antibodies, thereby
directing immunity away from a tumor-rejecting type 1 response. Under the influence of
transforming growth factor β, CD4+ T cells develop into T regs that actively block tumor
immunity by suppressing tumoricidal CD8+ T cells. Recently identified Th17 cells are induced
by IL-23 to produce IL-17, which in turn induces cytokines and chemokines that promote
inflammation. The resulting inflammatory mediators may contribute to tumor progression by
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up-regulating immune suppressive cells of the adaptive and innate immune systems (see figure
4)
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Figure 3.
Macrophages are differentially activated by different cytokines or other factors and become
either tumor-promoting or tumoricidal. Classically-activated or M1 macrophages produce high
levels of type 1 cytokines that promote a tumor-rejecting type 1 response as well as factors
such as inducible nitric oxide synthase which are cytotoxic for tumor cells, and low levels of
type 2 cytokines. In contrast, alternatively-activated or M2 macrophages produce high levels
of cytokines that polarize immunity towards a tumor-promoting type 2 response, and low levels
of cytokines that promote a tumor-destructive type 1 response. Some of the molecules produced
by M2 macrophages attract additional pro-inflammatory mediators to the tumor site, thereby
amplifying the inflammatory microenvironment.
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Figure 4.
Inflammation may regulate the balance between pro- and anti-tumor immunity by inducing the
development of immune mediators that promote carcinogenesis and tumor progression.
Activated B cells or possibly CD4+ Th17 cells can contribute to an existing state of chronic
inflammation or de facto induce inflammation which results in the increase and activation of
M2 macrophages, CD4+ T regulatory cells, and myeloid-derived suppressor cells. These
immune suppressive cells then block immune surveillance, preventing the host’s immune
system from rejecting pre-malignant cells. In the presence of established tumor, the
inflammatory environment is maintained by B cell-secreted factors and possibly CD4+ Th17
cells, and by additional factors produced by the tumor cells and by host cells attracted to the
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tumor site. This increased inflammation induces the accumulation and activation of additional
M2 macrophages and myeloid and T suppressor cells which fuel tumor progression.
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