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OBJECTIVE—Leptin released from adipocytes plays a key role
in the control of food intake, energy balance, and glucose
homeostasis. In addition to its central action, leptin directly
affects pancreatic �-cells, inhibiting insulin secretion, and, thus,
modulating glucose homeostasis. However, despite the impor-
tance of glucagon secretion in glucose homeostasis, the role of
leptin in �-cell function has not been studied in detail. In the
present study, we have investigated this functional interaction.

RESEARCH DESIGN AND METHODS—The presence of lep-
tin receptors (ObR) was demonstrated by RT-PCR analysis,
Western blot, and immunocytochemistry. Electrical activity was
analyzed by patch-clamp and Ca2� signals by confocal micros-
copy. Exocytosis and glucagon secretion were assessed using
fluorescence methods and radioimmunoassay, respectively.

RESULTS—The expression of several ObR isoforms (a–e) was
detected in glucagon-secreting �TC1-9 cells. ObRb, the main
isoform involved in leptin signaling, was identified at the protein
level in �TC1-9 cells as well as in mouse and human �-cells. The
application of leptin (6.25 nmol/l) hyperpolarized the �-cell
membrane potential, suppressing the electrical activity induced
by 0.5 mmol/l glucose. Additionally, leptin inhibited Ca2� signal-
ing in �TC1-9 cells and in mouse and human �-cells within intact
islets. A similar result occurred with 0.625 nmol/l leptin. These
effects were accompanied by a decrease in glucagon secretion
from mouse islets and were counteracted by the phosphatidyl-
inositol 3-kinase inhibitor, wortmannin, suggesting the involve-
ment of this pathway in leptin action.

CONCLUSIONS—These results demonstrate that leptin inhibits
�-cell function, and, thus, these cells are involved in the adipo-
insular communication. Diabetes 58:1616–1624, 2009

A
mong the different hormones released by adi-
pocytes, leptin plays a fundamental role in the
control of satiety and body weight by acting on
the hypothalamus and, thus, regulating food

intake and energy expenditure (1,2). Although several
factors modulate the release of leptin from adipocytes, its
plasma levels are frequently proportional to body fat mass
(1). Its action is mediated by the activation of the leptin
receptor (ObR), which is highly expressed in the hypothal-
amus and cerebellum as well as in other tissues involved in
metabolism, such as the endocrine pancreas, the liver, and
the adipose tissue (3). The ObR gene produces several
splicing variants, yet the long form of the receptor (ObRb)
is the main isoform involved in the transduction of intra-
cellular signals (3,4). The activation of ObR induces JAK/
STAT (Janus kinase/signal transducer and activator of
transcription signaling), which is implicated in transcrip-
tional modulation (4). Additionally, leptin can induce rapid
effects on membrane potential and secretion in endocrine
cells and neurons by activating the phosphatidylinositol
3-kinase (PI3K) signaling pathway (5–10).

Remarkably, leptin can inhibit insulin expression and
secretion in pancreatic �-cells, regulating glucose ho-
meostasis directly through its action on the endocrine
pancreas in addition to its central effects (7,11–15). The
inhibition of insulin release by leptin is mainly mediated by
the hyperpolarization of the membrane potential and a
subsequent decrease in Ca2� signaling in both human and
rodent �-cells (8–13). These effects result from ATP-
sensitive K� channel (KATP channel) opening and involve
the PI3K pathway (9–11). Since insulin also stimulates
leptin release from adipocytes, there is a bidirectional
feedback loop between �-cells and the adipose tissue. It
has been proposed that the dysregulation of this adipoin-
sular communication may play a role in the development
of diabetes in obese individuals (14,15).

However, despite the importance of glucagon secretion
in the regulation of glycemia, the effect of leptin on �-cells
has not been studied in detail. The hyperglycemic hor-
mone glucagon increases blood glucose levels essentially
by inducing glucose synthesis and mobilization in/from the
liver (16,17). Glucagon secretion is the main line of de-
fense against hypoglycemia and, also, counterbalances the
effects of insulin on glucose levels (18). In diabetes,
glucagon secretion does not respond adequately to glu-
cose changes, which leads to further problems in the
control of glucose levels in diabetic patients besides those
difficulties derived from �-cell malfunction (17,18). Leptin
has been revealed as an important modulator of glucose
homeostasis by directly acting on �-cells. Therefore, given
that glucagon is an essential player in the islet function
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and the regulation of glycemia, it is important to determine
whether leptin can affect �-cell function. Since defects in
the adipoinsular axis may contribute to diabetes associ-
ated with obesity (14,15), a better understanding of the
communication between the adipose tissue and the two
main endocrine cells involved in glucose homeostasis is
essential to design potential therapeutic strategies. Several
evidences suggest that leptin could have a role in the
�-cell. It has been reported that mouse models with
defects in leptin signaling can develop hyperglucagonemia
(19–21). Additionally, it was recently shown that induction
of hyperleptinemia decreases glucagon levels in diabetic
mice with hyperglucagonemia (22). However, the direct
regulation of glucagon secretion by leptin has not been
described so far.

In the present study, we show a direct action of leptin on
the �-cell. The presence of ObR was identified in the
glucagon-secreting cell line �TC1-9 and in mouse and
human �-cells. We found that leptin hyperpolarizes the
membrane potential in �-cells, suppressing electrical ac-
tivity. Additionally, leptin inhibited Ca2� signaling and
glucagon secretion induced by low glucose concentra-
tions. All these findings indicate that the �-cell function
can be modulated by the adipose tissue through a leptin
signaling pathway.

RESEARCH DESIGN AND METHODS

Islet isolation and cell culture. All protocols were approved by our animal
care committee according to national regulations. Swiss albino OF1 mice
(8–10 weeks old) were killed by cervical dislocation, and islets were then
isolated by collagenase digestion (23,24). Isolated islets were dispersed into
single cells by trypsin enzymatic digestion and then cultured overnight at 37°C
in RPMI-1640 (Sigma, Madrid, Spain) supplemented with 10% FCS, 100 IU/ml
penicillin, 0.1 mg/ml streptomycin, and 5.6 mmol/l D-glucose (23,24). The
glucagon-releasing �TC1-9 cell line was purchased from the American Type
Cultures Collection (ATCC CRL-2350; passage 5–15). �TC1-9 cells were grown
in Dulbecco’s Modified Eagle’s medium (Invitrogen) containing (in mmol/l) 4
L-glutamine, 16 glucose, 19 NaHCO3, 10% fetal bovine serum, 15 HEPES, and
0.1 nonessencial amino acids. Human islets from healthy donors were obtained
from the human islet isolation facility of the Clinic Hospital of Barcelona after
approval of the hospital ethics committee. Islets were cultured in RPMI-1640 at
37°C and 5% CO2. Experiments were performed within 48 h of isolation. Leptin
(Calbiochem) was used at 6.25 nmol/l (100 ng/ml) and 0.625 nmol/l (10 ng/ml).
Except when indicated, all experiments were carried out at 37°C.
Ca2� signaling measurements by confocal microscopy. For Ca2� experi-
ments, cells were loaded for 1 h at 37°C with the Ca2� probe Fluo-4 (2 �mol/l)
(Invitrogen). Islets were loaded with Fluo-4 (5 �mol/l) for 1 h at room
temperature. Islets or cells were placed on a perfusion chamber mounted on
the microscope stage (25). Then, they were perfused at a rate of 1.5 ml/min
with a modified Ringer solution containing (in mmol/l) 120 NaCl; 5 KCl; 25
NaHCO3; 1.1 MgCl2; and 2.5 CaCl2, pH � 7.4, gassed with 95% O2 and 5% CO2.
Ca2� signals were monitored in individual cells using a Zeiss LSM 510 laser
confocal microscope equipped with a �40 oil immersion objective. The
configuration of the system was set to excite the Ca2� probe at 488 nm and
collect the emission with a band-pass filter at 505–530 nm from an optical
section of 8 �m. Images were collected at 2-s intervals and treated with a
low-pass filter (26). As previously reported, individual cells loaded with Fluo-4
were easily identified at the periphery of the islet where �-cells usually are
more abundant (26). Fluorescence records were represented as the percent-

age of �F/F0, where F0 is the fluorescence signal at the beginning of a record
and �F is F � F0. Background fluorescence was subtracted from F0. The
frequency of oscillatory Ca2� signals was calculated over a 5-min period of
the Ca2� recording, immediately before and 5 min after the application of the
stimulus, as previously reported (23). To analyze frequency, a Ca2� oscillation
or spike was defined as a rapid increase in the intracellular Ca2� concentra-
tion higher than twice the SD of the background signal at the intervals
between spikes (23). Some data were expressed in percentages with respect
to the frequency before the stimulus.
Glucagon secretion. Batches of 15 islets were preincubated for 60 min at
37°C in 0.5 ml Krebs-Ringer bicarbonate buffer supplemented with 15 mmol/l
HEPES, 0.5% bovine serum albumin, and 5.6 mmol/l glucose, pH � 7.4 (23).
Then, the islets were incubated at 37°C for 60 min with Krebs-Ringer
bicarbonate buffer supplemented with 0.5 mmol/l glucose and additional
reagents, as indicated in the RESULTS. At the end of the incubation, the medium
was aspirated and assayed for glucagon using a commercial radioimmunoas-
say kit (Linco Research).
Analysis of exocytosis by fluorescence imaging. The exocytotic response
of �TC1-9 cells was monitored at the single-cell level using the styryl dye
FM1-43 (Invitrogen), as previously reported (27–29). The cells were incubated
for 15 min with FM1-43 (2 �mol/l), allowing its incorporation into the cell
membrane (27). The dye was maintained continuously throughout the exper-
iment. This cell-impermeable probe is nonfluorescent in an aqueous solution
but emits intense fluorescence after partitioning into the plasma membrane.
Consequently, the incorporation of secretory granules into the plasma mem-
brane during secretion increases the cell surface, augmenting FM1-43 fluores-
cence (27–29). The FM1-43 signal was monitored by exciting the cells at 488
nm and obtaining the emission with a 560-nm long-pass filter. The relative
change in fluorescence (�F) was represented with respect to time for each
analyzed cell. The average rate of fluorescence changes (�F/min) was also
calculated for each experimental condition. Background signal was sub-
tracted in all cases.
Patch-clamp recordings. As previously reported, �-cells were identified by
their size, membrane capacitance (	4 pF), and their characteristic electrical
activity in the absence of glucose (30,31). Membrane potential and whole-cell
currents were recorded in the perforated patch whole-cell configuration using
an Axopatch 200B amplifier (Axon Instruments). Patch pipettes were pulled
from borosilicate capillaries using a flaming/brown micropipette puller P-97
(Sutter Instruments) with a resistance of 3–5 M
 when filled with the pipette
solution (in mmol/l): 76 K2SO4, 10 KCl, 10 NaCl, 1 MgCl2, 5 HEPES (pH � 7.35).
The extracellular solution consisted of (in mmol/l) 138 NaCl, 5.6 KCl, 2.6
CaCl2, 1.2MgCl2, and 5 HEPES (pH � 7.4) and supplemented with glucose as
indicated (30,31).
Immunocytochemistry. This protocol was performed as previously reported
(23). Briefly, islets or cells were fixed with Bouin’s solution for 5 min and then
dehydrated for 3 min with 30, 50, and 70% ethanol. Triton X-100 (0.5%) was
used for permeabilization. To reduce nonspecific binding, cells were first
preincubated with a blocking buffer (5% serum in PBS) for 45 min before
applying primary antibodies in a buffer containing 1% serum. Glucagon-
containing cells were identified with monoclonal anti-glucagon mouse anti-
bodies (1:200; Sigma, Madrid, Spain). ObR receptors were detected with an
anti-ObR goat antibody (1:100; Santa Cruz Biotechnology, Santa Cruz, CA) or
an anti-ObRb rabbit antibody (1:500; Alpha Diagnostic, San Antonio, TX). An
anti-ObRb rabbit antibody specific for humans was also used (1:100; Milli-
pore). These antibodies were applied overnight at 4°C. After washing,
appropriate combinations of secondary antibodies conjugated with Alexa
Fluor dyes (1:500; Invitrogen) were applied for 2 h at room temperature. The
omission of the first antibody led to the absence of staining.
RT-PCR. Total RNA was isolated using RNeasy Mini Kit (Quiagen).
Extracted RNA was quantified by OD260/280 measurement. Extracted RNA
was used to generate cDNA using Expand Reverse Transcriptase (Roche,
Mannheim, Germany), and 2 �l of each RT reaction were used as input for
the PCR. Primers are detailed in Table 1. PCR amplification was performed

TABLE 1
PCR primers for ObR isoforms and 18S

Name Sense primer (5�-3�) Antisense primer (5�-3�)

ObRa AGGGCTGTATGTCATTGTACCCAT AGTTTAGGTTTGTTTCCCTCCATC
ObRb ACAGTTCTGGCTGTCAATTCCC AGGAGCTGCTAGAAAGACTG
ObRc ACAGTTCTGGCTGTCAATTCCC GAAAGGATGAACAGGCTTGAGAAC
ObRd AGGGCTGTATGTCATTGTACCCAT CTTCATGTAAAGATATATCCTTTTCC
ObRe AGGGCTGTATGTCATTGTACCCAT CCATGAAAAGTACAGTACACATACC
18S GGGAGGTAGTGACGAAAAATAAC AATCATGGCCTCAGTTCCGAAA
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using Taq-DNA polymerase (Invitrogen, Barcelona, Spain) under the
following conditions: 15 s at 94°C, 30 s at 55°C, and 1 min at 72°C. 18S was
amplified as an internal control. PCR products were subjected to agarose-
gel electrophoresis.
Western blot analysis. Cell pellets were obtained by centrifugation at 1,000g

�10 min and resuspended in 200 �l of cell lysis buffer (Cell Signaling
Technology, Danvers, MA). Cell extracts were subjected to SDS-PAGE (12%
gels). Prestained SDS-PAGE standards were included for molecular mass
estimation. The transfer to polyvinylidene fluoride membranes was performed
at 125 mA for 90 min in a buffer with 2.5 mmol/l Tris base, 9 mmol/l glycine,
and 20% methanol. After membranes were blocked with 2% nonfat dry milk,
they were incubated with the above-mentioned anti-ObR (1:100) or anti-ObRb
(1:500) antibodies before being incubated with peroxidase-conjugated donkey
anti-goat (Santa Cruz Biotechnology, Santa Cruz, CA) or goat anti-rabbit (GE
Healthcare, Barcelona, Spain) antibodies, respectively. Protein bands were
revealed by using the ECL Chemiluminiscence Reagents kit (Amersham
Biosciences, Barcelona, Spain).

Statistical analysis. Some data are shown as means � SE. Student’s t test or
one-way ANOVA were performed, as appropriate, with a level of significance
of P 	 0.05.

RESULTS

Identification of leptin receptors in �-cells. Multiple
isoforms have been described for the leptin receptor
(ObR) (3,4). Although these variants have a common
extracellular domain, the intracellular site varies for each
isoform. ObRb is the long full-length isoform, and it is
considered the functional receptor in terms of intracellular
signaling (4). To investigate the existence of ObR in
glucagon-releasing cells, we first performed a PCR analy-
sis in �TC1-9 cells. As shown in Fig. 1A, these cells express
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mRNA for the majority of ObR isoforms (ObRa–e). The
presence of these receptors was also studied at the protein
level by Western blot in �TC1-9 cells. We initially explored
the existence of ObR using an antibody that recognizes the
extracellular domain, which is common in all the ObR
isoforms (Fig. 1B). Nonetheless, given the importance of
ObRb for leptin signaling, its presence in these cells was
also confirmed with a specific antibody against this iso-
form (Fig. 1B). Finally, the spatial localization of ObR and
ObRb was studied using these antibodies and confocal
microscopy. As shown in Fig. 1C and D, both �TC1-9 cells
and �-cells within intact mouse islets contain these recep-
tors. Remarkaly, ObRb was also identified in human
�-cells. These results indicate that, in addition to �-cells,
glucagon-containing cells are also equipped with ObR.
Leptin hyperpolarizes �-cell membrane potential and
suppresses electrical activity. In the absence of glucose
or at low concentrations, �-cells produce a characteristic,
regenerative electrical activity (30–36) that triggers Ca2�

signals and glucagon secretion. Thus, to study the func-
tional role of leptin in �-cells, we first recorded their
electrical activity using the patch-clamp technique in the
whole-cell configuration. In 0.5 mmol/l of glucose, all the
analyzed �TC1-9 cells displayed a characteristic electrical
activity with action potentials that originated from
�39.9 � 0.2 mV (Fig. 2A). The application of leptin (6.25
nmol/l) hyperpolarized the membrane potential by
�21.1 � 1.1 mV and suppressed electrical activity. Al-
though the effect of leptin persisted in some cells, its
removal from the bath allowed for the depolarization of

the membrane potential and the restoration of electrical
activity (Fig. 2A and B). Similar effects were found in
mouse �-cells, since leptin hyperpolarized the membrane
potential from �37.3 � 0.6 mV to �60.6 � 0.4 mV, and
decreased electrical activity as well (Fig. 2C and D). Thus,
leptin is able to induce short-term effects that modulate
electrical responses in �-cells, in agreement with findings
in other secretory cells (6,8–11).
Regulation of Ca2� signaling by leptin in �-cells. Since
glucose-regulated Ca2� signals in �-cells are mainly sus-
tained by their electrical activity (16,17,36), the effect of
leptin on membrane potential should affect Ca2� oscilla-
tions. It has been reported that among the different islet
cell types, �-cells isolated in culture or within mouse islets
are unique in displaying Ca2� oscillations at low glucose
levels (23,25,37–41). As shown in Fig. 3, �-cells exhibited
this characteristic oscillatory Ca2� pattern with 0.5 mmol/l
glucose. The application of leptin (6.25 nmol/l) produced
either a complete blockage or a decrease in the frequency
of the Ca2� oscillations in both �TC1-9 cells and �-cells
within intact mouse islets (Fig. 3A–C). The average effect
of leptin was a decrease of 
60 and 
40% in the Ca2�

signaling frequency in �TC1-9 cells and mouse �-cells,
respectively (Fig. 3E). A similar response was observed
with 3 mmol/l glucose (see supplementary Figure S1 in the
online appendix [available at http://dx.doi.org/10.2337/
db08-1787]). Removal of leptin from the bath allowed for
the restoration of Ca2� oscillations (supplementary Figure
S2). After long periods of stimulation, this reversibility was
not complete during the recording time, indicating that the
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leptin effect may be persistent. The addition of 0.625
nmol/l leptin also produced an inhibitory effect in �TC1-9
cells (
45% decrease) (Fig. 3E). In contrast, although
0.625 nmol/l leptin blocked Ca2� signals in 
57% of �-cells
(Fig. 3D), the average effect was not significant because of
the heterogeneous response to this concentration (Fig.
3E). To avoid the potential contribution of islet paracrine
interactions on the leptin action, some experiments were
performed with isolated �-cells (Fig. 3F). In these condi-
tions, leptin produced a similar inhibitory response, prov-
ing its direct action on �-cells. The absence of effect on

�-cells from db/db mice, which lack functional ObRb, gave
further molecular evidence that this receptor is involved in
leptin-induced actions (supplementary Figure S3). Finally,
the response of �-cells to this hormone was also evaluated
in human islets (Fig. 4). Application of leptin at 6.25 and
0.625 nmol/l decreased Ca2� signals by 
58 and 
32%,
respectively. This result indicates that ObR is also func-
tional in human �-cells.

It has been reported that the leptin effect on electrical
activity and Ca2� signals is mediated by the PI3K pathway
in pancreatic �-cells and neurons (5,6,8–10). To determine
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whether this pathway is also involved in the �-cell, some
experiments were performed in the presence of the PI3K
inhibitor wortmannin (20 nmol/l) (Fig. 5). In these condi-
tions, leptin failed to inhibit Ca2� signals in �TC1-9 cells
(Fig. 5B and C), as shown in other cell types (6,8). Thus,
the PI3K pathway may be involved in the leptin effect. The
following results further support these observations.
Reduced glucagon secretion in the presence of leptin.
Glucagon secretion depends on Ca2� signaling (16,17).
Thus, all these changes induced by leptin may be associ-
ated with alterations in the secretory pattern. To test this
possibility, we analyzed glucagon release from isolated
mouse islets using radioimmunoassay (Fig. 6A). Glucagon

secretion with 0.5 mmol/l glucose is almost maximal in
mice (42). Incubation with 10 mmol/l glucose reduced
glucagon release by 
55%, consistent with previous re-
ports (42). In the presence of 6.25 nmol/l leptin, glucagon
secretion with 0.5 mmol/l glucose decreased by 
33%. The
inhibitory effect was not statistically significant with 0.625
nmol/l leptin, which probably may result from the hetero-
geneous response observed in Ca2� signaling with this
concentration (Fig. 3E). In agreement with the previous
finding with Ca2� signals (Fig. 5), wortmannin counter-
acted the blocking action of 6.25 nmol/l leptin on glucagon
secretion (Fig. 6A), further indicating the involvement of
the PI3K pathway. Finally, to further prove the influence of
leptin on the secretory process, we analyzed exocytosis at
the single-cell level by monitoring FM1-43 fluorescence in
�TC1-9 cells, as previously reported in �-cells (27–29).
FM1-43 emits fluorescence when it partitions into the
plasma membrane. Thus, the incorporation of secretory
granules into the plasma membrane increases the cell
surface and, also, the fluorescence of FM1-43 (27–29). As
shown in Fig. 6B and C, the fluorescence augmented with
0.5 mmol/l glucose (control), indicating an active secretory
response. This increase was significantly reduced in the
presence of leptin (6.25 nmol/l). Again, the application of
wortmannin counteracted this effect (Fig. 6C). Thus, all
these observations indicate that leptin is working as an
inhibitory regulator of �-cell function.

DISCUSSION

Glucose homeostasis is mainly regulated by the coordi-
nated action of glucagon and insulin secreted from pan-
creatic �- and �-cells, respectively (17). These two islet
populations respond reciprocally to blood glucose
changes. Pancreatic �-cells develop spontaneous electri-
cal activity at low glucose concentrations, leading to Ca2�

signals and glucagon secretion, while these processes
become inhibited with the elevation of glucose levels
(25,26,31,33–35,38). Remarkably, this glucagon secretory
response can be impaired in diabetic individuals, aggravat-
ing the difficulties in the control of glycemia (17–18).
Glucose homeostasis can be further regulated by the
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adipocyte hormone leptin through its inhibitory action on
�-cell secretion (7,11–15). It has been proposed that
defects in this communication may be implicated in obe-
sity-induced diabetes (12,14,15). The functional role of
leptin in pancreatic �-cells and its involvement in the
adipoinsular communication, however, has not been inves-
tigated extensively.

In the present study, we have shown that leptin recep-
tors are present in mouse and human glucagon-containing
cells. We demonstrate that leptin produces significant
changes in the membrane potential, electrical activity,
Ca2� signaling, and glucagon secretion in mouse �-cells as
well as glucagon-secreting �TC1-9 cells. This cell line has
been previously validated as a good model to study �-cell
function (38). Additionally, the blocking action of leptin on
Ca2� signaling was also demonstrated in human �-cells. In
a previous report (11), the function of leptin was not
studied in �-cells because of the lack of ObR expression in
hamster glucagonoma INR1G-9 cells and a weak antibody
staining in isolated rat �-cells. Although methodological or
interspecies differences may account for this discrepancy,
our findings on the presence of ObR in �-cells are further
sustained by the demonstration of direct leptin actions at
the single-cell level.

It has been reported that leptin induces membrane
potential changes that can modulate electrical activity in
neurons and in �-cells (5,6,8–11,43). In agreement with
these findings, we have observed similar effects in the
pancreatic �-cell. In contrast to other islet cell popula-
tions, �-cells are electrically active in the absence or at low
concentrations of glucose (30,33–35). In these conditions,
spontaneous action potentials arise from a membrane
potential that varies from �60 to �40 mV, depending on
experimental conditions (30,33–35). In �TC1-9 cells and
mouse �-cells, we observed this characteristic electrical
activity with 0.5 mmol/l glucose, where action potentials
arose from a membrane potential of about �40 mV.
Consistent with the results obtained in other secretory cell
types including �-cells (6,8–11,43), leptin hyperpolarized
the membrane potential and decreased electrical activity
(Fig. 2), which is voltage-dependent (33,34,40). Addition-
ally, this hormone inhibited intracellular Ca2� oscillations
and glucagon secretion (Figs. 3, 4, and 6). This effect could
be anticipated in �-cells, since their electrical activity
triggers Ca2� signals, and exocytosis is Ca2� dependent
(16,17). In the case of the pancreatic �-cell, leptin effects
on membrane potential are also reflected in Ca2� signals
and insulin release (11,12). Like leptin, other hormones
such as insulin and somatostatin can inhibit glucagon
secretion in �-cells by mechanisms that involve membrane
hyperpolarization and suppression of electrical activity,
affecting Ca2� signals (38,44,45). It has been proposed that
the effects of leptin on �-cell membrane potential are
mediated by the opening of KATP channels (11). A similar
process may occur in �-cells, since their membrane poten-
tial is controlled by the KATP channel and its activation
causes the hyperpolarization of these cells (40). In any
case, further experiments should be performed since other
molecular targets may be involved in leptin actions (3,4).

Leptin can activate multiple signaling cascades (4).
Among them, PI3K signaling has an important function in
leptin short-term effects on membrane potential, Ca2�

signals, and secretion in pancreatic �-cells and in neurons
(5–10). In agreement with these findings, leptin failed to
decrease Ca2� signaling and secretion in �-cells when
PI3K was inhibited (Figs. 5 and 6). Therefore, this signal-

ing pathway seems to be involved in the intracellular
transduction of leptin short-term effects on the �-cell.

Basal plasma leptin concentrations are in the order of
1–10 ng/ml (
0.0625–0.625 nmol/l) during fasting state
(1–3,46). These values can significantly increase every day
by circadian mechanisms (46). These leptin fluctuations
are more marked in women, reaching concentrations of

15 ng/ml in healthy individuals (47). Factors like feeding
behavior, sex, age, and pregnancy or elevation of hor-
mones such as insulin, estrogen, or glucocorticoids can
notably increase plasma leptin levels in both rodents and
humans (1–3). Leptin concentrations can reach 30–100
ng/ml (
1.87–6.25 nmol/l) in obesity and are highly ele-
vated in situations such as impaired renal function and
inflammatory responses (1–3,46,47). The present study
demonstrates a clear inhibitory effect at 6.25 nmol/l leptin.
This response was more heterogeneous at 0.625 nmol/l. At
this concentration, leptin clearly inhibited Ca2� signals in
�TC1-9 and human �-cells (Fig. 3E and Fig. 4), yet the
average effect was not found significant in mouse �-cells
(Fig. 3E). Nevertheless, 0.625 nmol/l leptin had a blocking
action in several of these cells (
57%) (Fig. 3D). Thus,
these results indicate that �-cells may be less sensitive to
leptin in mice than in humans. Additionally, all these
observations suggest that leptin actions on �-cells may be
more limited at basal plasma leptin levels. However, leptin
effects should be more effective in those physiological
situations when this hormone increases above basal val-
ues and in pathological situations (1–3), as previously
mentioned.

The present findings indicate that leptin can directly
regulate �-cell function. This suggests that the adipose
tissue may modulate glucose homeostasis not only by
inhibiting �-cells and insulin release but �-cells and gluca-
gon secretion as well. Thus, the effect of leptin on islet
hormonal responses would be similar to that of somatosta-
tin, which limits both insulin and glucagon release (16,17).
Since leptin has been detected in mouse �-cells, this
hormone may also play a local autoregulatory effect within
the islet (48). Interestingly, hyperglucagonemia has been
reported in mouse models that have defects in leptin and
ObR, which impairs the signaling by this hormone (19–21).
Moreover, a similar suppressive action by leptin has been
recently observed in vivo in diabetic mice with hyperglu-
cagonemia and hyperglycemia (22). In these rodents,
hyperglucagonemia was reduced by adenoviral-induced
hyperleptinemia, which normalized glucose levels. Our
results indicate that, although several mechanisms could
be involved, this effect may be the result of a direct action
on �-cells. It has been demonstrated that leptin regulates
hepatic glucose fluxes and, remarkably, that this hormone
antagonizes the effects of glucagon in the liver, the main
target for �-cell function (49,50). Our present observations
suggest that leptin could antagonize glucagon action not
only in the liver but also directly in the �-cells. In diabetic
individuals, an absolute or relative excess of glucagon
along with insulin deficiency can generate an excessive
hepatic glucose production (17,18). Since this can be a
major problem in these patients, several approaches have
been developed to limit glucagon secretion and/or action
(17,18). In this regard, the direct inhibitory effect of leptin
on the �-cell reported in this study may be explored as a
therapeutic strategy for the control of glucagon levels, as
has been recently suggested for type 1 diabetes (22).
However, the specific management of glucagon levels by
leptin would be more complex if �-cells are functional,
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since it could also affect insulin release (10,11). Thus,
further research will be necessary in this context to
develop approaches to discriminate the secretory re-
sponses of �- and �-cells to this hormone. Leptin resis-
tance has been reported in obese individuals, and several
mechanisms have been proposed to explain this process at
the central level (2–4). Nevertheless, although it has been
suggested that leptin resistance may occur directly in the
�-cell, there is no information about the molecular deter-
minants involved (12,14,15). It has been proposed that
�-cell leptin resistance and dysregulation of the adipoin-
sular communication may contribute to obesity-induced
diabetes (12,14,15). Thus, it would be interesting to ana-
lyze whether �-cells may develop leptin resistance in this
context and the role that these cells may be playing in this
situation.
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33. Göpel SO, Kanno T, Barg S, Rorsman P. Patch-clamp characterisation of
somatostatin-secreting -cells in intact mouse pancreatic islets. J Physiol
2000;528:497–507

34. Gopel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P. Regulation
of glucagon release in mouse alpha-cells by KATP channels and inactivation
of TTX-sensitive Na� channels. J Physiol 2000;528:509–520

35. Manning Fox JE, Gyulkhandanyan AV, Satin LS, Wheeler MB. Oscillatory
membrane potential response to glucose in islet beta-cells: a comparison
of islet-cell electrical activity in mouse and rat. Endocrinology 2006;147:
4655–4663

36. Quoix N, Cheng-Xue R, Mattart L, Zeinoun Z, Guiot Y, Beauvois MC,
Henquin JC, Gilon P. Glucose and pharmacological modulators of ATP-
sensitive K� channels control [Ca2�]c by different mechanisms in isolated
mouse �-cells. Diabetes 2009;58:412–421

37. Quesada I, Todorova MG, Alonso-Magdalena P, Beltra M, Carneiro EM,
Martin F, Nadal A, Soria B. Glucose induces opposite intracellular Ca2�

E. TUDURI AND ASSOCIATES

DIABETES, VOL. 58, JULY 2009 1623



concentration oscillatory patterns in identified �- and �-cells within intact
human islets of Langerhans. Diabetes 2006;55:2463–2469

38. Ravier MA, Rutter GA. Glucose or insulin, but not zinc ions, inhibit
glucagon secretion from mouse pancreatic �-cells. Diabetes 2005;54:1789–
1797

39. Berts A, Gylfe E, Hellman B. Ca2� oscillations in pancreatic islet cells
secreting glucagon and somatostatin. Biochem Biophys Res Commun
1995;208:644–649

40. Macdonald PE, Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR,
Cox R, Eliasson L, Rorsman P. A KATP channel-dependent pathway within
alpha cells regulates glucagon release from both rodent and human islets
of Langerhans. PLoS Biol 2007;5:e143

41. Shiota C, Rocheleau JV, Shiota M, Piston DW, Magnuson MA. Impaired
glucagon secretory responses in mice lacking the type 1 sulfonylurea
receptor. Am J Physiol Endocrinol Metab 2005;289:E570–E577

42. Salehi A, Vieira E, Gylfe E. Paradoxical stimulation of glucagon secretion
by high glucose concentrations. Diabetes 2006;55:2318–2323

43. Ma X, Zubcevic L, Ashcroft FM. Glucose regulates the effects of leptin on
hypothalamic POMC neurons. Proc Natl Acad Sci U S A 2008;105:9811–
9816

44. Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N, Liu S, Wendt A, Deng S,
Ebina Y. Intra-islet insulin suppresses glucagon release via GABA-GABAA
receptor system. Cell Metab 2006;3:47–58

45. Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y.
Somatostatin induces hyperpolarization in pancreatic islet [alpha] cells by
activating a G protein-gated K� channel. FEBS Lett 1999;444:265–269

46. Licinio J, Mantzoros C, Negrão AB, Cizza G, Wong ML, Bongiorno PB,
Chrousos GP, Karp B, Allen C, Flier JS, Gold PW. Human leptin levels are
pulsatile and inversely related to pituitary-adrenal function. Nat Med
1997;3:575–579

47. Licinio J, Negrão AB, Mantzoros C, Kaklamani V, Wong ML, Bongiorno PB,
Negro PP, Mulla A, Veldhuis JD, Cearnal L, Flier JS, Gold PW. Sex
differences in circulating human leptin pulse amplitude: clinical implica-
tions. J Clin Endocrinol Metab 1998;83:4140–4147

48. Reddy S, Lau EM, Ross JM. Immunohistochemical demonstration of leptin
in pancreatic islets of non-obese diabetic and CD-1 mice: co-localization in
glucagon cells and its attenuation at the onset of diabetes. J Mol Histol
2004;35:511–519

49. Aiston S, Agius L. Leptin enhances glycogen storage in hepatocytes by
inhibition of phosphorylase and exerts an additive effect with insulin.
Diabetes 1999;48:15–20

50. Zhao AZ, Shinohara MM, Huang D, Shimizu M, Eldar-Finkelman H, Krebs
EG, Beavo JA, Bornfeldt KE. Leptin induces insulin-like signaling that
antagonizes cAMP elevation by glucagon in hepatocytes. J Biol Chem
2000;275:11348–11354

LEPTIN AND �-CELL FUNCTION

1624 DIABETES, VOL. 58, JULY 2009


