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ABSTRACT

A major challenge in microarray data analysis is the
functional interpretation of gene lists. A common
approach to address this is over-representation
analysis (ORA), which uses the hypergeometric
test (or its variants) to evaluate whether a particular
functionally defined group of genes is represented
more than expected by chance within a gene list.
Existing applications of ORA have been largely lim-
ited to pre-defined terminologies such as GO and
KEGG. We report our explorations of whether ORA
can be applied to a wider mining of free-text. We
found that a hitherto underappreciated feature of
experimentally derived gene lists is that the consti-
tuents have substantially more annotation asso-
ciated with them, as they have been researched
upon for a longer period of time. This bias, a result
of patterns of research activity within the biomedical
community, is a major problem for classical hyper-
geometric test-based ORA approaches, which
cannot account for such bias. We have therefore
developed three approaches to overcome this
bias, and demonstrate their usability in a wide
range of published datasets covering different
species. A comparison with existing tools that use
GO terms suggests that mining PubMed abstracts
can reveal additional biological insight that may not
be possible by mining pre-defined ontologies alone.

INTRODUCTION

The output of a microarray experiment is typically one
or more lists of genes that show an ‘interesting’ change
in expression in the context of that experiment. This is
often not the end point of the analysis, but the starting
point of a complex process of deriving biological interpre-
tation. Many researchers interpret their results by manu-
ally reviewing the function of each gene based on literature
or database searches, or by prior familiarity with the
gene and a plausible link to the biology under study.

This ad hoc annotation process is both time-consuming
and prone to user bias. The need to formalise this inter-
pretation process has led to the development of a range of
tools, of which a family of statistical methods collectively
known as over-representation analysis (ORA) is becoming
increasingly popular among researchers undertaking
microarray analysis. The fundamental question asked by
ORA is: what biological terms or functional categories are
represented in the gene list more often than expected by
chance. The most common approach to test this statisti-
cally is by using the hypergeometric test (or its variants
such as Fisher’s exact test) to calculate the probability of
seeing at least a particular number of genes containing
the biological term of interest in the gene list. This mode
of analysis has been implemented (with minor variations)
in several publicly available software tools, including
DAVID/EASEonline (1), FatiGO (2), GenMAPP (3),
GoMiner (4) and OntoTools (5).

Currently, the applications of ORA are largely limited
to the mining of pre-defined ontologies (e.g. GO, MeSH)
or pathway annotation (e.g. KEGG, BioCarta). These
resources are, to a large extent, generated from manual
literature reading by experts, with the aim of providing
a structured, condensed and reduced description of the
biological knowledge about genes in the scientific litera-
ture. However, due to its labour-intensive nature, such
pre-defined functional annotations are inevitably limited
in scope and flexibility, and cannot fully reflect the detail
of all areas of biology that might be of interest. A much
greater wealth of biological knowledge about genes is
present only in the primary, text-based biomedical litera-
ture, which is readily accessed in the form of abstracts,
and increasingly as full-text articles from selected biomed-
ical journals.

We were therefore interested to determine whether the
successful applications of ORA can be extended beyond
the mining of controlled vocabularies to a wider mining
of free-text, initially in the form of PubMed abstracts.
Our initial exploration into this approach was based on
a simple tokenisation of PubMed abstracts, followed by
the identification of over-represented tokens using the
classical hypergeometric test. When this approach was
tested on 52 literature-derived gene lists, we discovered a
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dramatic and hitherto underappreciated feature—gene
lists derived from a typical microarray experiment tend
to have more annotation (i.e. PubMed abstracts) asso-
ciated with them than would be expected by chance.
This bias can lead to a marked over-representation of
many common (and likely uninformative) terms, inter-
spersed with terms that appear to convey real biological
insight.

We have developed several solutions to this issue.
The first is based on the use of a permutation test, but is
hampered by being computationally intensive. Therefore
two computationally tractable approaches for performing
ORA mining on PubMed abstracts, based on the detection
of outliers and the extended hypergeometric distribution,
were developed. Here, we describe the unique features of
these methods and illustrate their utility by applying them
to several diverse biological datasets.

MATERIALS AND METHODS
Public datasets

We used publicly available microarray datasets to evaluate
the performance of the ORA methods described in this
work. In total, 354 different gene lists were collected from
146 scientific papers, which cover experiments performed
on 10 major Affymetrix platforms, including HG-U133A,
HG-U133 Plus 2.0, Mouse 430 2.0, Rat 230 2.0, Arabidopsis
ATHI1, DrosGenomel, Drosophila 2.0, Xenopus laevis,
C. elegans and Zebrafish. These gene lists are collectively
referred to as the ‘literature gene lists’ and their details can
be found in Supplementary Data 2. Two gene lists were
selected to evaluate in more detail the performance of the
ORA methods presented here:

(1) ISG gene list: This gene list was extracted from the
gene expression study of Sanda er al. (6). We applied
the regularised z-test method (7) to MASS expression
data and used the false discovery rate (FDR) method
to correct for multiple hypothesis testing. Genes that
were differentially regulated following treatment with
type I interferon at both 6 and 24 h were identified
(FDR P <0.05). This produces a gene list consisting
of 77 interferon-stimulated genes (ISG).

(2) Nishimura gene list: This gene list was as reported in
Nishimura et al. (8). It contains 685 probesets on the
Affymetrix Arabidopsis ATH1 array, representing
679 different genes that were differentially expressed
in pmr4 mutant relative to wild-type plants.

Text corpus creation

The methods described here require the initial creation of
a text corpus that connects the textual information stored
in PubMed abstracts with genes included in the micro-
array analysis. First, we mapped all the genes represented
on an array to their corresponding EntrezGene identifiers
(EGID) based on the mapping schemes provided by the
appropriate Bioconductor metadata packages. Then,
PubMed articles associated with these genes were obtained
from the gene2pubmed file downloaded from NCBI
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(ftp://ftp.ncbi.nih.gov/gene/DATA; time stamp: 25
October 2007) in the form of EGID to PubMed identifier
(PMID) mappings. PMIDs that are associated with more
than one EGID were omitted because, based on manual
inspection, these tend to be large-scale sequencing reports
that contain information largely irrelevant to gene func-
tion. This lack of specificity can affect the performance
of the text mining algorithms. PubMed articles passing
this criterion were retrieved from the PubMed database
using a customised Perl script implementing modules
from the Entrez Programming Ultilities (http://eutils.
ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html).

Upon retrieval, the abstracts were tokenised on white
space to produce single-word terms. Any redundancies
were removed to produce a unique set of tokens for
each gene. Terms composed exclusively of numbers were
removed from the text corpus. Then, a simple stemming
operation was applied to reduce plural to singular forms
(e.g. ‘kinases’ becomes ‘kinase’). Verb tenses were
stemmed to their root (e.g. ‘phosphorylates’ and ‘phos-
phorylated’ become ‘phosphorylate’). Other more elabo-
rate analysis of spelling variants (e.g. catalyze, catalyse)
and composite words (e.g. cell cycle, DNA polymerase)
were not explored. Porter’s stemming algorithm (http://
tartarus.org/~martin/PorterStemmer/;  Perl  version,
release 1) was adapted for this analysis.

Definitions of Chip and List frequencies

For each token associated with a given gene list, we cal-
culated two values. The first one, called Chip frequency,
is defined as the number of genes that contains the token
of interest on the entire chip (i.e. background). The second
value, called List frequency, represents the number of
genes that are associated with the token of interest in
the query gene list.

Classical hypergeometric distribution-based ORA approach

Suppose that the total number of genes in the background
population is N, of which M are associated with a certain
token of interest 7. If we select K genes randomly from the
entire microarray without replacement, the probability
of seeing exactly x genes associated with 7 in K can be
modelled by the hypergeometric distribution (9). Hence,
the probability of seeing x or more genes containing token
T in a random gene list of K genes can be calculated as the
cumulative probability:

G

= ()

This is a one-sided test for over-representation. In this
study, a token is considered significantly enriched if its
P-value is less than 0.05 after adjusting for multiple
hypothesis testing (i.e. at 95% confidence level).

Permutation test

The fundamental idea underlying this permutation
approach is to create random gene list that matches the
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experimentally derived gene list not only in the number
of genes but also the amount of associated PMIDs.
This is achieved by replacing the abstracts for each gene
in the experimentally derived gene list with other abstracts
selected randomly (without replacement) from the text
corpus. As such, the number of genes and abstracts
(hence PMID) for each random gene list are kept the
same as that of the experimentally derived gene list.
This permutation procedure is repeated n = 100000
times. An empirical P-value of over-representation can
then be calculated for each token in the gene list as the
fraction of times its frequency in the random gene list (r) is
equal to or greater than that seen in the experimentally
defined gene list (x):

P—value (Number of permutations for which r; > x;)
—value = .
n

In this study a token is considered significantly enriched,
if its P-value is less than 0.05 after Bonferroni multiple
hypothesis correction.

Outlier: Outlier detection-based ORA

This method is motivated by the observation that, on
a scatter plot of Chip versus List frequencies, there are a
set of biologically plausible terms that deviate substan-
tially from the main data cluster and appear as outliers
(see Figure 2 for an example). An explanation underlying
this observation is that the majority of the tokens in a gene
list will not be over-represented because they are either:
(i) common words or non-specific biological terms that are
shared by most abstracts, or (ii) rare words that are not
biologically interesting. These will form the main cloud
of data points. On the other hand, biologically plausible
terms are associated with more genes in the gene list
and have different token frequency distributions, thus
appear to be separated from other observations in the
background.

We developed an outlier detection procedure that
determines within a group of tokens corresponding to
the same List frequencies any tokens that have lower
than expected Chip frequencies. Formally, we derive a
Z-score for each token based on its Chip frequency and
infer the statistical significance of this Z-score against the
normal distribution as follows.

(1) Local mean and standard deviation (SD) estimation:
The Chip and List frequencies were log-transformed
to base 2. Then, all tokens in the gene list were
stratified into groups according to their List frequen-
cies. Consider a group of n tokens corresponding to
List frequency L and their Chip frequencies are given
by (xi,...,x,). For this group of tokens, the para-
meters that define the outlier region, i.e. mean and
SD, are estimated based on the following: If n> 10,
mean and SD are calculated directly from (xi,...,
x,). If 1 <n <10, we borrow information from neigh-
bouring observations to give a better estimation of
the local mean and SD. This is done by capturing
(10—n) tokens from the adjacent group for which the
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corresponding List frequency is less than L and com-
bine the Chip frequencies from them with (xi,...,
x,). Then, a local mean and SD are derived from
the combined data.

(2) Local mean and SD smoothing: The means and
SDs estimated in step (1) are smoothed as a function
of List frequency by fitting polynomial curves to
the frequency data (see panels (a) and (b) in
Supplementary Data 1 Figure S5). Locally smoothed
mean and SD are computed for each group based on
the fitted values derived from the best-fitting curves.
The purpose of smoothing is to stabilise the variance
in the data so that we can find representative
mean and SD for calculating Z-score. The effect
of smoothing is shown in panels (c) and (d) in
Supplementary Data 1 Figure S5.

(3) Z-score and P-value calculation: The Z-score for
token i is

(i — i)
Z[ =7 >
Sd,'

where x is the Chip frequency, w is the locally
smoothed mean, and sd is the locally smoothed SD.
The Z-score reflects the number of standard devia-
tions an observed Chip frequency is above or below
the local mean. A P-value was calculated from the
Z-score using the normal distribution (for a justifica-
tion for this approach see Supplementary Data 4).
A token is labelled as an outlier and considered
over-represented in the gene list if it has a significant
P-value (Bonferroni P <0.05) and a negative Z-score
(indicative of a lower Chip frequency than the local
mean).

ExtendedHG: extended hypergeometric distribution-based
ORA

The extended hypergeometric distribution, also known as
the Fisher non-central hypergeometric distribution, is a
generalization of the classical hypergeometric distribution
where the sampling procedure is biased (9-11). Assume
that we draw out n balls without replacement from an
urn containing N balls, of which m; are red and m, are
white. The balls have different weights, where the weight
for each red and white ball is w; and w,, respectively.
When sampling is unbiased (i.e. w; = w,), the balls have
equal probability of being taken (i.e. p; = p,) and the
results will follow the classical hypergeometric distribu-
tion. However, if sampling is biased such that the proba-
bility of taking ball of one colour is proportional to its
weight but independent of the other balls, then the number
of balls of a particular colour drawn will follow the bino-
mial distribution:

X; ~ binomial(m;, p;),i = 1,2.
On the condition that the sum of the independent bino-

mial variables is fixed (i.e. > x; = n), the number of red
balls in our sample x will follow the extended



e79 Nucleic Acids Research, 2009, Vol. 37, No. 11

hypergeometric distribution and the probability of seeing
x red balls simply by chance is given by

()"
= (0

where max(0,n — m;) < x < min(m, n). The odds ratio, 6,
is a measure of bias and is equivalent to the probability
ratio of red over white balls:

Pr[m; = x|m; +my =n] =

_nl=p)
p2(1 = p1)
We reasoned that when the amount of annotation asso-
ciated with a gene list is higher than expected by chance,
the sampling will be biased in favour of certain types of
tokens. As a consequence, some common words or non-
specific terms shared by most abstracts, such as ‘cell’, ‘ana-
lysis’ and ‘molecule’, will have higher probabilities of
being selected along with genes in the gene list. As such,
token significance inferred from the classical hypergeo-
metric distribution is likely to be misleading and errone-
ous because this approach does not account for the excess
annotation. Here, we propose a solution to this problem,
which is based on the extended hyper-geometric distribu-
tion model:

(1) Odds ratio estimation: Let the number of genes anno-
tated by token 7 in the background be m;, and the
number of genes associated with tokens other than T
in the background be m,. Given a gene list of size n,
the odds ratio of T can be calculated empirically by:

Y(my —n+y)
(my — y)(n —y)
where y is the mean number of genes we expect to see
in the gene list just by chance. We determine y by

fitting a polynomial regression line through the
token frequencies data:

pex 2t S X

In this model, the explanatory variable x represents
Chip frequency (equivalent to m;); the response vari-
able y represents List frequency. The best-fitting
curve is obtained by the method of least squares
implemented in the R function 1m. For each token,
the fitted value of List frequency expected for a given
Chip frequency is determined from the best-fitting
curve. This fitted value is a good approximation for
y and is used to calculate the odds ratio.

(2) P-value calculation: Once the odds ratio has been
determined, we use the pFNCHypergeo function
implemented in the BiasedUrn R package to calcu-
late a P-value for each token based on the extended
hypergeometric distribution.

0=

Consensus gene age computation

In order to gain an approximate measure of the ‘age’
(i.e. the length of time a gene has been known and
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researched upon) for genes on the HG-U133A array
we used a combination of PubMed, OMIM (Online
Mendelian Inheritance in Man) and HGNC (HUGO
Gene Nomenclature Committee) to collate the following
information for each gene: (1) the date of the earliest
PubMed article that described the gene, (2) the date of
the earliest article cited in an OMIM record for which
the gene is described, (3) the date on which the gene first
appeared in an OMIM record and (4) the date on which
the gene first approved by HGNC.

Based on these dates, we derived two ‘age estimates’
for each gene: literature- and database-based age.
Literature-based age was calculated by averaging the
values from (1) and (2), and it represents the date on
which a gene was first referred to in the scientific literature.
Database-based age was calculated as the mean of (3) and
(4), and represents the date when a gene symbol was first
approved or integrated into the public databases. There
is a good correlation between the literature- and database-
based ages (data not shown); therefore we calculated a
final consensus age for each gene by taking average of
the literature- and database-based ages.

Platform and availability

The algorithms for OQutlier and ExtendedHG have been
implemented in a public web server PAKORA (http://
www.pakora.cf.ac.uk/pakora.php) for interactive use.
The source codes (written in R and Perl) are available
from the author upon request. A summary of the litera-
ture-derived gene lists that we have used in this project
can be found in Supplementary Data 2. These gene lists
are available for download from PAKORA. The R scripts
used in this analysis were developed and tested under
R-2.6 and BioConductor-2.1. The Perl scripts were
developed and tested under Perl v5.8.7. All analysis was
performed on a Windows PC with a 2.8 GHz processor
and 2 GB of RAM.

RESULTS

We began by analysing a list of interferon-stimulated
genes (ISG) derived from the biological data reported in
Sanda et al. (6), using the classical hypergeometric distri-
bution-based ORA approach. The ISG gene list was used
as a testbed because it constitutes a relatively simple
and well-studied example of transcriptional regulation.
PubMed articles associated with genes represented on
the Affymetrix HG-U133A array were collected and fil-
tered to give a text corpus consisting of 107 517 abstracts
(70% of the unfiltered collection). These abstracts were
tokenised and stemmed to produce 220290 unique
single-word tokens for mining. Of these, 9486 tokens are
associated with the ISG gene list.

Classical hypergeometric test-based ORA is affected by
annotation bias

Initial use of the classical hypergeometric distribution-
based method produced encouraging results when applied
to the ISG gene list. In total, 94 tokens were called sig-
nificantly enriched after Bonferroni correction (Table 1).
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Table 1. Significantly over-represented abstract terms in the ISG gene list identified using the classical hypergeometric test
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Rank Term Rank Term Rank Term
1 INTERFERON 33 INFECT 65 LYSIS
2 IFN 34 INDUCE 66 AUTOIMMUNE
3 ANTIVIRAL 35 HLA-B 67 INDIGENOUS
4 IFN-BETA 36 HISTOCOMPATIBILITY 68 PROTEASOME
5 IFN-ALPHA 37 LINE 69 LMP2
6 INDUCIBLE 38 HEPATITIS 70 LMP7
7 INTERFERON-ALPHA 39 MELANOMA 71 PKR
8 INFECTION 40 ENCEPHALOMYOCARDITIS 72 INDUCIBILITY
9 VIRAL 41 REPLICATION 73 CORRESPONDING
10 IMMUNE 42 AFTER 74 MOLECULE
11 TREAT 43 MONOCLONAL 75 DEFENSE
12 INNATE 44 EPSTEIN-BARR 76 DIFFERENTIAL
13 IFN-GAMMA 45 UPREGULATE 77 ACTION
14 VIRUS 46 SYNTHESIS 78 TAP
15 IMMUNITY 47 BETA2-MICROGLOBULIN 79 STIMULATE
16 DSRNA 48 EBV 80 CONFER
17 INDUCTION 49 GAMMA-INTERFERON 81 LOAD
18 OLIGOADENYLATE 50 HLA 82 REACTIVITY
19 LYMPHOBLASTOID 51 INTERFERON-GAMMA 83 OR-C
20 ISRE 53 OAS 84 MEDIATE
21 HOST 52 HLA-G 85 RECOMBINANT
22 ISG 54 TYPE 86 CTL
23 MHC 55 MXA 87 MICROGLOBULIN
24 TREATMENT 56 ALPHA 88 STRAND
25 HLA-A 57 DEFINE 89 RECOGNIZE
26 STOMATITIS 58 IMMUNODEFICIENCY 90 ALSO
27 BETA 59 PROMYELOCYTIC 91 DERIVE
28 RESPONSE 60 INTACT 92 P69
29 HLA-CLASS 61 LEUKEMIA 93 VSV
30 EVASION 62 INDEPENDENT 94 DOUBLE
31 CYTOKINE 63 EACH
32 ANTIGEN 64 TAPASIN

Over-represented abstract terms are defined as those tokens with P <0.05 after Bonferroni correction. The most significant hits are ranked at the top

of the table. See Supplementary Data 1, Table S1 for term frequencies and P-values associated with the individual terms.

Biologically plausible terms such as ‘interferon’, ‘IFN’,
‘antiviral’, ‘IFN-alpha’, ‘IFN-beta’, ‘inducible’ and
‘immune’, were amongst the most significant hits being
called over-represented. These terms are related in princi-
ple to the role of interferon in modulating host immune
responses against viruses and infection. However, these
biologically relevant terms were interspersed with rela-
tively uninformative terms for which it was less plausible
that they were specifically associated with the biology
of interferon-regulated gene expression. These include
common words (such as ‘after’, ‘each’, ‘also’) and non-
specific biological words (such as ‘synthesis’, ‘molecule’,
‘beta’). A similar mix of specific and non-specific tokens
was generally seen for other gene lists that we have ana-
lysed (data not shown).

Some areas of biology have, historically, been subject
to greater levels of research activity and this is reflected in
the biological literature. We reasoned that if a particular
experiment were focused on a particularly well-studied
area of biology this might therefore lead to a greater
number of PMIDs associated with the resultant gene list
than might otherwise occur. This in turn would introduce
a bias that would affect the application of the classical
hypergeometric test.

The interferon response is an example of a well-
researched area and the 77 genes in the ISG gene list are

annotated by 1514 PMIDs. However, if we were to create
a 77-gene list by random sampling from the same set of
background genes on the chip we would expect to see, on
average, only 660 PMIDs associated with such a random
gene list. Thus, in this example the ‘real world” ISG gene
list has 2.3 times more PMIDs associated with it than
would be expected by chance. The consequence of this
on the classical hypergeometric distribution-based ORA
approach is that, for some tokens, there is a general
shift towards appearing over-represented, simply because
the background frequency is artefactually under-
estimated. Therefore, even a relatively modest increase in
token frequency of a common word would produce a sig-
nificant P-value.

To explore this further we collated 52 gene lists from the
published literature that were based on use of the human
HG-U133A array (see Supplementary Data 2 for details
of these literature gene lists), and then compared the
amount of PMIDs in them with that in an equivalent set
of random gene lists. We found that gene lists derived
by experimental means (i.e. the result of mining a real
biological dataset) tend to have a greater number of asso-
ciated PMIDs than equivalently sized random gene lists
(Figure la). A similar trend was also seen for other spe-
cies, such as mouse and rat, for which sufficient data were
available (data not shown). These findings suggest that



e¢79 Nucleic Acids Research, 2009, Vol. 37, No. 11

(@)

o [ ]
8 — x
8 ° >.<
| < x
e o X
g8 _| s X
S 4
15} e ®* X
o o :0.'}2‘
= o _| L}
: & W
Y ee o .
s} — . o %0
8 N
Qo o oX
E 37
= . X
=z [}
&1 . o*
o e
S
- X
o | %
o ® Literature gene list
. X Random gene list
| | | | | | | |
10 20 50 100 200 500 1000 2000
Gene list length
® o
I B j
L] L] i
a wo_| i
5 - o. L4 i
2 .. |
(] o 1
[ T L] L] !
g - . : .
* 1
LI
£ g— O:'...".. e
8) ¢ e . i
c . ®
© L] 'e
o O
e o ¢ !
o d i
L : N
N i
g < . .
o_| .
| I | |
1992 1994 1996 1998

Mean age of gene list

Figure 1. The relationship between annotation bias and gene age. (a) 52
gene lists from the HG-U133A chip were collated from published lit-
erature and for each of these equivalently sized random gene lists were
created. The numbers of PMIDs associated with them were calculated
and plotted against the size of the gene lists. Both axes are on loga-
rithmic scale. (b) A mean age was calculated for each of the 52 litera-
ture gene lists by averaging the consensus ages of its constituent genes.
Fold-change in PMID was calculated by dividing the number of
PMIDs associated with a literature gene list by the average PMID
count in an equivalently sized random gene list. The vertical dashed
line represents the mean age of a random gene list, which is 1996 in this
case; the horizontal dashed line represents the level at which there is no
difference between the numbers of PMIDs associated with the literature
and random gene lists.

there is an excess of annotation inherent with highly anno-
tated gene lists. This in turn provides an explanation for
the distorted token frequency distribution and skewed
hypergeometric P-values that result in a mixture of specific
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and non-informative terms to be called significantly over-
represented by the classical hypergeometric distribution-
based ORA approach.

Annotation bias and consensus gene age

A ‘well-studied’ gene may in part reflect one that has been
known for many years, thus allowing a substantial corpus
of literature regarding it to be accumulated. To investigate
the possible effect of this aspect of the history of recent
scientific research we determined the ‘age’ of each gene
represented on the HG-U133A chip. Here, gene age is
defined as an approximate measure of how long a gene
has been known and researched upon relative to other
genes, and should not be confused with the molecular
timescale of evolution in the genome. We derived a con-
sensus age for each gene represented on the HG-U133A
chip based on two criteria: (1) when the gene was first cited
in the published literature and (2) when the gene was first
integrated into the OMIM and HGNC public databases.
The consensus gene age was computed as the average of
these two measures (see ‘Materials and Methods’ section
for more details), and ranges from year 1939 to 2007. In
the context of this analysis, a gene with a consensus age of
1990 implies that it was discovered in approximately 1990,
so it is considered older and has been studied for longer
compared to a gene with a consensus age of 1998.

We stratified all the genes by their consensus age and
compared the amount of PMIDs associated with them.
As expected, younger genes that have only recently been
described have markedly fewer PMIDs associated with
them; whereas older genes are generally better studied
and cited by more PMIDs (Supplementary Data 1
Figure S1). This effect seen on individual genes is also
translated into an effect on the mean age of genes in bio-
logically derived gene lists. As can be seen in Figure 1b,
there is a strong trend whereby those gene lists that show
excess PMID annotation are also those whose constituent
genes have been known for longer.

Overcoming annotation bias by permutation test

Our initial attempt to address the effects of annotation
bias used a permutation test that makes no assumptions
about the underlying data distribution. The significance of
a token was assessed by calculating an empirical P-value
based on the creation of 100 000 random gene lists, each of
which was matched for the number of genes and the
amount of associated PMIDs. Tokens with List frequency
equal to 1 were removed before they were subjected to
permutation test because a token can only be useful in
defining relationships among genes if it is shared by at
least two of them. After this filtering, 4840 tokens
remained for testing.

This approach produced an improvement over the
classical hypergeometric distribution-based approach
when tested on the ISG gene list, insofar as it successfully
retained those biologically plausible terms such as ‘inter-
feron’, ‘IFN’, ‘antiviral’, whilst no longer called those
less-specific terms as significant (Table 2). However, one
limitation of this approach is the precision of the P-values,
the smallest of which is determined by the number of
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Table 2. A comparison of the results from different methods when applied to the ISG gene list

Abstract term Chip List Bonferroni P-value

Permutation Outlier ExtendedHG
INTERFERON 414 46 <0.0484 9.81 x 10734 2.12x 10731
IFN 245 35 <0.0484 8.90 x 107 1.35x 1075
IFN-BETA 71 18 <0.0484 5.60 x 10~ 1.34x 107"
ANTIVIRAL 176 23 <0.0484 2.24x 1078 1.03x 1071
IFN-ALPHA 114 19 <0.0484 3.00 x 1078 2.49 x 10712
INTERFERON-ALPHA 59 14 <0.0484 6.08 x 10°® 5.85x 1071
OLIGOADENYLATE 18 8 <0.0484 226 x 10°° 829 x 10°°
ISG 14 7 <0.0484 1.41 x 1073 9.05x 1073
ISRE 31 9 <0.0484 2.06 x 1075 1.62x107°
DSRNA 60 11 <0.0484 0.0001 1.03x 1075
HLA-CLASS 11 6 <0.0484 0.0002 0.0015
HLA-A 30 8 1 0.0003 0.0005
HLA-B 25 7 1 0.0024 0.0048
INDUCIBLE 1068 37 <0.0484 0.0025 1.29x 1077
ENCEPHALOMYOCARDITIS 16 6 <0.0484 0.0036 0.0136
STOMATITIS 52 9 <0.0484 0.0036 0.0013
OAS 10 5 0.0968 0.0145 0.1047
HLA-G 10 5 1 0.0145 0.1047
MXA 11 5 1 0.0257 0.1624
EVASION 65 9 <0.0484 0.0258 0.0074
INNATE 363 21 0.0484 0.0311 1.35x 1075
TAPASIN 12 5 1 0.0427 0.2407
VIRAL 892 32 0.0484 0.0447 4.25x107°
INFECTION 1177 36 0.0968 0.0477 9.61 x 10°°
OR-C 5 4 <0.0484 0.0717 0.5133
LYMPHOBLASTOID 239 16 <0.0484 0.0872 0.0004
IFN-GAMMA 443 22 0.1936 0.1113 6.38 x 1075
IMMUNITY 387 20 0.0968 0.1799 0.0002
IMMUNE 1275 35 0.6776 0.4363 0.0003
TREAT 1817 40 <0.0484 0.9165 0.0033
MHC 353 17 1 1 0.0115
VIRUS 1408 34 1 1 0.0089

Abstract terms that are identified as over-represented by the corresponding method are shown in bold. The cutoff used is P <0.05 after Bonferroni
correction. 100000 randomisations were performed for the permutation test. 4840 tokens were being tested during the permutation test and the best
possible Bonferroni P-value attainable is 10> x 4840 = 0.0484. Any term with an empirical P-value less than 10 > is provisionally assigned a value of
<107°, and the corresponding Bonferroni P-value is set to be <0.0484. The unadjusted P-values and other details (e.g. Z-scores and odds ratio) can
be found in Supplementary Data 1, Table S1. Chip is the number of genes that contains a given term on the entire chip; List is the number of genes

that are associated with a given term in the ISG gene list.

permutations carried out. In this analysis, the best possible
Bonferroni P-value attainable is 107> x 4840 = 0.0484.
This could be improved by increasing the number of per-
mutations, but as with many permutation-based methods,
this approach is extremely computationally intensive,
requiring six hours on a standard desktop computer to
analyse the ISG gene list. To address this issue we devel-
oped two computationally efficient methods capable of
handling the annotation bias problem.

Outlier: an empirical outlier detection method for finding
over-represented terms in PubMed abstracts

This method exploits observations made when plotting the
number of genes that contains a token of interest on the
entire chip (the Chip frequency) versus the number of
genes that are associated with a token in the query gene
list (the List frequency). On such plots (see Figure 2 for an
example) we observed that there are typically a set of
biologically plausible tokens that lie far away from the
main data cluster formed by the remaining tokens and
appear as outliers. We reasoned that most tokens in a

gene list would be largely irrelevant to the biology under
study (e.g. common English words), thus forming the
background cloud of points, with enriched and thus
potentially interesting tokens appearing as outliers. We
further reasoned that the annotation bias effect should,
in principle, also affect the background distribution,
and thus an outlier-detection approach may intrinsically
compensate for the underlying annotation bias.

To test this we developed an outlier detection method
denoted here as Outlier. The detailed methodology is
described in the Materials and Methods section but
briefly, we use a plot such as Figure 2 and calculate a
Z-score for each token based on the local Chip mean
and standard deviation. Using this method, 24 tokens
were called significantly over-represented in the ISG
gene list (Table 2), all of which appear relevant to the
biology of an interferon-regulated response and are very
similar to those tokens produced by the permutation-
based method. However, Outlier is much more computa-
tionally efficient than the permutation-based test (typically
runtimes of 20-30s on a desktop PC).
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Figure 2. A scatter plot of Chip versus List frequencies for tokens in the ISG gene list. Each data point represents an abstract term. Terms that were
identified as significantly enriched (i.e. Bonferroni P <0.05) in the ISG gene list by using the Outlier method are circled and the adjacent numbers
corresponding to their rankings. Chip (y-axis) represents the number of genes associated with each term on the whole chip. List (x-axis) represents the
number of genes associated with each term in the ISG gene list. The log 2-transformed List and Chip frequencies are plotted.

ExtendedHG: identify over-represented terms in PubMed
abstracts using the extended hypergeometric test

The second method, called ExtendedHG, is a parametric
approach based on the extended hypergeometric distribu-
tion. The key concept underlying this approach is that
annotation bias will cause common, non-specific terms
to have higher probabilities of being selected than
expected by chance. Therefore the sampling procedure is
biased, with the token frequency distribution following the
extended hypergeometric distribution. The degree of bias
is measured by the odds ratio, which is equivalent to the
probability ratio of seeing a token of interest over other
tokens simply by chance, and a P-value for each token can
therefore be calculated.

ExtendedHG produced results similar to the permuta-
tion test (Table 2). All 27 tokens identified as over-
represented in the ISG gene list by ExtendedHG are bio-
logically plausible, while those non-specific words that
were called significant by the classical hypergeometric
test-based approach such as ‘synthesis’, ‘molecule’,
‘after” were not selected. As with Outlier, a typical runtime
for ExtendedHG is ~20-30s when applied to a 500-gene
list. A comparison of the rankings between the top 100
most significant terms in ISG gene list shows that, despite
minor differences in rank order, there is a good concor-
dance between Outlier and ExtendedHG (Supplementary
Data 1 Figure S2).

False positive rates under the null hypothesis

From the specificity perspective, an ideal ORA method
should not find any significant terms in a random gene
list. To estimate the false positive rates associated with

the proposed methods, we created 1000 random gene
lists by randomly sampling 50-2000 unique genes from
the HG-U133A array and analysed them with Outlier
and ExtendedHG. The false positive rate of Outlier
ranges from 0.18 to 1.84, with shorter gene lists (<300
genes) being more susceptible to false positives. This is
because the Z-scores distribution from the outlier detec-
tion procedure tends to show a slight negative skewness
for short gene lists, but is closer to being normally distrib-
uted for longer gene lists (see Supplementary Data 4).
ExtendedHG shows a low false positive rate (<0.01) even
for short gene lists.

Comparison with existing ORA tools

Using the ISG gene list as the benchmarking dataset,
we observed a good agreement between the biology
associated with the enriched GO terms reported by the
functional annotation tool DAVID 2.0 (http://david.
abcc.nciferf.gov/home.jsp) and the PubMed abstract
terms produced by our methods, with concepts related
to immune response highly ranked by both approaches
(Tables 2 and 3). As an illustration of the limitations of
ontologies such as GO we noted that none of the signifi-
cant GO terms gives an indication of the involvement of
interferon, thus demonstrating how mining of PubMed
abstracts can potentially reveal additional biological
insight that is not possible by mining pre-defined
ontologies alone.

Performance across different species

Outlier and ExtendedHG can be readily extended to other
species for which an associated corpus of PubMed
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Table 3. Significantly over-represented GO terms in the ISG gene list
identified by DAVID

GO term Chip List Bonferroni
P-value
Response to biotic stimulus 853 49 6.40E-33
Immune response 737 44 8.30E-29
Defense response 816 45 2.90E-28
Response to stimulus 1765 52 1.10E-21
Organismal physiological process 1660 46 2.00E-16
Response to virus 70 14 2.20E-12
Response to pest, pathogen or parasite 503 25 2.40E-11
Response to other organism 514 25 3.90E-11
Response to stress 956 27 6.00E-07
MHC protein complex 18 6 6.30E-05
MHC class I protein complex 18 6 6.30E-05
Antigen presentation, endogenous antigen 27 7 6.70 E-05
Antigen processing, endogenous 28 7 8.50E-05
antigen via MHC class I
MHC class I receptor activity 36 7 2.00E-04
Antigen processing 36 7 4.20E-04
Antigen presentation 42 7 1.10E-03
Immunological synapse 31 6 1.20E-03

The ontological tool DAVID 2.0 was used to identify over-represented
GO terms in the ISG gene list. The analysis was performed using
all levels of GO terms and HG-U133A chip as background (database
version as of 19 December 2007). Over-represented GO terms were
defined as having Bonferroni P-value <0.05 based on Fisher’s exact
test (threshold settings: Count = 2, EASE = 0.1).

abstracts is available, although their power will depend on
the extent and quality of annotation. To test this, we ana-
lysed 354 gene lists collected from published literature
spanning 10 major Affymetrix chip types and eight
model organisms including human, mouse, rat,
Arabidopsis, Drosophila, C. elegans, Xenopus and
Zebrafish (see Supplementary Data 2 for details of these
gene lists). We found that the number of tokens identified
as over-represented by the two methods varies substan-
tially between species (Supplementary Data Figures S3
and S4). This appears to be related to the amount of anno-
tation available to each species in the text corpus used.
Those species with a higher amount of overall annotation
per gene tend to produce, on average, more significant
tokens per gene list tested (Figure 3). Therefore at this
moment gene lists based on well-researched species such
as human and mouse produce more detailed insight than
those from less well-studied organisms. Nevertheless,
useful information can still be obtained from species
such as Arabidopsis, as shown by an analysis of data pre-
sented in Nishimura et «al. (8). They studied the effect of
the pmr4 mutation on pathogen response in Arabidopsis
and concluded that the basis for the resistance in pmr4
mutant plant to pathogens was due to an enhanced acti-
vation of the salicylic-acid (SA) signal transduction path-
way. We re-analysed the list of differentially expressed
genes reported by the authors using a ‘trimmed’ version
of the text corpus built from only those papers published
before 2003, so as to mine no more than the knowledge
that was available to the authors of the original paper.
Two tokens, ‘salicylic’ and ‘SA’, were identified as over-
represented in the gene list, hence recapitulating the
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Figure 3. A comparison of the performance of Outlier (a) and
ExtendedHG (b) across different species. The average number of
tokens called significant by the two approaches, Outlier and
ExtendedHG, is plotted against the annotation density (i.e. number of
PMID per gene) for experimentally derived gene lists that were per-
formed on 10 Affymetrix platforms representing eight different species,
including HG-U133A (hsa), HG-U133 Plus 2.0 (hum), Mouse 430
2.0 (mou), Rat 230 2.0 (rat), Arabidopsis ATH1 (ath); DrosGenomel
(dm), Drosophila 2.0 (dros), Xenopus laevis (xl), C. elegans (ce) and
Zebrafish (dr).

conclusions by the authors. Both tokens were called sig-
nificant by Outlier; whilst only ‘salicylic’ was called signif-
icant by ExtendedHG. This shows that despite the lower
level of annotation, plausible results can still be obtained
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for less well-annotated species by using the text-based
ORA approaches described here.

DISCUSSION

We have presented several approaches for mining litera-
ture-based information associated with a list of differen-
tially expressed genes (DEG) and to search within them
for terms or biological concepts that are significantly over-
represented. Our initial explorations using the classical
hypergeometric distribution revealed a hitherto unex-
pected bias in the degree of PubMed annotation asso-
ciated with gene lists derived from ‘real’ biological
experiments. We hypothesised that gene lists generated
from real-life biological experiments are likely to be
biased towards older genes (i.e. known for a longer
period of time) from more established areas of biology.
Indeed, as shown in Figure 1b, most literature-derived
gene lists have an overall consensus age that is older
than the mean age of a random gene list (in this case
1996). It thus seems that gene lists derived from a typical
microarray experiment tends to favour groups of genes
and areas of biology that have been studied for longer
and have a greater amount of associated published litera-
ture. Whilst giving an insight into trends within biological
research and the progress of scientific endeavour, the con-
sequence for text-based ORA approaches is an annotation
bias that has a negative effect on the performance of
simple hypergeometric-based approaches. Both Blaschke
et al. (12), Khatri and Draghici (13) have pointed out that
such bias constitutes a real problem and should be taken
into account during enrichment analysis. However, no
solution has been proposed to address this problem and
it has generally been overlooked by existing ontological
tools that implement ORA. Although illustrated here
using PubMed tokens, such bias may have a similar influ-
ence on other ORA-based functional analysis tools that
mine different annotation resources.

To address this annotation bias we have implemented
three different approaches to ORA using PubMed tokens,
based on a permutation test, an outlier detection method,
and the use of the extended hypergeometric distribution.
The latter two are computational tractable and this
enabled us to benchmark them against 354 literature-
derived gene lists. We find that tokens plausibly relevant
to each study are often called significantly enriched, whilst
the apparent over-representation of common terms due
to annotation bias are successfully avoided. The results
produced by the proposed methods generally show a
good concordance in most analyses that we have per-
formed. These tools provided a similar but distinct insight
into the themes over-represented in a gene list compared
to the results from undertaking ORA using GO terms, and
can be successfully applied not only to well-annotated spe-
cies but also to model species such as Arabidopsis.

Evaluating the performance of any exploratory
approach such as those proposed herein is a challenging
task because it is difficult to find datasets for which the
ground truth is known. We have therefore undertaken a
more focused approach to assess the performance of the
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proposed methods. Specifically, we focused on gene
lists based on the HG-U133A array, and compared the
outcome from Outlier and ExtendedHG with those
obtained from a standard ORA approach that mines
GO terms. The biological relevance and plausibility of
the over-represented tokens and GO terms were then
assessed against the perceived biology of the original pub-
lication. These set of data are presented as Supplementary
Data 3. For literature gene lists derived from other arrays,
their token- and GO-based ORA results are readily acces-
sible via our website for review by researchers with the
relevant biological background.

Several groups have undertaken the challenge of incor-
porating literature-based information into data mining
algorithms to interpret the underlying biological signifi-
cance of a list of DEGs (12,14,15); their approaches
differ fundamentally from our methods. The closest
in spirit to ours is the GEISHA (Gene Expression
Information System for Human Analysis) system devel-
oped by Blaschke et al., which evaluates the significance
of terms associated with a gene cluster by comparing
their frequency of abstracts with the frequency of
abstracts containing these terms in different gene clusters.
However, the online version of this system was only imple-
mented for E. coli and yeast. Therefore, it has not been
possible to perform a direct comparison between this tool
and our methods.

Like other ORA approaches, our methods require an
initial selection of DEGs by an arbitrarily chosen cut-off
threshold. A major criticism to such ‘threshold-based’
approach is that different choices of the cut-off value
will produce different lists of DEGs and alter the result
of the enrichment analysis. Moreover, many genes with
moderate but meaningful expression changes may be dis-
carded by the selected threshold regardless of their relative
position in the ranked list, leading to a loss in statistical
power. In recent years, an alternative mode of analysis
that does not involve an initial gene selection step has
been proposed. Examples of these include Gene Set
Enrichment Analysis (GSEA) (16-18) and Functional
Class Scoring (FCS) (19). These methods consider the dis-
tribution of a functionally defined group of genes in the
ranked list of genes and allow adjustments for their cor-
relation structure. While a few studies have shown that
such threshold-free approach enables the detection of
more subtle functional categories that were overlooked
by ORA (19,20), Manoli and coworkers (21) found that
ORA produced more consistent results than GSEA with
respect to the concordance between analyses on DEG
obtained by different statistical methods from three pros-
tate cancer data sets. Although it would be computation-
ally challenging in scale, it may be possible to develop
threshold-free methods that can accommodate annotation
bias and thus be applied to the mining of PubMed tokens
and we are currently exploring this question.

The methods described here depend on a corpus of
articles relevant to the genes being studied (e.g. all genes
appearing on an array), and an index that links the articles
to the appropriate genes. We used the manually curated
citations provided by NCBI to retrieve the relevant gene-
related PubMed abstracts. Although such curation
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provides for high quality, this process together with the
volume of research activity in different areas means that
the coverage of less heavily studied species is still limited
and this has a direct effect on the power of our method.
Incorporation of additional gene-citation links, perhaps
from species-specific databases, would increase the
amount of textual information in the corpus and improve
the power of the proposed methods. Our methods are
currently based on a simple processing and analysis of
the text corpus. There are several areas where this could
be made more sophisticated and complex in the future,
such as the removal of stopwords, the use of thesauri to
allow for the identification of multi-word biological con-
cepts and synonyms mapped to the same gene. These
steps should reduce the noise caused by natural language
variation and improve the information content of the
over-represented tokens.

To conclude, we have described the problems and
challenges associated with existing ORA methods when
adapting them for mining text-based information, and
three novel approaches have been proposed to address
some of these problems. Analysis performed on several
independent datasets show that the proposed methods
produce biologically meaningful results that are in good
agreement with the manually determined annotations
(Supplementary Data 3). These examples also demon-
strate that a coherent picture that exists within complex
group of genes can be discerned by incorporating textual
information embedded in literature as a knowledge source
into the analysis of gene expression data. We believe that
the proposed text-based ORA approaches can be used to
complement and extend existing ontology-based func-
tional analysis tools for guiding the biological interpreta-
tion of complex microarray data.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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