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Allelic Depletion of grem1 Attenuates Diabetic Kidney

Disease
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OBJECTIVE—Gremlin (greml1) is an antagonist of the bone
morphogenetic protein family that plays a key role in limb bud
development and kidney formation. There is a growing appreci-
ation that altered gremI expression may regulate the homeo-
static constraints on damage responses in diseases such as
diabetic nephropathy.

RESEARCH DESIGN AND METHODS—Here we explored
whether knockout mice heterozygous for greml gene deletion
(grem1™'~) exhibit protection from the progression of diabetic
kidney disease in a streptozotocin-induced model of type 1
diabetes.

RESULTS—A marked elevation in grem1 expression was de-
tected in the kidneys and particularly in kidney tubules of
diabetic wild-type mice compared with those of littermate con-
trols. In contrast, diabetic gremI ™~ mice displayed a significant
attenuation in greml expression at 6 months of diabetes com-
pared with that in age- and sex-matched wild-type controls.
Whereas the onset and induction of diabetes were similar be-
tween grem1*’~ and wild-type mice, several indicators of diabe-
tes-associated kidney damage such as increased glomerular
basement membrane thickening and microalbuminuria were
attenuated in gremI "~ mice compared with those in wild-type
controls. Markers of renal damage such as fibronectin and
connective tissue growth factor were elevated in diabetic wild-
type but not in greml™’~ kidneys. Levels of pSmadl/5/8 de-
creased in wild-type but not in greml™~ diabetic kidneys,
suggesting that bone morphogenetic protein signaling may be
maintained in the absence of grem1.

CONCLUSIONS—These data identify greml as a potential
modifier of renal injury in the context of diabetic kidney disease.
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iabetic nephropathy represents the most com-
mon cause of end-stage kidney disease world-
wide, affecting approximately one-third of
diabetic patients (1). Extracellular signaling
molecules such as transforming growth factor (TGF)-,
connective tissue growth factor (CTGF), and advanced
glycation end products are implicated as drivers of dia-
betic nephropathy (2). Intracellular signaling events in-
cluding Smad3 phosphorylation, the phosphatidylinositol
3-kinase — protein kinase B/Akt pathway, and mitogen-
activated protein kinase activation play a role in kidney
cell damage during diabetic nephropathy (3-5). However,
the precise molecular mechanisms underlying the patho-
genesis of diabetic nephropathy remain incompletely un-
derstood, and thus additional research is needed to
identify novel molecular targets that may be of potential
therapeutic value.
greml is a highly conserved, 24-26 kDa secreted glyco-
protein member of the cysteine knot superfamily, with the
ability to heterodimerize and antagonize bone morphoge-
netic proteins (BMPs), in particular BMP-2, -4, and -7 (6).
greml regulates outgrowth, chondrogenesis, and apopto-
sis of the developing limb bud (6-8), as well as branching
morphogenesis during kidney development (9). Mice ho-
mozygous for deletion of greml1 die of complete renal
agenesis shortly after birth, supporting a primary role for
grem1 in the developing kidney (10,11). Recent data have
identified a role for grem1 in bone formation and bone
mass (12,13), as well as in pulmonary hypertension (14)
and angiogenesis (15). A role for grem! in diabetic ne-
phropathy was originally proposed by data from our group
that identified grem I upregulation in primary human mes-
angial cells treated with high glucose and in kidneys of
diabetic rats (16,17). grem1 was also upregulated in other
in vitro models relevant to diabetic nephropathy, such as
mesangial cells subjected to cyclical mechanical strain or
TGF-B1, and, importantly, in biopsy specimens from pa-
tients with diabetic nephropathy (18-20). We recently
demonstrated that greml upregulation is part of the
transcriptomic response of tubular epithelial cells exposed
to TGF-B1 (20). Increasing evidence suggests that the
degree of grem1 expression correlates with disease sever-
ity in a variety of forms of renal fibrosis, including glomer-
ular scarring in in vivo acute glomerulonephritis (21),
tubular scarring in chronic allograft nephropathy, and
progressive membranous nephropathy (22). Levels of
greml in the adult kidney are low, and disease-dependent
upregulation of grem1 in diabetic nephropathy may reflect
a reactivation of quiescent gene expression in response to
hyperglycemia and other stimuli (23). Together, these data
point toward a contributory role for greml in diabetic
microvascular complications.
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FIG. 1. Induction of type 1 diabetes in wild-type (WT) and grem1*'~ mice. A: grem1 promoter activity was examined in embryonic fibroblasts from

embryonic day 13.5 mouse embryos. Lysates from wild-type (*'*), grem1*'~, or greml

~/= cells were assayed for B-galactosidase activity as

described. Results are representative of four experiments carried out in duplicate. B: Wild type and gremlI*’~ mice were injected intraperito-
neally with either citrate buffer (control [ctrl]) or 50 mg/kg STZ for 5 consecutive days (week 0) according to established procedures (RESEARCH
DESIGN AND METHODS). Fasting blood glucose levels were monitored biweekly for 27 weeks using a glucometer and a drop of blood from the tail vein.
Significant increases in blood glucose levels developed in both groups after 2 weeks (P < 0.001, n = 10-12 mice per group) and were maintained
over the 27 weeks study time course. [], wild-type control; ®, grem1*'~ control; B, wild-type diabetic; O, grem1*'~ diabetic. C: Whole blood was
collected via cardiac puncture at time of sacrifice in both cohorts of mice. Percent A1C was assessed via ELISA as described in RESEARCH DESIGN
AND METHODS. A significant increases in percent A1C were detected in both cohorts at 18 and 27 weeks of diabetes (mean = SE). ***P < 0.001,
using one-way ANOVA and Tukey-Kramer multiple comparison test, n = 6-11 in each group.

In this study, we addressed the hypothesis that reduced
greml1 gene expression would provide protection in the
diabetic kidney. Our data suggest that depletion of grem1
expression in mice attenuates early diabetic nephropathy—
like changes in kidney.

RESEARCH DESIGN AND METHODS

All animal procedures were licensed by the Irish Department of Health and
Children and approved by the local animal research ethics committee at
University College Dublin. gremI heterozygote knockout mice (gremI™™)
were generated by Richard Harland, University of California at Berkeley
(Berkeley, CA) (10). Experimental animals were generated by crossing
wild-type C57BL/6J and gremI*’~ mice, with male offspring used in the study.
Mice were maintained in a conventional animal facility in standard caging,
with free access to water and standard rodent chow. Genotyping was
performed using DNA extracted from ear punches as described previously
(10).

Induction of type 1 diabetes in mice. Seven- to 10-week-old male mice
(both wild-type and grem1*'™), weighing ~19 g at the onset of the experi-
mental protocol were genotyped and then randomly divided into two groups:
A, treated with streptozotocin (STZ) (Sigma) dissolved in 100 mmol/l citrate
buffer, pH 4.5; or B, treated with citrate buffer alone (http://www.amdcc.org).
STZ was dissolved in sterile citrate buffer and injected intraperitoneally (50
mg/kg) within 10 minutes of preparation on 5 consecutive days. Fasting blood
glucose levels were assayed after a 6-h fast between 8:00 A.m. and 2:00 p.m. with
tail venipuncture at 2:00 p.m. Diabetes was confirmed by two consecutive daily
measurements of fasting blood glucose >15 mmoll 2 weeks after STZ
injection. To maintain weight and prevent ketoacidosis, long-acting insulin
(Insulotard, Nova Nordisk) subcutaneously at a dose of %5 IU three times
weekly was started in all diabetic mice at week 18 of diabetes.

Tissue pathology and urine collection. Mice were housed individually in
mouse metabolic cages (Technoplast) for 24 h to collect urine 5 days before
sacrifice. Urine volumes were recorded, and urinary glucose, ketone, and
erythrocyte levels were monitored semiquantitatively with Multistix reagent
strips (Bayer). Cardiac puncture was performed at the time of sacrifice. The
left renal artery was clamped and the left kidney was removed, weighed, and
dissected. The inferior renal pole was promptly processed for electron
microscopy, and the superior renal pole was snap-frozen and stored at —80°C
for RNA and protein extraction. Renal perfusion was performed via cannula-
tion of the left ventricle with an 18-gauge needle. Initial perfusion using gravity
was performed with sterile normal saline (pH 7.4) for 5 min, followed by 4%
(wt/vol) paraformaldehyde (pH 7.4) for 5 min. The perfused right kidney was
then removed and incubated in 4% paraformaldehyde for 24 h at room
temperature. Kidneys were processed, cut at 3-um thickness on a rotary
microtome, and stained with hematoxylin/eosin, periodic acid Schiff, or
picrosirius red. Stained sections were scored independently (single-blinded)
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by pathologists using normal light microscopy. The amount of mesangial
matrix was scored with periodic acid Schiff staining (score 1-4). Collagen
distribution in the cortex was scored with Sirius red staining using a normal
light microscope (score 1-5).

Clinical biochemistry. Urinary albumin was measured using an Albuwell M
kit, and urinary creatinine was measured using a Creatinine Companion
murine ELISA kit (Exocell, Philadelphia, PA). Urine was collected in meta-
bolic cages, urine volume was recorded, and 24-h urinary albumin excretion
levels were assayed with the Albuwell M assay Kkit.

Plasma creatinine, serum lipids, and whole blood A1C were measured at
the Mouse Metabolic Phenotyping Core, Vanderbilt Medical Center (Nashville,
TN). Plasma creatinine was measured on a high-performance liquid chroma-
tography Zorbax SCX strong cation exchange column (Agilent, Wilmington,
DE) as described previously (http:/www.amdcc.org). A1C was measured
using a DCA 2000 analyzer and cartridges (Bayer). Total plasma cholesterol
and triglycerides were measured by standard enzymatic assays (Raichem).
HDL cholesterol was measured after precipitation of VLDL and LDL using
dextran sulfate and magnesium.

Estimation of creatinine clearance. Creatinine clearance was calculated
using the equation (urine volume [microliters] X urine creatinine [milligrams
per deciliter])/(serum creatinine [milligrams per deciliter] X 1,440 [minutes])
and then corrected to total body weight at sacrifice (grams) to give creatinine
clearance in microliters per minute per gram body weight.

Electron microscopy. The left inferior kidney pole was removed, diced into
1-mm cubes, and fixed in 2.5% (v/v) glutaraldehyde in 0.1 mol/l cacodylate
buffer. The samples were washed in 0.1 mol/l cacodylate buffer and then
postfixed in 1% (wt/vol) aqueous osmium tetroxide. The tissues were washed,
dehydrated through a graded series of ethanols, and embedded in Spurr resin.
Thick sections (0.5 nm) were cut, affixed to glass slides, stained with toluidine
blue, and viewed by light microscopy. Thin (100 nm) sections were cut from
selected areas and viewed with an FEI CM-12 transmission electron micro-
scope operated at 80 keV. Glomerular basement membrane (GBM) thickness
measurements were assessed as follows: two to four glomeruli were randomly
selected in each slide, and serial measurements were taken at intervals from
the margins of the lamina rara interna to lamina rara externa. Images were
taken and analyzed with an AMT XR41 digital TEM camera system. Up to 60
measurements were taken per kidney.

Quantitative PCR. Total RNA was isolated from snap-frozen renal poles by
homogenization in 1 ml TRIzol (GibcoBRL, Life Technologies) using a
Polytron (Kinematica) and a Qiagen RNeasy kit. Reverse transcription was
performed using SuperScript II (Invitrogen), followed by quantitative real-
time PCR on an ABI Prism 7700 sequence detection system. Mouse grem1
(Mmo00488615 S1), BMP-7 (Mm00432102 ml), fibronectin (Mm00482221),
vimentin (Mm00432102 m1), and CTGF (MmO00515790 g1) real-time oligo
probes were purchased from Applied Biosystems.

Western Blotting. Portions of the renal pole were lysed in radioimmunopre-
cipitation assay buffer containing 50 mmol/l Tris-HCl (pH 7.4), 1% (vol/vol)
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Nonidet P-40, 0.25% (vol/vol) sodium deoxycholate, 150 mmol/1 NaCl, and 1
mmol/l EDTA, supplemented with fresh 1 mmol/l phenylmethylsulfonyl fluo-
ride, 1X protease inhibitor cocktail (Sigma), 1 mmol/l NaF, 40 mmol/1
B-glycerophosphate, 2 pmol/l Microcystin, and 1 mmol/l sodium vanadate.
Protein extracts (25 pg) were then separated by 10% (vol/vol) SDS-PAGE and
blotted using phospho-Smadl/5/8 (95115; Cell Signaling), total Smad1/5/8
(sc-6031R; Santa Cruz), BMP-7 (ab27569; Abcam), or B-actin (Sigma) antibod-
ies exactly as described previously (4).

Statistical analysis. All data were plotted as mean * SE. Student’s two-
tailed ¢ tests or one-way ANOVA with Tukey-Kramer multiple comparison post
hoc tests were calculated using the Instat software package.

RESULTS

Induction of type 1 diabetes in wild-type and
grem1*’~ mice. Using the replacement B-galactosidase
“knock-in” gene activity as a marker of gremI promoter
activity (10), gremlI gene expression was detected in
heterozygous gremI "'~ knockout cells (Fig. 14). Homozy-
gous greml~'~ knockout mouse embryonic fibroblasts
displayed approximately double the activity of B-galacto-
sidase, suggesting that maximal greml expression re-
quired both copies of the greml gene. We therefore
hypothesized that grem1 expression would be reduced in
the kidneys of gremI*’~ mice in response to hyperglycemia.
Type 1 diabetes was induced in grem1 ™~ and wild-type
mice using STZ, with time zero defined as the day of initial
STZ injection. Mice were maintained in the diabetic state
for 18 or 27 weeks. Metabolic parameters, body weight,
renal weight, and serum glucose levels are presented in
Table 1. Nondiabetic mice gained significant weight com-
pared with diabetic mice, as assessed at study end (wild-
type control mice body weight 32.0 = 4.47 g; wild-type
diabetic mice body weight 22.82 * 3.22 g). No significant
difference in total body weight between wild-type and
grem1™’” mice in either the control or diabetic cohorts
was detected (Table 1). Both diabetic groups developed
marked fasting hyperglycemia that peaked at ~33 mmol/l
and was maintained up to the 27-week time point (Fig. 1B).
The onset and severity of hy;)erglycemia were similar
between wild-type and gremI ™~ mice (Fig. 1B). Marked
and significant increases in A1C levels in diabetic mice
were also detected at 18 and 27 weeks of hyperglycemia
(Fig. 10), in both wild-type and gremI*’~ groups. Thus,
the onset, severity, and progression of diabetes were
similar in both wild-type and gremI ™~ mice.
greml upregulation is reduced in greml*’~ mice
kidneys. We assessed the effects of type 1 diabetes on
grem1 expression in kidneys from our experimental ani-
mals. Minimal grem I mRNA was detected in wild-type and
gremI*’~ control kidneys at both time points examined
but the amount was dramatically increased in wild-type
diabetic mice (Fig. 24). Approximately 62-fold increased
grem1 upregulation was detected at 18 weeks compared
with 42-fold at 27 weeks in wild-type diabetic mice (Fig.
2B). In contrast, gremI*’~ mice manifested a 53-fold
increase at 18 weeks and an 8-fold increase at 27 weeks in
diabetic kidney (Fig. 2B). The fold change in gremI mRNA
upregulation at 27 weeks in diabetic gremI ™'~ mice was
significantly lower than that seen in diabetic wild-type
mice at the same time point (Fig. 2B). Increased grem1
protein was also detected in diabetic wild-type kidney
sections compared with that in controls via Western
blotting and immunohistochemistry (Fig. 2C and D and
supplementary Fig. 1, available in an online appendix at
http://diabetes.diabetes journals.org/cgi/content/full/db08-
1365/DC1). In contrast, the increase in grem protein was
blunted in diabetic gremI*’~ mice (Fig. 2C and D). These

DIABETES, VOL. 58, JUNE 2009

‘adA) orouRS dwes aY) JO S[OIU0D payPIew-a8e YIm paredwod

00 > d%90°0 > d- T00°0 > J+ ‘SISA[eur o0y jsod Iowreny[-An], pue VAONV Aem-auo Sursn paseduiod atom eye( (dnoisd 1od srewrrue jo oquinu) 5§ F* SUBIW Sk Passa1dxa are eye(

(Ip/8) SopLIAOAISIL],
(1p/8) 101938902 TAH

(1p/3) 1013389102 "TA'T
(Ip/8) 101931S9[0YD 810,

(L) L0 F evFe
(8)9¢'8 ¥ 2I'avl

1(9) L7217 ¥ 6ggLT (8) OT'ET F 20T
(8) 69°¢ = LL

#) 00°LT * GT'LY
1(9) 8¢ ¥ €L29
() 097¢ F L9621

(8) 68°G¢ ¥ LS'1E

L(01) 812 F 2'8S1
0D 6TF T ¥'6¢
L(8) 929 F TFIT

(8)6L9 F L8T¥
(6) 062 * £'8S
(01 TS0T F ¢'¢al

(0D 119 + 8L

(9) 8% * 09
1(9) 09'6 F 0°0LT

(L)089 Feree (¥)98€er + ¢cs
() TL0T F 14081 £(9) €491 F ¢¥31

(L) €67 * 6218
(L) ¥26 F ¥Iell

SromEEoE_ 7
. & . —
5:0%(&?@:;0&';‘9_
== e L=
I 58 ERaXELSR
1 E’OSSOVA_‘U
= ~
=] oO=00 o B —
g ogET%B 55%
S ZESER BEZ
=. E:__,| 96‘ SSN
- IS =R~ W] — =e
® Q== — =
] =} =+ =0 =
b O = )
g sECme g
@ A%Uvm 7]
=3 -;Q.O 1) )
o '_'»—% Q
] DN Eb
IS 5 g 37
= =] e o
@ | Oé ~
_
T -7 8
= i e) E
(=gt
X g 5
o
<
i ~
go
| '
—
~—
WHHOUIO
L= I o o el
SO IJOoOoHTWWNN O
DNH=DNDDN OO TtUtoo O
[+ 1+ 1+ 1+ 1+ 4+ I+
o000 000
NI woim oo W
WO Ol © =W
Amf‘\/\ﬁﬁ/‘\/‘\/‘\fﬂ
OC~NX === O =
~— O~ DN OO O
3 e ~—~
—
B2ESLosEda
N WEEJ00Wo T W
QOO Wk TINO WN
[+ 14 1+ 1+
NWNOOOROOD
PR RN RN BN g
=R A A T
~m 0 SOy Sy O =2}
@wuvvuvv —~/
N k= % —+ %
-
oAl
NDONOOO =W
CENSopIINLS
WOREJIO~ROIODD
\UNeRWIE \VIEN BTSN o N1 § VR
[+ 14 1+ 1+
HQWOOONOOO
PRLROWD LW
O OO O
mgf\ﬁf\/—\mﬁﬁf\
~ OO0 Q0 bt b bk O bt ped
AT T OO OH OO
e OO\ IT\T
T * e *
—+
—
wo owmo
CEOS oD e
OO PWOoWN -
WU IO W
[+ 1+ 1+ 1+ 1+ 44+ I+ 1+
WHOOOoOOOO O
oW Jomomoiviv
SNHHO W
w/‘\fﬂ/‘\r‘\f‘\/‘\/‘\f‘\f‘\
AN e e (Ot
— = O = GO
P N N N g
N~/
— DO
CHRHOOD =V
SRS o L PN
N0 OUNO Yo
WA JWNDNO©JWOo
[+ 1+ 1+ 1+ 1+ 4+ 4+ 1+
NNWOOOTMOOD
N == T )
= = GO = TR 3 WO
\]@AAAAA/‘\ P
AT OO =2}
QO QO I —~/
N e e
TR oo bive
N3 ocwoo
= = O O == s O
I+ 1+ 1+ 4+ 4+ 4+ 1+
NNPOCOWO O
SCPwomwo—Iom
I I—= 0= O© WUt
DT A~~~
NS 00 O b= bt et et e
Q0 OO/ = = = = DD DN
(AN N N
—* %~ -+ % %

(8) reurg
(8) Teruy

Stom Apog

00°2¢
LE6T

715002
(01 190 * L6

QP21 %90z (OD T
(O LTTFE3

8'C¢

11532
(01) 68°0 * €61

«9) 62T 9812 (1990 F g60¢ (01 ST’
@er1x16¢€e (D I1L0F 102

+(21) ¥8°0 + 6722
(21) L¥'0 ¥ 20702

Jojourered/dnoin)

Sy90Mm QT (4+/4) 10110)

(4+/4) 2nRqeIq

SYoOM )7

N JWaLH TOIYUO))

syoom g1

SYoOM )7

_,+ Twaab dnpqerq

T HTdV.L

JOTW DTJORIP PUR [OIIU0D JO SIvjpureIed UONIUNJ [RUSI PUR DI[OQRISIN

1643



DIABETIC NEPHROPATHY IN grem1*/~ MICE

>

60
*
= —
%’ 50 T
B 40
b *
*
£ —
3
f= 304
>
o
8
° 20
2
=}
© *
o 104 [ —
13
0 — — N
(o3 D (o3 D C D (o3 D
18 wk 27 wk 18 wk 27 wk
B 100 1
90 -
@
2 80 4 NS
8 [ —
S 70 .
°
g 60 —
; 50 '|'
o 40 -
£
< 30
S 20 A
© 10 A
0
18 wk 27 wk
C wild-type +/+ grem1 +/-
Control  Diabetic Control Diabetic
T~
25kDa‘ .!"' ,"' - <+—grem1

42 KDa " o o ——— —— — ——— v 3-actin

O

2.5 1

2.0 - T

*%

Fold increase in grem1
(diabetic/control)

wild-type grem1
++ +/-

FIG. 2. Diabetes-mediated induction of grem1 expression is attenuated
in greml*’~ mice. A: Total RNA was extracted from renal poles of
control (C) and diabetic (D) wild-type ((]) and gremI*'~ (@) mice at
each time point indicated. A quantitative TagMan PCR was performed
using mouse greml1 specific oligonucleotides as described. AACt values
were calculated by subtracting the Ct values for the 18S control from
the corresponding greml value obtained in the same tube, and altered
mRNA levels were then calculated by setting the control in each
age-group to 1. Data are plotted as mean = SE. *P < 0.05, Student’s
unpaired t test, n = 4-6 for each group. B. Fold change in gremI mRNA
was calculated by dividing the AACt value for diabetic mice by the
mean of the corresponding age-matched control group. Data are plot-
ted as mean fold change = SE. *P < 0.05, Student’s unpaired ¢ test, n =
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data suggest that deletion of one copy of the grem1 gene
dramatically reduced greml induction in the diabetic
mouse kidney.

Early type 1 diabetes-induced structural changes are
attenuated in gremI*’~ kidney compared with those
in wild-type kidney. Diabetic mice developed marked
polyuria compared with that in age-matched controls, Wlth
no significant difference between wild-type and greml +
cohorts observed at 27 weeks (wild-type control urine
volume 3.35 = 2.79 ml, wild- type diabetic urine volume
15.18 £ 9.35 ml, P < 0. 01 gremI™’~ control urine volume
4.32 £ 3.15 ml, grem1 +/= diabetic urine volume 12.31 *
10.6, P < 0.05) (Table 1). A significant increase in the ratio
of left kidney weight—to—total body weight occurred in all
diabetic animals compared with that in age-matched con-
trol animals after 27 weeks of diabetes, suggestive of renal
hypertrophy (wild-type control vs. dlabetlc 5.409 = 0.19 vs.
9.077 = 0.38, P < 0.001; grem1™~ control vs. diabetic
5.536 = 0.16 vs. 8.816 = 0. 28 P < 0.001) (Table 1). The fold
change in left kidney Welght—to—total body weight was not
51gn1ﬁcantly different between wild-type and gremlI™*’~
mice (data not shown).

All diabetic mice developed a significant increase in
GBM thickness compared with that in nondiabetic age-
matched controls at 27 weeks of hyperglycemia (Fig. 3A
and B). Interestingly, this increase was signiﬁcantly
greater in dlabetlc wild-type compared with that in dia-
betic gremI*’~ mice. GBM thickness increased 47% from
baseline mean in age-matched control versus diabetic
wild-type mice (Fig. 3B, []). In contrast, a more modest

14% increase in GBM thlckenmg was detected in control
versus diabetic grem1™’~ mice at 27 weeks (Fig. 3B, H).
The fold change in GBM thickening was 51gn1ﬁcantly lower
in grem1*’~ mice compared with that in wild-type mice
(Fig. 3C), suggesting that allelic depletion of grem1 pre-
vented diabetes-induced early structural changes in the
kidney.

Moderate increases in glomerular matrix secretion and
interstitial collagen deposmon were observed in diabetic
wild-type and greml™’~ mice compared with those in
controls (Fig. 4A and C). No significant tubulointerstitial
fibrosis was detected in either genotype up to 27 weeks of
diabetes (data not shown). Scoring of these sections
revealed that the degree of increased staining of these
markers of renal damage was not s1gn1ﬁcantly different
between diabetic wild-type and gremI*’~ mice (Fig. 4B
and D). These data suggest that our model of type 1
diabetes in mice on a C57BL/6J background manifest early
diabetic nephropathy-like changes in kidney but do not
develop more advanced renal disease.

Diabetic grem1*’~ mice exhibit attenuated changes
in albumin-to-creatinine ratio and estimated glomer-
ular filtration rate. Urinary microalbumin was increased
in diabetic wild-type mice compared with that in controls
(control 34.02 = 4.53 pg, diabetic 27 weeks 129.32 = 16.05
pg, P < 0.001) (Flg 5A). In contrast, mlcroalbummuma
was less severe in diabetic greml™~ mice (control
33.09 + 3.00 pg, diabetic 27 weeks 71.47 + 17.54 pg, P <

4-6 per group. C: Protein extracts (20 pg) from control and diabetic
wild-type and greml*’~ renal poles were probed by Western blot with
greml antibody (R&D Systems) and B-actin (Sigma). An approxi-
mately 25-kDa band corresponding to greml was detected. D: Densi-
tometry was performed using Scion Image software, and the intensity
of greml1 expression was normalized to the B-actin loading control.
Data were then plotted as diabetic/control fold change for both wild-
type and grem1*’~ mice. **P < 0.01, Student’s ¢ test, n = 3.
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FIG. 3. Glomerular basement membrane thickening is attenuated in
diabetic greml*’~ mice compared with wild-type. Kidney pieces were
processed as described in RESEARCH DESIGN AND METHODS, and 100-nm
sections were cut from the renal pole harvested from control and
diabetic wild-type and grem1 * mice at 27 weeks. Sections were viewed
with an FEI CM-12 transmission electron microscope operated at 80
keV. Glomeruli were randomly selected, viewed at X 15,000 magnifica-
tion and serial measurements along the GBM were assessed. Arrows
indicate the position of the glomerular basement membrane (A). Top
left, nondiabetic wild-type (*/*) control; top right, diabetic wild-type
(*'*); bottom left, nondiabetic grem1*'~ control; bottom right, diabetic
greml*’~. Arrows indicate the thickness of the GBM. B and C: Quan-
titation of GBM thickness from all groups of mice. Up to 60 serial
measurements were made from each individual glomerulus, and a mean
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0.05) (Fig. 5A). Fold change in microalbuminuria was
significantly lower in gremI "'~ diabetic mice compared
with that in wild-type mice at 27 weeks of diabetes (Fig.
5B). These data suggest that depletion of greml expres-
sion reduced the microalbuminuria associated with early
renal damage in diabetic nephropathy. Serum creatinine
levels decreased significantly in wild-type diabetic mice
compared with those in age-matched controls (Table 1).
This decrease in serum creatinine did not occur in
" mice at either 18 or 27 weeks of diabetes (Table
1). Albumin-to-creatinine ratios (ACRs) increased in dia-
betic wild-type mice at both 18 and 27 weeks of hypergly-
cemia (control 63.51 *= 15.25 pg/mg, diabetic 27 weeks
594.97 + 271.09 pg/mg) (Fig. 5C). This increased ACR was
greatly attenuated in diabetic gremI™’~ mice (control
104.13 = 13.68 pg/mg, diabetic 27 weeks 287.10 + 68.75
pg/mg) (Fig. 5C). The smaller increase in greml™'~ mice
was highlighted when fold change was calculated, show-
ing a significantly lower increase in the ACR in gremI™’~
mice compared with that in wild-type mice at 27 weeks
(Fig. 5D).

Creatinine clearance increased in diabetic wild-type
mice compared with that in controls at 18 weeks of
diabetes, suggesting that glomerular hyperfiltration was
occurring at this time point (Fig. 5E). In contrast, diabetic
grem1™’” mice did not develop significant increases in
creatinine clearance until the 27-week time point (Fig. 5E).
A significantly higher fold change in creatinine clearance
was detected in greml™’™ mice compared with that in
wild-type mice at 27 weeks, suggesting that grem1 deple-
tion delayed the onset of peak hyperfiltration in diabetic
mice (Fig. bF).

Serum lipids were elevated in diabetic wild-type mice,
showing a significant increase in triglycerides and de-
crease in HDL typical of diabetic hyperlipidemia (Table 1).
Diabetic grem1™’~ mice also manifested a significant
elevation in serum triglycerides but demonstrated a signif-
icantly lower HDL at baseline than wild-type controls, in
which HDL failed to drop significantly in the setting of
diabetes (wild-type control 77 *+ 3.69 g/dl, greml*’~
control 58.3 = 2.9 g/dl) (Table 1).
greml mRNA correlates with early indexes of dia-
betic nephropathy. A significant correlation was de-
tected between ACR and GBM thickening in both control
and diabetic mice in our study (Fig. 6A). To assess
whether gremI mRNA correlated with indexes of early
diabetic kidney disease, grem1 levels were compared with
changes in microalbuminuria and GBM thickening. The
degree of grem1 expression correlated significantly with
both ACR and GBM thickening in wild-type control and
diabetic mice across the entire experiment (Fig. 6B and C).
These data suggested that increased greml gene expres-
sion occurred in parallel with cellular damage during early
diabetic kidney disease.

To explore the mechanism of partial protection from
diabetes-induced damage in gremI*’~ mice, we measured

value per mouse was calculated. Data are plotted as group means = SE.
GBM thickness was significantly higher in wild-type diabetic mice
compared with nondiabetic controls (P < 0.001 using one-way ANOVA
and Tukey-Kramer multiple comparison test, n = 7-11 per group). The
increase observed in diabetic gremlI*’~ mice compared with controls
did not reach significance (P = 0.224). Fold change in GBM thickening.
Mean GBM thickness values for each diabetic animal were divided by
the mean thickness for control mice for both wild-type and greml*'~
groups. Mean fold change values were calculated for both wild-type and
greml™’~ mice at 27 weeks. *P < 0.05, Student’s two-tailed ¢ test. [,
wild type; B, greml™*'~.
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FIG. 4. Mild structural changes are evident in diabetic wild-type and gremI*'~ mice by light microscopy. Post mortem, mouse kidneys were fixed
by perfusion fixation in situ using 4% (wt/vol) paraformaldehyde, and 3-pm paraffin-embedded sections were stained with (A) Picrosirius red to
detect interstitial collagen or (C) periodic acid Schiff to assess glomerular matrix secretion. Slides (n = 5 for each group) were scored blindly
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Student’s two-tailed ¢ test. (A high-quality digital representation of this figure is available in the online issue.)

levels of genes implicated in kidney damage during dia-
betic nephropathy. Increased levels of fibronectin, vimen-
tin, and CTGF were detected in diabetic wild-type kidney
at 27 weeks (Fig. 7). In contrast, no significant increase
was detected in grem1™/~ diabetic kidney, suggesting that
decreased grem 1 levels reduce diabetes-mediated upregu-
lation of genes involved in mediating glomerular and renal
damage. Because grem is a negative regulator of BMP-7,
a molecule that has been shown to mediate repair pro-
cesses in the damaged kidney, we examined the effect of
greml1 deletion on this protein. No significant changes in
BMP-7 mRNA or protein levels were detected at either 18
or 27 weeks of diabetes in either wild-type or grem1™’~
mice (supplementary Fig. 2, available in an online appen-
dix, and data not shown). Similar to previous reports (24),
levels of phospho-Smadl/5/8, a downstream target of
BMP-7 signaling, were reduced in wild-type diabetic kid-
ney at 27 weeks (Fig. 8C and D). In contrast, no significant
decrease in pSmad1/5/8 levels was detected in gremI™*’~
mice, possible suggesting that BMP signaling is maintained
in the diabetic kidney when levels of grem! are reduced.
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DISCUSSION

The BMP antagonist, grem1, regulates critical processes
controlling limb-bud outgrowth and kidney development
(6-8,10,11). Increased greml levels correlated with the
pathogenesis of diabetic nephropathy and/or progressive
renal fibrosis (19,20). To address whether grem1 depletion
would protect against diabetes-induced renal disease, we
evaluated renal damage in type 1 diabetic mice lacking one
copy of the grem1 gene (greml1*'™). We provide the first
evidence that allelic depletion of grem 1 causes a reduction
in greml expression levels and protects against early
diabetic nephropathy-like changes in the kidney.
grem1™’™ mice on a C57BL/6J background were used in
this study. Previous data compared the susceptibility of
different genetic strains of mice and showed that C57BL/6J
mice were “high responders” in terms of STZ-induced
hyperglycemia (25). Consistent with these findings, severe
and sustained hyperglycemia developed in both wild-type
and grem1™’~ mice (Fig. 1B). We demonstrate here that
type 1 diabetes induced grem1 kidney mRNA and protein
in wild-type mice. This reactivation of greml expression
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may be linked to a tissue repair mechanism in response to TGF-B, AGEs, and hemodynamic stress are features of
hyperglycemia and other insults that become maladaptive, diabetic nephropathy that have previously been shown to
leading to further kidney injury (23,26). Factors such as increase gremlI expression (17,20). Because greml™*’~
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mice displayed a marked reduction in grem 1 upregulation
in diabetes (Fig. 2), we propose that the recapitulation of
greml gene activation in the diabetic kidney involves both
greml alleles.

A similar degree of renal hypertrophy was observed in
both wild-type and greml1™~ diabetic mice (Table 1).
These data suggested that reduction of grem1 expression
prevented diabetes-induced increases in GBM thickness
during early-stage diabetic nephropathy. Staining for
markers of more advanced kidney damage such as mes-
angial matrix secretion and interstitial collagen showed
modest increases in diabetic mice (Fig. 3D-F). Previous
data had indicated that C57BL/6J mice were somewhat
resistant to diabetic nephropathy-like changes in kidney,
manifesting modest increases in albuminuria and glomer-
ular damage (25). Our study also detected modest in-
creases in glomerular damage (Fig. 3), together with a
significant increase in microalbuminuria (~4.8-fold) (Fig.
5A and B). Mice in our study developed severe hypergly-
cemia (~b90 mg/dl) at 18 weeks (Fig. 1B). In contrast,
C57BL/6 mice in the study of Gurley et al. (25) manifested
lower levels of hyperglycemia at 16 weeks (388 mg/dl).
Thus, the more robust hyperglycemia in our model may
have been sufficient to induce microalbuminuria but not
gross structural changes in glomeruli or kidney tubules in
our mice. We conclude, based on the early structural
changes evident, that our diabetic mice develop mild but
significant damage in the kidney and that this early dam-
age is attenuated when levels of greml1 are reduced by
gene deletion. Microalbuminuria developed in wild-type
diabetic mice compared with control mice (Fig. 5) but was
attenuated in age-matched grem1™’~ mice (Fig. 5A and B).
Diabetes-induced increases in the ACR were also reduced
in grem1™~ mice compared with wild-type mice (Fig. 50).
Values for creatinine clearance suggest that diabetes-
induced hyperfiltration peaked in wild-type mice at 18
weeks (Fig. 5F). In contrast, creatinine clearance values
for gremI'’~ diabetic mice were lower at 18 weeks
compared with those in wild-type mice and were higher at
27 weeks, suggesting that the peak of hyperfiltration in
diabetic grem ™'~ mice may occur at a later time than that
in wild-type mice (Fig. 5E). Together with previous data
identifying gremI upregulation in high-glucose cell culture
models and human diabetic nephropathy biopsy speci-
mens, these data add to the growing body of evidence
implicating greml1 in the pathogenesis of diabetic ne-
phropathy. Furthermore, our data provide the first evi-
dence that a reduction in grem1 expression reduces early
impairment of renal structure and function in the diabetic
kidney. We are currently examining whether other vascu-
lar complications of diabetes are also altered in grem1™’'~
mice. Preliminary evidence from our group suggests that
grem1 deletion may also protect against aortic thickening
in the diabetic state, potentially due to altered serum lipid
profiles (27).

Several markers of renal damage in diabetes have been
identified, and levels of several of these genes were
elevated in the wild-type but not grem1 ™/~ diabetic kidney
(Fig. 7). Thus, in the hyperglycemic state, the triggers that
increase the expression of genes contributing to glomeru-
losclerosis and tubular damage seem to be attenuated in
the gremI "'~ kidney. grem1 is an antagonist of BMP-2, -4,
and -7, binding to these proteins and preventing their
interaction with their cognate receptors (6,8,14). Of these,
BMP-7 has attracted recent attention, as up to 90% loss of
this protein has been reported in the kidneys of diabetic
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FIG. 7. Upregulation of gene markers of diabetic nephropathy is attenuated in gremI*'~ mice. Total RNA was extracted from renal poles of
control (C) and diabetic (D) wild-type ((J) and grem1*’~ (l) mice at 27 weeks of diabetes. A quantitative TagMan PCR was performed using
mouse fibronectin (4), vimentin (B), or CTGF (C) specific oligonucleotides as described. AACt values were calculated by subtracting the Ct
values for the 18S control from the corresponding test gene value obtained in the same tube, and altered mRNA levels were then calculated by
setting the control in each age-group to 1. Data are plotted as means * SE. *P < 0.05, Student’s unpaired t test, n = 4—6 for each group. Increases
in vimentin in wild-type diabetic kidney just failed to reach significance (P = 0.079).

rats (28). Loss of BMP-7 was accompanied by an increase
in grem1 expression, with both changes probably being
driven by increased TGF-B1 in the diabetic kidney (28).
Administration of recombinant BMP-7 or transgenic over-
expression of BMP-7 in podocytes ameliorates renal injury
in mouse models of diabetes (29) and lupus (30). Although
significant changes in cellular BMP-7 mRNA or protein
were not detected in our diabetic mice (supplementary
Fig. 2), our data show that levels of phospho-Smadl/5/8, a
downstream target of BMP signaling, were reduced in
wild-type but not in gremI*’~ diabetic kidney compared
with control kidneys (Fig. 8), suggesting that loss of grem 1
expression facilitates sustained BMP-7 signaling in the
diabetic kidney, extending the notion of a carefully coor-
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FIG. 8. Decreased pSmad1/5/8 phosphorylation is evident in wild-type
but not grem1*’~ diabetic kidney. A: Protein extracts from renal poles
of control (C) and 27-week diabetic (D) wild-type ((J) and greml1*'~
(M) mice were probed via Western blot using phospho-Smad1/5/8, total
Smad1/5/8, and B-actin antibodies as described. n = 3 mice per group.
B: Densitometry was performed using Scion Image software. pSmad1/
5/8 intensities were normalized to total Smad1/5/8 levels and plotted as
relative intensity. *P < 0.05 using Student’s unpaired ¢ test.
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dinated balance between BMP signaling and grem1 in the
disease state.

Previous reports have identified other genes such as
TGF-B type II receptor, CTGF, and p27¥®! whose deletion
confers protection against the sequelae of diabetic kidney
disease (31,24,32). p275P1*~ mjce displayed an interme-
diate degree of protection compared with that of
p27XP1~/~ mice, suggesting that p27¥! is haploinsuffi-
cient in terms of its role in diabetic nephropathy (32). Our
data suggest that gremI may also be haploinsufficient, as
deletion of one allele of grem1 reduced grem1 expression
and conferred a moderate degree of protection from
structural renal damage induced by diabetes.

Because greml*’~ mice developed less severe GBM
thickening (Fig. 3), together with lower fold increases in
ACR and estimated glomerular filtration rate (Fig. 5C-F)
compared with those in wild-type controls, a reduction in
greml levels using gene deletion may reduce both the
onset and severity of renal disease in the diabetic kidney.
Increased grem1 levels correlated tightly with both GBM
thickening and ACR (Fig. 6), suggesting that reactivation
of grem1 in the diabetic kidney may occur in parallel with
early pathological changes in renal structure and function.
Because grem1"’~ mice manifest less severe microalbu-
minuria and GBM thickening, these data suggest that
greml upregulation contributes to glomerular damage in
response to diabetes in the kidney.
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