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Objectives. Examine frequency distributions of ictal EEG after ECT stimulation in diagnostic subgroups of depression. Methods.
EEG registration was consecutively monitored in 33 patients after ECT stimulation. Patients were diagnosed according to DSM
IV and subdivided into: (1) major depressive disorder with psychotic features (n = 7), (2) unipolar depression (n = 20), and
(3) bipolar depression (n = 6). Results. Results indicate that the diagnostically subgroups differ in their ictal EEG frequency
spectrumml: (1) psychotic depression has a high occurrence of delta and theta waves, (2) unipolar depression has high occurrence
of delta, theta and gamma waves, and (3) bipolar depression has a high occurrence of gamma waves. A linear discriminant function
separated the three clinical groups with an accuracy of 94%. Conclusion. Psychotic depressed patients differ from bipolar depression
in their frequency based on probability distribution of ictal EEG. Psychotic depressed patients show more prominent slowing of
EEG than nonpsychotic depressed patients. Thus the EEG results may be supportive in classifying subgroups of depression already
at the start of the ECT treatment.
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1. Introduction

Electroconvulsive therapy (ECT) is a well-established psy-
chiatric treatment in which seizures are electrically induced
in anesthetized patients for therapeutic effect mainly in var-
ious forms of mental depression. Electroencephalographic
examination during seizures induced by ECT gives a very
characteristic electroencephalogram (EEG) which however
presents a large biological variation as well as nonstationarity
patterns.

The EEG during seizures induced by ECT is very
characteristic but shows a large biological variation as well
as nonstationarity. Algorithm based in part of ictal EEG
implemented in ECT equipment may be used to predict
response of treatment and other potential clinical variables
such as diagnosis [1, 2].

This study is a part of a larger project in which the
characteristics of ictal EEG after ECT stimulation in affective

disorders will be analyzed with various mathematical meth-
ods (traditional and new methods) in relation to clinical and
other biological variables.

In EEG signals the classical statistical approach of
interpreting measurement errors as generators of uncer-
tainty is not valid. For EEG most of the noise is due to
model error which cannot be considered to be random.
We have not seen any EEG model where residuals are
completely randomly distributed around a fitted model.
This may be due to dependence structures, but it is
not clear how to estimate this dependency in nonstation-
ary series. Moreover, there are usually strong individual
responses which nowadays usually are taken into account
via random parameters, for example, in mixed models.
However, in this report we stay with classical spectral analysis
and will not present results where individual variation is
incorporated.
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Major depression is a heterogeneous condition, and the
search for neural correlates specific to clinically defined
subtypes has been inconclusive. Nevertheless, functional
neuroimaging studies of major depression have identified
neurophysiologic abnormalities in multiple areas of the
orbital and medial prefrontal cortex, anterior cingulum,
and related parts of the striatum and thalamus [3]. The
abnormalities of function and structure in these cortical-
subcortical circuits may be target for treatment with phar-
macological and brain stimulation methods such as modern
electroconvulsive therapy (ECT).

The abnormality of the function in these cortical-
subcortical circuits may depend on dysfunction in the
major neuromodulating transmitters, imbalance in excita-
tory/inhibitory function, and lack of neurotrophic factors in
turn causing decrease in synaptic plasticity [4–6].

Indication of ECT is pharmacological treatment resistant
depression of various subtypes, that is, in this article
referred to as psychotic depression, unipolar depression,
and bipolar depression. In psychotic depression, patients
experience delusions and/or hallucinations with colourings
of low mood in addition to other depressive symptoms. In
unipolar depression patients suffer from recurrent depressive
episodes. In bipolar depression, patients suffer from a current
depression that alternates with mania.

ECT devices provide the opportunity to monitor induced
seizures with electroencephalography (EEG), electrocardio-
gram, and electromyogram. EEG is a powerful method
that registers cortical electrical activity and may be used to
monitor the course of events in a seizure.

In this treatment modality, electrodes are placed on
the scalp, and a brief-pulse current is delivered, which
depolarizes neurons, resulting in a generalized tonic-clonic
seizure.

The course of the ictal EEG may be summarized as at least
three events of distinct and sequential phase patterns. The
first event contains high-voltage “sharp waves and spikes”,
the second rhythmical “slow-waves”, and the third event an
abrupt and well-defined ending, termed postictal suppres-
sion. This late phase is characterized by low amplitude and
higher frequency [7].

Independent of electrode placement on the scalp has
been shown to result in an increase in ictal slow wave
delta power in the prefrontal cortex, with a stronger
asymmetry seen with right unilateral ECT [8]. It has
also been argued that when ECT occasionally induces an
electrographic seizure with no overt convulsive activity, this
is because seizures may be confined to nonmotor prefrontal
regions. Thus, McNelly and Blumenfeld [9] showed that,
for example, bifrontal ECT also resulted in focal activation,
with maximal increases seen in the prefrontal and anterior
cingulate cortex with a relative sparing of bilateral temporal
regions

Most ECT studies have investigated the physiological
mechanism of action in relation to clinical response [10]. To
our knowledge this is the first study to report on subgrouping
depressive disorder with the aid of seizure data obtained from
ECT.

Table 1: Demographic variables of the subgroups of depression
(psychotic depression (PD), Bipolar depression (BD), Unipolar
depression (UD)): Sex (female (F), male (M)), Mean age± standard
error of mean (SEM), milli-Colomb (mC) ± SEM, and dynamical
resistance (Ohm).

Group Sex Age mC Ohm

PD (n = 7) F = 4, M = 3 55± 5 493± 47 235± 23

BD (n = 6) F = 3, M = 3 56± 2 461± 42 248± 15

UD (n = 20) F = 14, M = 6 53± 3 456± 32 251± 8

The aim of this study was to analyze smooth density
functions and time series of the seizure EEG, given in a clin-
ical treatment setting, and relate these EEG characteristics to
clinical subgroups of depressive disorder.

2. Subjects and Methods

2.1. Subjects. The research subjects consisted of 33 patients,
21 women and 12 men. Subjects were between the age 32 and
80. Two trained research raters used a structured interview
(SCID-I, DSM-IV), 1994 [11] to establish a major depression
diagnosis in all participants. Subdiagnoses were psychotic
depression (n = 7), bipolar depression (n = 6) and patients
with unipolar depressive episode (n = 20); see Table 1.
All patients were clinically referred for unilateral ECT and
were consecutively included in the study during a period
of one year (February 2001–February 2002). All subjects
were right handed and had not received ECT during the last
three months. They had no evidence of neurological disease
in their history, physical examination, or chart review.
Subjects who were medicated with antidepressants and/or
neuroleptics maintained their medication during the ECT
series; see Table 2. Patients on lithium, benzodiazepine, or
antiepileptics discontinued medication one week prior to
ECT.

2.2. Methods

2.2.1. ECT Administration. All subjects received unilateral
electrode placement according to the d’Elia method [12]. The
patients received bidirectional pulse ECT (MECTA 5000Q
ECT device; Mecta, Lake Oswego, OK). ECT was adminis-
tered routinely three times a week (Monday, Wednesday, and
Friday) for a period of 2–4 weeks.

Two patients in the unipolar group were given thiopental
sodium 1 mg/kg during anaesthesia. All others were given
propofol 1.5–2.5 mg/kg. All patients received succinylcholin
1 mg/kg and ventilation until full saturation, that is, 100%
oxygen by mask during anaesthesia.

The electrical stimulus intensity was determined by
reference to a predefined chart, according to sex and age [13].
Pulse width (1 millisecond), stimulation time (6 seconds)
and currency (800 mA) were fixed while stimulus frequencies
varied.

2.2.2. EEG Recording. Two channels of EEG were recorded
using an MECTA 5000Q device. Electrodes were placed
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Table 2: Medication in individual patients. Labels: UD = unipolar
depression; PD = unipolar depression with psychotic symptoms;
BD = bipolar depression. Medication is indicated: 1 = with and 0
= without medication.

Patient ID Group Neuroleptics Antidepressives

2 BD 1 0

13 BD 0 0

32 BD 0 0

121 BD 1 1

135 BD 0 0

146 BD 0 0

1 PD 0 0

15 PD 1 0

37 PD 0 0

41 PD 0 1

42 PD 0 0

122 PD 0 0

174 PD 0 0

8 UD 0 1

10 UD 0 0

16 UD 0 1

18 UD 0 0

19 UD 0 0

25 UD 0 1

27 UD 0 0

28 UD 0 0

30 UD 0 0

31 UD 0 0

34 UD 0 0

35 UD 0 0

39 UD 0 1

40 UD 0 0

45 UD 0 0

49 UD 0 0

74 UD 0 1

80 UD 0 0

97 UD 0 0

126 UD 0 1

on the left and right prefrontal area and correspondingly
reference electrodes on the left and right processus mas-
toideus. The channels over the prefrontal areas are called Fp1
and Fp2, according to the 10–20 system. Disposable stick-
on Ag/AgCl electrodes with conductive gel were used (SLE
diagnostics). Before application of electrodes the sites were
cleansed with alcohol and an abrasive cleanser (NUPREP,
SLE diagnostics) to ensure low electrode/scalp impedance.
Registration of EEG was performed before, during, and after
ECT. Registration ceased approximately 30 seconds after the
beginning of the postictal period. By sampling at a frequency
rate of 128 Hz, the continuous EEG signals were recorded.
The data from the digital port of the MECTA equipment were
simultaneously recorded, transferred to computer hard disc,
and saved in files together with stimulus parameters.

2.2.3. Artifacts of EEG. Artifacts were rejected manually;
blind to subject and diagnosis by B.W. Movement artifacts
were removed. All EEG recordings with alternating current
(AC) disturbances were excluded from the analysis. When
data was examined for artifacts, the definition of frequency
bands was as follows: delta (0.5 < P ≤ 3.5 Hz), theta
(3.5 < P ≤ 7.5 Hz), alpha (7.5 < P ≤ 12.5 Hz), beta 1
(12.5 < P ≤ 20.5 Hz), beta 2 (20.5 < P ≤ 32.5 Hz), and
gamma >32.5 Hz.

2.2.4. Statistical and Mathematical Analysis. All calculations
were performed on EEG signals collected directly after ECT
stimulation and refer to the first ECT treatment. Collection
was stopped 30 seconds postictally. EEG data can be difficult
to interpret because there is no simple model for the dynamic
variation of the signals. We have developed some specific
statistical methods for the estimation which all are based
on minor modifications of standard methods used in time
series analysis and multivariate statistics [14]. Sampling
the continuous EEG signals at a frequency rate of 128 Hz
gave a Nyquist frequency of 64 Hz, that is, the highest
frequency that can be estimated when studying the series in
the frequency domain. The statistical analyses were mostly
performed in the frequency domain using Matlab and the
Signal Processing toolbox [15]. In particular, we addressed
our attention on the estimation of the spectral density
functions of the recorded time series of EEG [16–19].

The original EEG signals presented global as well as
local trends. Therefore, in order to avoid any bias in the
spectral estimates due to the presence of such trends the
series were filtered by taking the first difference. After this
preliminary operation, the series for each individual were
Fourier transformed, and their spectral density functions
were estimated.

3. Results

3.1. Analysis of Smooth Density Functions and Time Series. In
this study we found identifiable and significant differences in
the EEG characteristics, from Fp1 and Fp2, respectively, as
well as the first treatment, between the different subgroups
of patients with major depression.

To illustrate how the smooth density functions are
distributed for channel Fp1 of the first five seizures, we show
the functions for one patient from each category, see Figures
1(a), 1(b), and 1(c), respectively. For statistical comparisons
of the smooth density functions between the three clinical
groups, please see Table 3.

In patients with psychotic depression we found a high
occurrence of low frequencies in the EEG series. Most of
the activity of the ictal EEG was found in the Delta and
Theta frequency range (<10 Hz). In all spectra, the most
prominent peaks were located in the Delta band. Moreover,
the amplitude of such peaks tended to decrease over time,
proportionally to the number of treatments received. All
spectra are almost equal to zero for frequencies greater than
40 Hz, except for a small peak located at about 52 Hz (see
Figure 1(a)).
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Figure 1: (a) Smoothed spectral density functions (sdfs) of channel
Fp1 (Pat. 42—Psychotic depressed), (b) sdfs of channel Fp1 (Pat.
80—Unipolar depressed), and (c) Sdfs of channel Fp1 (Pat. 2—
Bipolar depressed).

Table 3: Mean values and standard error of mean (SEM) of the
principal components (PC), summarizing spectrum of smooth
density distribution of psychotic and bipolar depressed patients (PD
and BD, resp.). Unipolar depressed (UD) patients cannot be differed
from either psychotic or bipolar depressed patients. Fp2 denotes the
left fronto-orbital EEG electrode.

Variable Group n Mean SEM

PC1 PD 7 −0.50∗∗∗ 0.65

of the whole UD 20 −0.08 0.29

spectrum of sdf BD 6 0.85 0.43

PC2 PD 7 0.70∗∗∗ 0.29

of the whole UD 20 −0.15 0.32

spectrum of sdf BD 6 −0.32 0.60

PC1 PD 7 1.13∗∗∗ 1.08

of selected UD 20 0.02 0.53

frequencies BD 6 −1.39 0.62
∗∗∗Significant difference between PD versus BD, P < .001.

In patients with unipolar depression, there was a more
heterogeneous pattern in the frequencies of the ictal EEG.
In almost all the seizures the highest peak of each smoothed
spectral density function is located in the Gamma frequency
range, more precisely around 47.3 Hz. However, considerable
activity could be found in the Delta band where there were
minor peaks, which were also characterized by decreas-
ing amplitudes with increased number of treatments (see
Figure 1(b)). Unipolar depression had more commonalties
with bipolar depression than with psychotic depression,
especially in the low-frequency domain of EEG.

In patients with bipolar depression we found a high
occurrence of high frequencies. Almost all activity was found
in the Gamma range where the global maximum of each
spectrum (at about 55 Hz) is usually followed by two minor
peaks at about 47 and 51 Hz (see Figure 1(c)). This frequency
is found in the postictal-suppression phase of the seizure
EEG. Moreover, the dominant activity as well as the most
prominent peaks switches into the Delta range as the number
of treatments increase.

3.2. Classification. As a first step in finding out possible
discriminatory variables between the three clinical groups,
we stored the peak values of the spectral density functions
of both prefrontal channels at 2.62, 2.87, 3.12, 3.25, 46.37,
46.62, 51.75, and 55.75 Hz. Thus, by selecting the most
common frequencies from the EEG we totally had 16
observations, which came from both EEG channels.

Since these variables were highly correlated, we applied
principal components analysis in order to avoid problems
due to multicollinearity. The first six principal components
were used in the multivariate analysis (see Figure 2), while
they included more than 95% of the variability of variables
from which they were originated.

Sex, age, and medication had no statistical influence
when performing analysis of covariance.
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Successively, in order to study in more detail the variation
structure of the signals, we applied two different filters: a
low-pass filter able to detect any possible difference within
the Delta and Theta bands (0–8 Hz) and a high-pass filter in
order to separate the Beta frequency band (more precisely the
range 40–50 Hz). In both cases Yule-Walker filters of order
eight were used.

Figures 2(a), 2(b), and 2(c) show the smoothed spectral
density functions for the low- and a high-pass-filtered series
for one patient in each group. Concerning the low-pass
series (graph at the top), it is very interesting to notice
that many patients’ spectra manifest, more or less, common
characteristics. In each spectrum, in fact, a considerable
percentage of the Delta activity (about 50%) is concentrated
between 3 and 5 Hz. All the spectra have their greatest peak at
3.25 Hz, followed by a minor peak at 3.75 Hz. However there
is also diversity in amplitude of such peaks, which tend to be
higher in case of psychotic depression and smaller in case of
unipolar depression.

Finally, regarding the high-pass-filtered series (graph at
the bottom), we can see that there actually are differences in
the distribution of the variation of the processes among the
different groups. Bipolar depressed patients display an EEG
spectrum with a unique high peak of the smooth density
function at 46.5 Hz while the remains of the function seem
to be caused mainly by unspecific noise. This frequency is
found in the postictal suppression phase of the seizure EEG.

Also unipolar depressed patients tend to have spectra
with the main peak located at the same frequency but smaller
in amplitude while bipolar depressed patients manifest their
peak at 55.75 Hz even though their Gamma activity is quite
uniform within the band. Hence we recorded, for both
channels, the values of the spectra of the low-pass series at
3.25 Hz and those of the high-pass series at 46.5. These values
were then transformed, via principal components analysis,
into new uncorrelated variables.

The differences between the EEG characteristics of the
psychotic depression patient group and patients with bipolar
disorder were significant. Linear discriminant analysis based
on principal components of the obtained frequencies in
the EEG signals gave almost perfect separation between the
individuals belonging to different subgroups of depression.
The means, standard errors of means, and approximate
confidence limits of the principal components analysis of the
frequencies are shown in Table 3.

Comparisons between the different smooth density func-
tions (sdfs) of the clinical groups as well as the selected
frequencies were tested pairwise. The first components of
the eight selected frequencies from both channels separated
the two clinical groups. Also the first and second principal
components of the frequencies of the whole sdfs differed sig-
nificantly between psychotic depression and bipolar disorder.

With repeated ECT the differences in EEG characteristics
between the clinical subgroups were reduced. In data from
the first ECT session, the clinical subgrouping matched the
classification aided by EEG characteristics in 94% of the
patients; see Table 4. However, cross validation showed that
this matching is proportionally reduced with the number
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Figure 2: (a) Spectral density function of low-pass (I) and high-
pass (II) series for a patient 1 (psychotic depression), (b) spectral
density function of low-pass (I) and high-pass (II) series for a
patient 19 (unipolar depression), and (c) spectral density function
of low-pass (I) and high-pass (II) series for a patient 13 (bipolar
depression).
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Table 4: Results of linear discriminant analysis using variables
from the post ECT EEG frequencies of the 1st seizure. The correct
number of number of individuals in respective subgroups of
depressed (True group = patients) is on top of the table. The number
of classified individuals according to the discriminant function is
shown in the left margin (assigned to group = classified). Subgroups
of depression: psychotic depression (PD), bipolar depression (BD),
and unipolar depression (UD).

Assigned to group
True group

1 2 4 Total

PD 7 1 0 8

UD 0 18 0 18

BD 0 1 6 7

Total 7 20 6 33

N correct 7 18 6

Proportion 1 0.90 1.00

of treatments received (48.5% after the second seizure and
29.4% after the third).

4. Discussion

There is a difference between EEG characteristics for patients
with unipolar depression, psychotic depression, and bipolar
depression. With repeated ECT these differences tend to even
out. The ictal EEG of the first ECT is the most informative,
that is, it has the highest capability of discriminating clinical
subgroups.

Several studies support a relationship between major
depression with psychotic features and bipolar disorder
[20–22]. The conversion rate from psychotic depression to
bipolar disorder was 20% in these studies, and the age
of those who converted was significantly lower than those
who did not convert. In the present study the mean age of
patients with psychotic depression was 50 years, and so it
seems unlikely that there were any “latent bipolar” patients
in the group of psychotic depressed patients. Discriminant
analysis resulted in an almost perfect separation of the three
clinical subgroups using high and low frequencies. However,
our cross-validation analysis showed low predictability, and
only a larger sample may provide a more reliable estimate
of subgroup belonging. We are currently adding more
individuals to our clinical database.

There is considerable evidence from studies of different
biological variables that point to distinct biological abnor-
malities in psychotic depression as compared with bipolar
depression and unipolar depression [23]. The high remission
rate (95%) after ECT in psychotic depressed patients as
compared with depressed patients without psychotic features
(83%) supports the argument that psychotic depression is a
distinguishable nosological entity [24]. The EEG characteris-
tics reported in our study agree in general with earlier reports
[25–27].

This was an open study where treatment groups consti-
tute of small and unequal sample sizes. Despite of no optimal

study conditions, we saw significant differences between
clinical subgroups. Many variables have been reported to
influence EEG pattern. Patient medication and anaesthetic
under treatment, patient age, ECT stimulus parameters, and
the placement of EEG electrodes are all possible sources
of variation. However, in our study, we saw no significant
confounding of the results correlating with these variables,
which may be due to the open study design.

It may be argued that the number of EEG placements
were too low to quantify EEG patterns related to ECT. The
rational behind use of two EEG scalp electrodes was that
this study was an open study, in ECT practice. Using two
EEG electrodes is of course a limitation when studying EEG
characteristics, such as topographic and spatial properties.
However, the standard placements of EEG electrodes during
ECT are Fp1 and Fp2. Data from these placements are
included in the treatment algorithm implemented in the
electrical device. The algorithm was based on ictal EEG data
from 28 electrode scalp sites from over 200 patients and has
been tested on data over 80 patients, confirming validity [28].

Data from Fp1 and Fp2 sites added most of the statistical
variation to the regression model. Therefore, we believe that,
for our purpose, the choice of these two sites was sufficient
when studying seizure EEG characteristics in relation to
various clinical variables.

Another limitation in EEG studies to be considered
is possible variation from EEG reference electrodes. We
used standard ipsilateral electric references (i.e., bilateral
processus mastoideus) according to Krystal et al. [28]
when performing regression model. By careful placement of
references electrodes as well as Fp1 and Fp2 electrodes, we
believe that we minimized this source of variation.

Multivariate analysis on small sample size has disad-
vantages when many variables relatively to the independent
experimental units are observed. Therefore, we applied
variable reducing techniques (PCA) to make it possible to
compare the clinical groups in a more effective way. The
new variables (principal components) formed by PCA are
asymptotically uncorrelated, and they may be included in a
multiple regression analysis. We had some indications that
observations from Fp2 differentiated the clinical groups PD
and BD but not those from Fp1. This finding may indicate a
difference between PD and BD in how the epileptic seizure
propagates.

5. Conclusion

It is conceivable that the use of EEG data can aid diagnosis
and leads to separate treatment for clinical subgroups of
depressed patients. Classifying clinical subgroups can lead to
better prophylaxis for the individual patient. During a 25-
year period, 25% of unipolar depression will change diagno-
sis to bipolar disorder [29]. It is important to identify these
individuals at an early stage of the disorder. With improved
predictability, we can identify latent psychotic depression
and bipolar depression (not yet diagnosed) in patients with
unipolar depression using our method. The heterogeneous
EEG characteristics for unipolar depression imply even more
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subgroups or features that may predict future succession in
depressive disorders. The EEG of clinical subgroups becomes
more alike with repeated ECT. The mechanism behind this
observation point toward a late phase of divergent patho-
genesis in depressive disorder. Moreover, this divergence may
imply different endophenotypes in depressed individuals
and is consistent with neo-Kraepelinian classifications of
depressive disorder [30].

In this study EEG indicates to be an instrument for
classifying subgroups of depression at initiation of ECT.
However, the results should be replicated in larger studies.
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