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Abstract
The serotonergic (5-HT) system in the human medulla oblongata is well-recognized to play an
important role in the regulation of respiratory and autonomic function. In this study, using both
immunocytochemistry (n=5) and tissue section autoradiography with the radioligand 125I-1-(2,5-
dimethoxy-4-iodo-phenyl)2-aminopropane (n=7), we examine the normative development and
distribution of the 5-HT2A receptor in the human medulla during the last part of gestation and first
postnatal year when dramatic changes are known to occur in respiratory and autonomic control, in
part mediated by the 5-HT2A receptor. High 5-HT2A receptor binding was observed in the dorsal
motor nucleus of the vagus (preganglionic parasympathetic output) and hypoglossal nucleus (airway
patency); intermediate binding was present in the nucleus of the solitary tract (visceral sensory input),
gigantocellularis, intermediate reticular zone, and paragigantocellularis lateralis. Negligible binding
was present in the raphé obscurus and arcuate nucleus. The pattern of 5-HT2A immunoreactivity
paralleled that of binding density. By 15 gestational weeks, the relative distribution of the 5-HT2A
receptor was similar to that in infancy. In all nuclei sampled, 5-HT2A receptor binding increased with
age, with significant increases in the hypoglossal nucleus (p=0.027), principal inferior olive
(p=0.044), and medial accessory olive (0.038). Thus, 5-HT2A receptors are concentrated in regions
involved in autonomic and respiratory control in the human infant medulla, and their developmental
profile changes over the first year of life in the hypoglossal nucleus critical to airway patency and
the inferior olivary complex essential to cerebellar function.
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INTRODUCTION
Serotonergic (5-HT) neurons in the medulla oblongata comprise a critical system involved in
the modulation of autonomic and respiratory effector neurons in a state-dependent manner
(Azmitia, 1999; Kinney et al., 2007; Kinney et al., 2001; Lovick, 1997; Mason, 2001; Morrison,
2001). These 5-HT neurons are organized in midline (raphé), lateral (extra-raphé), and ventral
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surface regions such that they virtually encircle and project to the adjacent tegmental nuclei in
the medulla that mediate respiration, upper airway patency, heart rate, blood pressure,
thermoregulation, and arousal (Kinney et al., 2007). The specific effects of 5-HT upon the
autonomic and respiratory effector nuclei are mediated via different 5-HT receptor subtypes,
of which the most information relevant to homeostasis is available for the 5-HT1A, 5-HT2A,
and 5-HT3 receptors (Cayetanot et al., 2002; Darnall et al., 2005; Helke et al., 1997; Helke et
al., 1993; King and McCall, 1991; Knapp et al., 1998; Kubo et al., 1995; Lalley, 1994; Lalley
et al., 1994; Li et al., 1999; Ling et al., 2001; Lovick, 1989; Nosjean and Guyenet, 1991;
Onimaru et al., 1998; Paterson et al., 2006a; Pena and Ramirez, 2002; Penatti et al., 2006; Rose
et al., 1995; Schwarzacher et al., 2002; Talley et al., 1997; Teng et al., 2003; Tryba et al.,
2006; Wilken et al., 1997). There is increasing interest in the medullary 5-HT system in human
pediatric neuropathology because of the evidence for 5-HT dysfunction in major
developmental brainstem disorders, e.g., sudden infant death syndrome (SIDS) (Kinney et al.,
2001; Kinney et al., 2005; Kinney et al., 2003; Machaalani et al., 2008; Ozawa and Okado,
2002; Panigrahy et al., 2000; Paterson et al., 2006b) and Rett syndrome (Paterson et al.,
2005). Yet, little is known about the normative development of the different 5-HT receptor
subtypes in the human brainstem—information that is essential towards defining 5-HT receptor
pathology in pediatric disorders.

Previously we described the developmental distribution of the 5-HT1A receptor in the human
infant medulla (Paterson et al., 2004). In the following study, we examine the normative
development and distribution of the 5-HT2A receptor in the human medulla during the same
developmental period. We chose to focus upon the 5-HT2A receptor because extensive
experimental analysis indicates a critical role for the 5-HT2A receptor in respiration governed
by the preBötzinger complex (Pena and Ramirez, 2002; Ramirez et al., 2004), gasping (Tryba
et al., 2006), central cardiovascular regulation including the baroreceptor reflex (Comet et al.,
2007; Dergacheva et al., 2007; Raul, 2003; Shen et al., 2007; Villalon and Centurion, 2007),
the development of the medullary and spinal cord respiratory network (Belzile et al., 2002;
Bou-Flores and Hilaire, 2000; Cayetanot et al., 2002; Kinkead et al., 2002), upper airway
control (Cornea-Hebert et al., 1999; Fonseca et al., 2001; Ogasa et al., 2004; Zhan et al.,
2002), and 5-HT-mediated adaption to intermittent hypoxia (Bach and Mitchell, 1996; Baker-
Herman et al., 2004; Mitchell et al., 2001). In this study, we used tissue section autoradiography
with 125I-1-(2,5-dimethoxy-4-iodo-phenyl)2-aminopropane (125I DOI) to determine
quantitatively changes in the density of 5-HT2A receptors in the human medulla during infancy
and a combination of single-and double-label immunocytochemistry to determine the cellular
localization of 5-HT2A receptors in the medulla.

MATERIALS AND METHODS
Clinical Cases

Infant brainstem specimens were accrued from the autopsy services of the Department of
Pathology, Children’s Hospital Boston, MA, and the office of the Chief Medical Examiner,
San Diego, CA. This study was approved by the Committee on Clinical Investigation at
Children’s Hospital Boston. For tissue receptor autoradiography, we examined the medullae
of 7 infants. The cases ranged in age from 39 postconceptional weeks (term birth) to 82
postconceptional weeks (approximately 10 postnatal months), with a median age of 5 months.
Fetal cases were not available. These infant cases had a median postmortem interval of 15
hours with a range of 8–20 hours. The causes of death were: congenital heart disease (n=3),
acute pneumonia (n=1), intestinal obstruction (n=1), acute asphyxia (n=1), and Potter’s
syndrome (n=1). The brainstems did not demonstrate pathologic changes by standard criteria.
For immunocytochemical analysis, we examined formalin-fixed, paraffin-embedded sections
of the medulla of 5 fetuses and infants ranging in age from 15 gestational weeks through 10
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postnatal months, with a median age of 38 weeks (term birth). The median postmortem interval
was 14 hours. The causes of death in this autopsy population were: extreme prematurity (n=2),
congenital neuroblastoma (n=1), congenital heart disease (n=1), and pulmonary veno-
occlusive disease (n=1). Again, in no case was there brainstem pathology by standard
histopathologic criteria.

5-HT2A Receptor Autoradiography
Tissue preparation—Our procedures for tissue preparation have been described in detail
previously (Panigrahy et al., 2000; Paterson et al., 2004; Paterson et al., 2006b). Briefly,
unfixed brainstems were stored frozen at −80°C, and subsequently sectioned at 20 μm on a
Leitz motorized cryostat and thaw-mounted onto Superfrost Plus glass microscope slides
(Thermo Fisher Sceintfic, NH).

125I-DOI Binding to 5-HT2A Receptors—The autoradiography procedure for
determination of 125I-DOI binding to 5-HT2A receptors was performed on 20 μm sections of
frozen medulla according to a previously described protocol (Lopez-Gimenez et al., 2002).
Sections were preincubated in 50mM Tris-HCl (pH 7.4), 0.1% ascorbic acid, and 4mM
CaCl2 for 30 minutes at room temperature followed by incubation in the same buffer containing
86.3pM 125I DOI (PerkinElmer Inc, Wellesley, Mass) for 60 minutes at room temperature to
determine total 5-HT2A receptor binding density. Nonspecific binding was determined by
addition of 10μM ritanserin to the incubation solution. Sections were then washed 2 × 10
minutes in ice cold buffer and dried in warm air before being placed in cassettes and exposed
to 125I-sensitive film (Kodak BMR) for 42 hours along with a set of 125I standards (Amersham)
for conversion of optical density of silver grains to fmol/mg tissue.

Quantitative Analysis of brainstem autoradiograms—Film autoradiograms were
generated according to standard laboratory procedure for development of light-sensitive film.
For each specimen receptor binding density (expressed as the specific activity of tissue-bound
ligand in fmol/mg protein) was analyzed in a total of eleven medullary nuclei, including the
raphé obscurus (Rob), nucleus of the solitary tract (NTS), dorsal motor nucleus of the vagus
(DMX), hypoglossal nucleus (HG), intermediate reticular zone (IRZ), gigantocellularis
nucleus (GC), paragigantocellularis lateralis nucleus (PGCL), dorsal accessory olive (DAO),
principle inferior olive (PIO), medial accessory olive (MAO) and arcuate nucleus (Arc) at a
defined level of the brainstem according to the atlas of Olszewski and Baxter (1954) with the
exception of the raphé nuclei, which were classified according to Tork and Hornung (1990).
Total receptor binding was determined in 2 sections and non-specific receptor binding in 1
section for each nucleus analyzed. Specific receptor binding density was determined by
subtracting nonspecific binding from total binding. Quantitative densitometry of
autoradiograms was performed using an MCID 5+ imaging system (Imaging Research,
Ontario, Canada). Linear regression analysis was used to determine the effect of age on 125I-
DOI binding across infancy. To examine a possible influence on postmortem interval (PMI)
on binding density, linear regression analysis of binding (fmol/mg) versus PMI was also
performed.

Photomicrograph production—Images of 5-HT2A receptor binding in the human infant
medulla were generated as TIFF files from the autoradiography film by the MCID 5+ imaging
system (Imaging Research). All images were then imported into PhotoShop 6.0 (Adobe
Systems, San Jose, CA) where they were scaled relative to each other and appropriate labels
were added to form composite images.
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Receptor Immunocytochemistry
Single-label immunocytochemistry for 5-HT2Areceptors—Immunocytochemistry
for 5-HT2A receptors was performed using a goat polyclonal antibody SR2A A-15 (sc-15073,
Santa Cruz Biotechnology Inc., Santa Cruz, CA) raised against amino acids 10–60 [protein
accession number P28223] near the n-terminus of the human 5-HT2A receptor that has
previously been reported to label 5-HT2A receptors in human tissue (Vikman and Edvinsson,
2006). Four micron thick formalin-fixed paraffin embedded sections of human infant medulla
were de-paraffinzed before antigen retrieval was performed by incubating the tissue in a 1×
citrate buffer solution (pH 6.0) in a microwave oven at 195°C for 10 min. Sections were allowed
to cool for 10 min at room temperature before being washed in running water for 10 min.
Sections were then washed 4×15 min in 1× phosphate buffered saline (PBS) with 0.1% Triton-
X and treated for 30 min with 3% hydrogen peroxide. The sections were then blocked in 4%
bovine serum albumin (BSA) for 60 min before being incubated in primary antibody (1:100)
overnight at 4°C. Sections were then washed 3×20 min in 1xPBS with 0.1% Triton-X before
being incubated in a biotinylated secondary antibody (Vectastain Elite Goat ABC Kit) for 60
min, rinsed briefly in PBS, and incubated in avidin-horseradish peroxidase solution (Vectastain
Elite Goat ABC Kit, Vector Laboratories, Burlingame, CA) for 10 min. Staining was then
developed by the addition of di-amino benzadine substrate (Vector Laboratories, Burlingame,
CA) to the section for 1–5 min. DAB Enhancer solution (Zymed Laboratories) was then applied
for 1–2 min to enhance immunostaining. Sections were then washed in running water before
dehydration in a series of alcohols (80%, 90%, and 100%) cleared in xylene and coverslipped
with permount. To determine the specificity of staining with the antibody, control sections
were processed as above with omission of the primary and/or secondary antibody, which
resulted in no staining. Pre-immune absorption was also performed by incubating the primary
antibody in solutions containing 2, 4 and 8μg/ml of blocking peptide (sc-15073 P, Santa Cruz
Biotechnology Inc., Santa Cruz, CA) before processing tissue sections as normal. No
immunostaining for 5-HT2A receptors was observed in these sections. Moreover,
immunostaining was absent in brain tissue sections from 5-HT2A receptor knockout mice that
do not express the 5-HT2A receptor protein. Each case had at least three positively stained
sections at the selected mid and rostral medullary levels analyzed. Immunostained sections
were visualized with an Olympus BX51 microscope (Olympus America Inc., Melville, NY)
with image capture using an Optronics Microfire S99808 camera and Microfire 1.0 and
Neurolucida 5.0 software (Microbrightfield, Colchester, VT). Images were captured as TIFF
files and imported into Photoshop 6.0 (Adobe Systems, San Jose, CA) where they were scaled
relative to each other and appropriate labels and scale bars were added and images were
optimized to enhance clarity and contrast.

Double-label immunocytochemistry—Double-label immunofluorescence was
performed to determine the distribution and cellular localization of 5-HT2A receptors relative
to 5-HT neurons on 4 μm 4% paraformaldehyde fixed sections of medulla using the same 5-
HT2A goat polyclonal antibody used for single labeling and mouse-antihuman PH8 antibody
(MAB5278, Millipore International, Temecula, CA) against tryptophan hydroxylase (TPOH)
to identify 5-HT neurons. Tryptophan hydroxylase is the rate limiting enzyme in 5-HT
synthesis and is a specific marker for 5-HT neurons labeling 5-HT cell bodies, fibers, and
terminals. We have used this antibody to identify medullary 5-HT neurons in previous studies
(Kinney et al., 2007; Paterson et al., 2006b). Double-label immunofluorescence was performed
following the protocol for single-label immunocytochemistry except that the hydrogen
peroxide blocking step was omitted. Sections were incubated simultaneously in 5-HT2A goat
polyclonal antibody (1:100) and PH8 mouse monoclonal antibody (1:8,000) overnight at 4 C.
Sections were then washed 3×20 min in 1×PBS with 0.1% Triton-X before being incubated in
Alex-Fluor 594 donkey anti-goat (A-11058, Invitrogen, Carlsbad CA) and Cy2 donkey anti-
mouse (715-225-150, Jackson Immunoresearch Laboratories, West Grove, PA) fluorescent
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secondary antibodies for 1 hour at room temperature. Sections were then washed 3 × 20 min
in 1XPBS with 0.1% Triton-X, and allowed to dry for 60 min at room temperature before being
cover slipped in Fluoromount-G (Southern Bio-ctechnology). Omission of the primary
antibody was used as a negative control. Immunofluorescence was visualized with an Olympus
BX51 microscope (Olympus America Inc., Melville, NY) using FITC and TRITC filters with
image capture using a Coolsnap fx camera (Photometrics, Tuscon, AZ) and MCID Elite 6.0
software (Imaging Analysis Inc., Ontario, Canada). Images were captured as TIFF files and
imported into Photoshop 6.0 (Adobe Systems, San Jose, CA) where they were corrected for
background immunofluorescence, scaled relative to each other, and appropriate labels and scale
bars were added.

Analysis of the human infant medulla
The medullary 5-HT system, as defined by us, consists of the 5-HT neurons in the midline
raphé (raphé obscurus, raphé pallidus, and raphé magnus), lateral extra-raphé
(gigantocellularis, paragigantocellularis lateralis, intermediate reticular zone, subtrigeminalis,
and lateral reticular nucleus), ventral surface (arcuate nucleus) and the regions in the medulla
receiving major projections from these 5-HT neurons that are involved in autonomic and
respiratory control including the hypoglossal nucleus (upper respiratory control), preBötC
(respiratory rhythm genesis); human homologue in the PGCL (Gray et al., 1999; Rekling and
Feldman, 1998; Smith et al., 1991), DMX (preganglionic parasympathetic output) and NTS
(visceral sensory input). These nuclei are distributed from the caudal medulla (at the level of
the area postrema) to rostral medulla (at the level of the paragigantocellularis lateralis),
according to the standardized brainstem levels previously defined in our laboratory (Kinney
et al., 2007; Kinney et al., 2001) based upon the human brainstem atlases of Olszewski and
Baxter, (1954), Paxinos and Huang, (1995), and Tork and Hornung, (1990). These same
standardized levels were analyzed in this study to determine the distribution of 5-HT2A
receptors in the human infant medulla using autoradiography and immunocytochemistry.

RESULTS
125I DOI binding to 5-HT2A receptors in the human infant medulla

The highest density of 125I DOI binding was observed in the DMX (1.41 ± 0.25 fmol/mg)
(Figs. 1 and 2). High binding was also present in the HG and the DAO. Intermediate levels of
binding were observed in the NTS (0.70 ± 0.12 fmol/mg) and in the extra-raphé regions
containing 5-HT neuron cell bodies including the GC, PGCL, and IRZ. In the olivo-cerebellar
system, there was a differential distribution of binding intensity, with the highest level in the
DAO (1.39 ± 0.20 fmol/mg), similar to that seen in the DMX (Figs. 1 and 2). There was
intermediate binding in the MAO and PIO (Figs. 1 and 2). Negligible binding was observed
in the Rob and in the Arc. Postmortem interval had no significant effect on binding.

Distribution of 5-HT2A receptor Immunostaining in the human infant medulla
The pattern of 5-HT2A immunoreactivity in medullary nuclei in the infant cases generally
paralleled the distribution of 5-HT2A receptor binding density observed with 125I DOI.
Intensely stained immunoreactive neurons were observed in the DMX and in motor neurons
in the HG (Fig 3C and D). Intensely stained large, round neurons, were also observed in all
subdivisions of the inferior olivary system (i.e., PIO, MAO, DAO) (Fig 3E). Moderately stained
neurons of heterogeneous size and morphology were observed in the NTS and scattered
throughout the extra-raphé regions (GC, PGCL, IRZ) (Fig 3F). Moreover, a group of small
spherical 5-HT2A immunoreactive neurons were frequently observed in the lateral extent of
the PGCL (Fig 3G). 5-HT2A immunoreactive neurons were also observed in the raphé obscurus
and in the arcuate nucleus, both sites in which receptor binding to the radioligand 125I-DOI
was negligible. Immunostaining in the raphé obscurus was light and localized to spherical and
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fusiform neurons in the midline (Fig 3H). In the arcuate nucleus immunostaining was intense
and localized to small, irregularly-shaped cells, consistent in morphology to astrocytes and to
larger spherical neurons the major cell type in this region (Fig 3I). In virtually all
immunopositive regions, the immunostaining was punctate and co-localized with cell bodies
and/or processes, consistent with post-synaptic localization of the receptors.

Distribution of 5-HT2A receptors relative to 5-HT neurons in the human infant
medulla—We observed 5-HT neurons and fibers with TPOH immunofluorescence in the
raphé, extra-raphé (GC, PGCL, and IRZ) and Arc at the ventral medullary surface, consistent
with the distribution of 5-HT neurons previously described by us in the human infant medulla
(Kinney et al., 2007; Paterson et al., 2006b). Double-label immunofluorescence revealed that
5-HT2A receptors co-localized to the soma and dendrites of a subset of 5-HT (TPOH)
immunoreactive neurons in the raphé and extra-raphé regions of the human infant medulla (Fig
4). However, not all 5-HT neurons expressed 5-HT2A receptors, and not all neurons expressing
5-HT2A receptor immunoreactivity were 5-HT (Fig 4.)

Developmental profile of 5-HT2A expression in the human infant medullary 5-HT system
The developmental profile of 5-HT2A receptor binding was analyzed across infancy to
determine if there were any age-related changes in binding density in the component nuclei of
the medullary 5-HT system. A trend for 5-HT2A receptor binding density to increase with age
was observed in all medullary nuclei examined, with statistically significant increases observed
in the HG (p=0.027), PIO (p=0.044) and MAO (p=0.038) (Figs 5A-C). 5-HT2A receptor
immunostaining was present in the developing medulla as early as 15 gestational weeks with
the distribution of receptors already “set” in the mature configuration at this age.
Immunostaining was most intense in the HG (Fig 6A) and in the lateral extra-raphé where 5-
HT2A immunoreactive neurons were tightly clustered (Fig 6B). In all regions of the medulla
at 15 weeks neurons were spherical and undifferentiated with few or no few immunoreactive
processes observed (Fig 6A). At 22 weeks gestation 5-HT2A receptor immunoreactivity was
observed in distinct nuclei including the DMX (Fig 6C), PIO (Fig 6D) and arcuate nucleus
(Fig 6E). By term (41 gestational weeks), the neurons had increased in size, developed
immunoreactive processes and differentiated into distinct morphological subtypes, e.g.,
motorneurons in the HG (Fig 6F). By 10 postnatal months 5-HT2A immunoreactive neurons
of heterogeneous morphology were observed in different medullary regions, e.g.,
motorneurons in the HG (Fig 3B) and fusiform neurons in the in raphè and extra-raphé (Fig
3F). No obvious changes in the distribution or intensity of 5-HT2A receptor immunostaining
were observed from late gestation through infancy.

DISCUSSION
In the present study, we demonstrated that 5-HT2A receptors are expressed in high density in
medullary nuclei that are critical for autonomic and respiratory control. We identified high 5-
HT2A receptor binding density in the DMX (preganglionic parasympathetic output), and HG
(airway patency), and intermediate binding in the NTS (visceral sensory input), GC, PGCL
and IRZ. In addition, 5-HT2A receptors are expressed in high density by neurons in the inferior
olivary complex. The olivary complex is involved in somatomotor coordination (Azizi and
Woodward, 1987; Ikeda et al., 1989; Nisimaru et al., 1991; Sugita et al., 1989; Urbano et al.,
2006), but also has an underappreciated role in cardiorespiration via its connections with the
cerebellum (Harper et al., 2000; Nisimaru et al., 1991; Nisimaru et al., 1998; Okahara and
Nisimaru, 1991; Sugita et al., 1989). These observations suggest that, as in experimental
animals, medullary 5-HT2A receptors play important roles in 5-HT mediated regulation of
autonomic and respiratory function. We also found that 5-HT2A receptors are expressed in
medullary cardiorespiratory-related nuclei as early as 15 gestational weeks, the earliest time-
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period studied by us, and that there are significant changes in 5-HT2A receptor binding in the
HG and the inferior olivary complex after birth. These observations suggest that the medullary
5-HT system is not fully developed at birth, but continues to mature throughout the first
postnatal year. Below, we discuss these observations in relation to the roles of medullary 5-
HT2A receptors in putatively mediating respiratory and autonomic function in the human infant.
We begin by considering the distribution of 5-HT2A receptors in the human infant medulla.

Distribution of 5-HT2A Receptors in Human Infant Medulla
In this study we observed that 5-HT2A receptors are concentrated in high density in the HG,
DMX and NTS, moderate to low density in the lateral extra-raphé regions (i.e., GC and PGCL),
the inferior olivary complex, and in the Arc and in negligible density in the Rob. This
distribution is consistent with previous studies describing 5-HT2A receptors in the human
brainstem (Burnet et al., 1995; Hall et al., 2000; Ozawa and Okado, 2002; Ozawa and
Takashima, 2002) and with the distribution of 5-HT2A receptors in the medulla in rats (Brandes
et al., 2007; Cornea-Hebert et al., 1999; Fonseca et al., 2001; Haan et al., 1987; Huang and
Pickel, 2002; Huang and Pickel, 2003; Jansson et al., 1998; Okabe et al., 1997; Wright et al.,
1995). These observations suggest, that as in rats, 5-HT2A receptors in the human infant
medulla are concentrated in nuclei that receive significant innervation from 5-HT neurons in
the caudal raphé and extra-raphé (Barnes and Sharp, 1999; Hamada et al., 1998; Mengod et
al., 1996; Xu and Pandey, 2000), and thus, are predominantly postsynaptic to 5-HT axon
terminals. This idea is supported by our previous demonstration of high density serotonin
transporter (5-HTT) binding, a marker of 5-HT presynaptic terminals, in the DMX, NTS and
HG (Paterson et al., 2004; Paterson et al., 2006b). The distribution of 5-HT2A receptors in the
human infant medulla also contrasts distinctly to the distribution of 5-HT1A receptors: 5-
HT1A binding density is highest in the Rob (Paterson et al., 2004; Paterson et al., 2006a), 5-
HT2A binding is negligible in this region; similarly, 5-HT1A receptors co-localize extensively
with 5-HT neuronal cell bodies in the human infant medulla (Paterson et al., 2006a); Paterson
et al., unpublished observations), while 5-HT2A receptors localize predominantly to non-5-HT
neurons. We propose that the differential distribution of 5-HT1A and 5-HT2A receptors
underscores their different functional roles in the human infant medulla, i.e., 5-HT1A somato-
dendritic autoreceptor modulating 5-HT neuron function versus 5-HT2A post-synaptic
excitatory receptor mediating autonomic and respiratory function.

Developmental Changes in 5-HT2A Receptor Expression in the Human Infant Medulla
We observed a trend for 5-HT2A receptor binding density to increase with age across infancy
in all medullary nuclei examined, consistent with widespread postnatal changes in 5-HT2A
receptor expression observed in rat medulla (Liu and Wong-Riley, 2008). Significant age-
related increases in binding were observed in the HG and component nuclei of the inferior
olivary complex. While we did not observe any obvious change in the distribution or intensity
of 5-HT2A immunostaining in the medulla from mid-gestation through infancy, we did observe
an increase in size and complexity of 5-HT2A immunoreactive neurons, which was particularly
evident in the HG. Literature reports indicate that the HG undergoes significant development
in the postnatal period in both humans and rodents, increasing the size and complexity of its
dendritic arborization with a concomitant increase in 5-HT immunoreactive fiber density (Nara
et al., 1989; O’Kusky, 1998); (Berger et al., 1992)(Talley et al., 1997). In rats, hypoglossal
neuron excitability and firing also change significantly during the postnatal period, with a
progressive decrease in excitability observed with age (Bayliss et al., 1997; Berger et al.,
1992; Berger et al., 1996). Developmental changes in neuronal receptor expression might be
expected to accompany these functional changes and, assuming a similar developmental
process in humans, may account for the age-related changes in 5-HT2A receptors observed in
the HG in this study. We also observed significant age-related increases in 5-HT2A receptor
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expression in the inferior olivary complex. It receives input from 5-HT neurons in the caudal
domain but the precise influence of 5-HT upon olivary function, especially via 5-HT2A
receptors, is unknown. Similarly, little evidence is available on the developmental expression
of 5-HT2A receptors in this nucleus, thus the significance of the developmental changes in 5-
HT2A receptor binding observed in this study are also unknown.

In a previous study investigating the developmental expression of 5-HT receptors in the human
infant medulla, using 3H lysergic acid diethylamide (3H-LSD) autoradiography, we observed
no significant age-related changes in receptor binding density (Paterson et al., 2004).
However, 3H-LSD binds to multiple 5-HT receptor subtypes (5-HT1A-1D and 5-HT2), and thus,
age-related changes in individual 5-HT receptor subtypes may have been masked. Indeed, in
the same study, we observed an age-related increase in 5-HT1A receptor binding in the HG in
the same cases using 3H 8-OH-DPAT autoradiography (Paterson et al., 2004). This observation
parallels the postnatal increase in 5-HT2A receptor binding identified in the HG in this study.
Moreover, we have also identified subtle changes in the distribution and morphology of 5-HT
neurons in the medulla during development (Kinney et al., 2007). The developmental changes
in 5-HT2A receptors observed in this study, taken together with the studies described above,
therefore, support the idea that the structure and neurochemistry of the medullary 5-HT system,
and thus, 5-HT mediated homeostatic function, continue to develop during the first year of
postnatal life.

Potential Limitations of the Study
A potential limitation of this study is the small sample size of fetal and infant medullae.
“Normal” tissue specimens from human infants, as used in this study, are particularly hard to
accrue due to the rarity of autopsies in this age group. The small sample size is particularly
problematic when determining the effects of age on 5-HT2A receptor binding levels in the
medulla, as individual cases can have a disproportionate effect on statistical observations. The
significant age-related changes in binding observed in the HG and PIO in this study therefore
need to be confirmed in a larger dataset. Ongoing accrual of the cases needed for confirmation
is in progress. However, the age-related increases in 5-HT2A receptor binding observed in this
study are supported by previous observations in our laboratory describing subtle developmental
changes in 5-HT neurons (Kinney et al., 2007) and 5-HT receptors (Paterson et al., 2004) across
infancy. Moreover, in the same cases analyzed in this study, we have previously observed
statistically significant age-related reductions in nicotinic receptor binding in the medulla
(Duncan et al., 2008), that we believe underscore the robustness of the observations made in
this study, despite the small sample size. We therefore propose that the changes in 5-HT2A
receptor binding observed in this study are consistent with a pattern of developmental changes
that occur in the medulla during the postnatal period.

6. Conclusions
In conclusion, the spatial distribution of 5-HT2A receptors in the human fetal and infant
brainstem is consistent with a role in cardiorespiratory regulation. The ongoing changes in their
binding density in the hypoglossal nucleus and inferior olivary complex across infancy indicate
that the medullary 5-HT system is not fully mature at birth, but it continues to develop
postnatally. This extended maturation period suggests that the system is vulnerable to
developmental insults both before and after birth, especially through the end of infancy.
Consequently, different insults at single or multiple pre- and/or postnatal time-points will likely
have differential effects upon the structural and/or neurochemical development of the system,
and ultimately upon different functional outcomes, not only in early life but beyond. This study
provides baseline information for the analysis of the 5-HT2A receptors in pediatric brainstems
disorders in early life.
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Figure 1.
Autoradiographic images of 125I DOI binding to 5-HT2A receptors in transverse sections of
the caudal (A) and rostral (B) human infant medulla. High 5-HT2A receptor binding density is
present in the DMX and HG, moderate binding density in the NTS and PGCL, and relatively
low binding density in the ROB and Arc.
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Figure 2.
Bar graph displaying 5-HT2A receptor binding density in medullary nuclei presented from the
highest to lowest. 5-HT2A receptor binding density is highest in medullary nuclei without 5-
HT neurons (e.g., DMX, HG).
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Figure 3.
5-HT2A receptor immunostaining in the human infant medulla at 10 postnatal months. Panels
(A) and (B) show diagrams of horizontal sections of rostral and mid-medulla, respectively,
showing the location of the component nuclei of the medullary 5-HT system at each level. 5-
HT2A receptor immunostaining is punctate and localized to neuronal cell bodies and processes,
indicative of post-synaptic localization of the receptors. Figure shows intense immunostaining
of neurons in the DMX (C), motor neurons in the HG (D), and spherical neurons in the PIO
(E). Moderately stained neurons of heterogenous morphology were observed in the extra-raphé
regions including the GC (F). Spherical 5-HT2A immunoreactive neurons were observed in
the lateral extent of the PGCL (G) consistent in location and morphology with preBötC neurons
in rodents. Lightly stained spherical and fusiform 5-HT2A receptor immunoreactive neurons
were observed in the midline raphé (H). Midline of the medulla is labeled by double headed
arrow; D, dorsal; V, ventral. Immunostaining to “classical” arcuate neurons (arrows) and
astrocytes (arrow-heads) in the arcuate nucleus (I). VMS, ventral medullary surface. All images
at ×40. Scale bar= 100 μm.
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Figure 4.
Double-label immunofluorescent images showing localization of 5-HT2A receptors and 5-HT
neurons in the PGCL (×40). A. 5-HT2A immunofluorescent staining; B. TPOH
immunofluorescent staining; C. Merged images. 5-HT2A receptors co-localized to the soma
and dendrites of a subset of 5-HT immunoreactive neurons (arrows) in the medulla, but not all
5-HT neurons expressed 5-HT2A receptors (arrowheads), and not all neurons expressing 5-
HT2A receptor immunoreactivity were 5-HT (*). ×40. Scale bar=100μm.
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Figure 5.
Linear regression plots of the relationship between 5-HT2A receptor binding density and
postconceptional age (weeks) in HG (A), PIO (B) and MAO (C). In each nuclei, receptor
binding density increases significantly with age. *p<0.05 linear regression analysis.
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Figure 6.
Developmental expression of 5-HT2A receptor immunocytochemistry in the human medulla
from 15 gestational weeks to term (41 gestational weeks). Immunostaining in the HG (A) and
extra-raphé (B) (i.e., GC/PGCL) at 15 weeks gestation. Neurons in the extra-raphé were tightly
clustered together with no obvious distinction between nuclei. Neurons are spherical and
undifferentiated. At 22 weeks gestation 5-HT2A receptor immunoreactivity was observed in
distinct nuclei including the DMX (C), PIO (D) and arcuate nucleus (E) with evidence of
neuronal differentiation. Motor neurons in the HG expressing 5-HT2A receptor
immunoreactivity at term (41 weeks gestation) (F). All images at ×40 (scale bar=100μm)
except D at ×20 (scale bar=200μm). VMS, ventral medullary surface.
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