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Abstract
Soluble epoxide hydrolase (sEH) is a multifunctional protein encoded by the EPHX2 gene. The
biological functions and enzyme kinetics of sEH have been extensively investigated, however, little
is known about its transcriptional regulation and mechanisms of tissue specific expression. Here, a
luciferase gene based reporter assay was used to identify the minimal promoter and cis regulatory
elements of EPHX2. The minimal promoter was identified as a GC-rich region between nts −374 to
+28 with respect to the putative transcriptional start site. A reporter plasmid carrying this minimal
promoter showed higher or similar activities in comparison to a reporter plasmid carrying nts −5,974
to +28 of EPHX2 in 9 human cell lines that were tested. Sp1 binding sites that are involved in
augmenting the minimal promoter activity of EPHX2 were identified by nested deletion analysis,
site-specific mutation, electrophoretic mobility shift assay, and chromatin immunoprecipitation
assay.
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1. Introduction
Soluble epoxide hydrolase (sEH; E.C.3.3.2.3) is encoded by a gene, EPHX2, that is found on
human chromosome 8, region 8p21-12 [1]. EPHX2 has 19 exons that encode a mature protein
of 555 amino acid residues. In humans, sEH seems largely involved in the metabolism of
epoxyfatty acids. An example is the hydration of epoxy-eicosatrienoic acids (EETs) to their
dihydroxy eicosatrienoic acid derivatives (DHETs) [2,3]. EETs are important signaling
molecules derived from arachidonic acid through metabolism by cytochrome P450s (including
CYP2C8, CYP2C9, and/or CYP2J2) [4–7]. EETs have biological roles in cardiovascular
biology, renal function, inflammation response and pain [6,8,9]. The stabilization of EETs
through the inhibition of sEH has beneficial effects on blood pressure, reduction of
inflammation, and reduction of organ damage, and analgesia [10–16]. These results underline
the importance of sEH in human health.
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The biologically active form of sEH is a homodimer of two 62.5 kDa subunits [17]. sEH is a
bifunctional enzyme with epoxide hydrolase activity (C-terminal region) that acts on
epoxyfatty acids and a Mg2+-dependent phosphatase activity (N-terminal region) that acts on
lipid phosphates [18,19]. However, there may be other endogenous substrates, and the
biological role of the phosphatase activity is unknown [19]. sEH activity is highest in
mammalian liver and kidney [20–23], but it has also been found in many other tissues. In
humans and rodents sEH expression occurs in liver, kidney, lung, heart, gut, brain, placenta,
bladder, prostate, testis, spleen, skin, ovary, vascular endothelium, and some smooth muscle
[13,17,24–32]. Although the distribution and tissue-enriched expression of sEH have been
studied, the molecular mechanisms of sEH regulation are poorly understood. Several studies
have shown that sEH can be regulated by endogenous chemical mediators and by some
xenobiotics. 1) The sEH is induced by the administration of agonists of peroxisome proliferator
activated receptor alpha (PPAR-alpha) in rodents [23,31,33]. Most organisms appear to
respond to these agonists with a 2- to 3-fold increase in hepatic sEH activity. 2) Male mice
show 55% and 283% higher sEH activities in liver and kidney, respectively, in comparison to
female mice [31] suggesting the involvement of sex hormones in sEH regulation. Additionally,
ovariectomy increases sEH activities in both the liver and kidney of mice suggesting a
suppressive role of female sex hormones such as estrogen [31]. 3) sEH activity appears closely
tied to the renin-angiotensin system. Angiotensin II (Ang II) appears to increase sEH protein
levels and catalytic activity in rat renal cortical tissue [10]. Furthermore, Ang II has recently
been shown to directly upregulate EPHX2 expression [34]. 4) In humans, cigarette smoke
transiently reduces sEH activity in the lung [24]. 5) Exposure to gamma radiation (12 h)
increases the levels of EPHX2 mRNAs in human cell lines [35]. This increase appears to result
from NFκB induction. Interestingly, a splice variant of sEH that is found in mouse ovary shows
differences in epoxide hydrolase activity [32]. In this splice variant, the first 44 residues of the
N-terminal region are encoded by sequences that form part of the 2nd intron of the mouse
Ephx2 gene. This splice variant seems to have a role in ovarian function in mice. To our
knowledge, such a splice variant has not been found for the human EPHX2 gene.

In this study, we characterize the transcriptional regulation of EPHX2 by transient reporter
assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation
(ChIP) assay. A luciferase-based reporter assay was developed and used to determine the
minimal promoter of EPHX2 as well as enhancing and inhibitory regions that are found
upstream of EPHX2 in 9 different human cell lines. The identification of responsive elements
within the promoter of EPHX2 or cellular transcription factors that specifically interact with
these responsive elements may lead to novel drug targets for high blood pressure, inflammation,
and other diseases that are associated with sEH.

2. Materials and methods
2.1. In silico analysis and 5′-prime rapid amplification of cDNA ends (5′-RACE)

Sequence information of the 5′-flanking region of the EPHX2 gene was obtained from the
human genome database at the National Center for Biotechnology Information (NCBI,
http://www.ncbi.nlm.nih.gov/). EPHX2 is located on chromosome 8 of the assembled sequence
NT_023666. The computer programs Database of Transcriptional Start Sites (DBTSS,
http://dbtss.hgc.jp/) and Dragon GC+ Promoter Finder
(http://research.i2r.a-star.edu.sg/DRAGON/) were used to identify the putative transcriptional
start site of EPHX2. The GC content of the 5′-flanking region (nts −6,000 to +500 with respect
to the putative transcriptional start site) of EPHX2 was calculated on the basis of a 200 nts-
long, running window. The computer program CpG Island Searcher
(http://www.cpgislands.com/) was used to identify CpG islands within the 5′-flanking region
(nts −10,000 to +10,000) of EPHX2. The computer program Transfac
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(http://www.gene-regulation.com/) was used to identify potential binding sites of transcription
factors.

One μg of human liver total RNA (Stratagene) was used as a template to produce 5′-terminal
enriched cDNAs using a Smart cDNA Synthesis kit (Clontech). Universal primer A Mix,
supplied in the kit, and a gene specific reverse primer (5′-
TCCGGTCACTTTCTCCAGTTC-3′) were used to amplify the 5′-terminous of EPHX2. The
amplification was performed as follows: 94°C for 1 min, 63°C for 1 min, 68°C for 1 min for
25 cycles with KOD Hot Start DNA Polymerase (Novagen). The PCR product was ligated into
the pCR Blunt II-TOPO vector (Invitrogen), and the sequences of the cDNA inserts of 20
randomly isolated plasmids were determined (UC Davis Division of Biological Sciences
Sequencing Facility).

2.2. Cell cultures
The human cell lines used in this study are described in Table 1. Most of these cell lines were
generously provided as gifts. DU-145 [36] was obtained from Alan Epstein of the Keck School
of Medicine, Univ. of Southern California, Los Angeles, CA, USA and Gerald DeNardo of the
Univ. of California Health Center, Sacramento, CA, USA. SW480 [37]; Caco-2 [38]; 293T
[39] and HeLa [40]; and HuH-7 [41], ACHN [42], and SN12C [43] were obtained from Ken
Kaplan; Bo Lonnerdal; Martin L. Privalsky; and Robert Weiss respectively, all from the Univ.
of California, Davis, CA, USA. HepG2 [44] was purchased from ATCC (Manassas, VA, USA).
All of the cell lines were cultured in RPMI1640 medium (Mediatech) supplemented with 10%
fetal bovine serum (v/v) (BioWhittaker) under a 5% CO2 atmosphere at 37°C. The cells were
passaged at 90–100% confluency by washing with PBS and trypsinization (0.05% trypsin, 0.53
mM EDTA) for 3–5 min at 37°C prior to subculture. This trypsinization procedure was also
used to harvest cells for the luciferase-based reporter assay and sEH activity assay. Following
trypsinization, the cell suspension was centrifuged at 400 × g for 5 min at 5°C, and resuspended
in fresh RPM1640 medium.

2.3. Generation of reporter plasmid constructs containing the 5′-flanking region of EPHX2
In order to generate the reporter plasmids, nts −5,974 to +28 (−5974/+28 construct), nts −5,974
to −325 (−5974/−325 construct), and nts −374 to +28 (−374/+28 construct) of the 5′-flanking
region of EPHX2 were amplified by PCR and cloned immediately upstream of the firefly
luciferase gene in the pGL3-Basic reporter plasmid (Promega). PCR was performed with KOD
Hot Start DNA Polymerase in the presence of 5% DMSO according to the manufacturer’s
protocol. Genomic template DNAs were isolated from 1 ×107 HepG2 cells following standard
procedures [45]. Forward and reverse primers (F1: 5′-
CGCGGTACCCAAGGAGGGGAGAGAACACTGAGCATT-3′, F2: 5′-
CGCGGTACCGCATTCCAAGTCCAGCAAGT-3′, R1: 5′-
CGCCTCGAGACGCAGCTAACCTGGGAGAT-3′, and R2: 5′-
CGCCTCGAGCTTCCTGGACGGACTGACA-3′) were synthesized (Sigma Genosys) on the
basis of the sequence of the EPHX2 gene (GeneBank accession no. NM_001979). Restriction
endonuclease recognition sites (underlined) for KpnI and XhoI were incorporated into the
forward and reverse primers, respectively. Following PCR, the products were digested with
KpnI and XhoI and inserted immediately upstream (at the KpnI and XhoI sites) of the firefly
luciferase gene of pGL3-Basic. The −5974/+28, −5974/−325, and −374/+28 constructs were
generated using the primer sets F1+R1, F1+R2, and F2+R1, respectively. Additional reporter
plasmids, containing nested deletions or a point mutation of the −374 to +28 nts region of
EPHX2 were generated by PCR using the template DNAs and primers described in Table 2.
The authenticity of each of the constructs was confirmed by nucleotide sequencing.
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2.4. Luciferase activity assay
The human cell lines used in these assays are described above and in Table 1. Cells from each
of the human cell lines were seeded into 24-well tissue culture plates (Falcon) at a density of
5×104 cells/well, allowed to attach and recover for 24 h, and then transfected with 200 ng of
each plasmid using FuGENE6 transfection reagent (Roche). All of the transfections were
carried out according to the protocol provided by the manufacturer using 0.6 μl of the
transfection reagent per well. For each transfection, 4 ng of a control plasmid, pRL-CMV
(Promega), expressing luciferase of Renilla reniformis (renilla luciferase) under control of a
cytomegalovirus (CMV) promoter, was added as an internal control reporter. After a 48 h-long
incubation at 37°C, the cells were lysed with 100 μl/well (500 μl/well for 293T) of Triton Lysis
Buffer (TLB: 100 mM potassium phosphate, pH 7.8; containing 0.2% Triton X-100). The
luciferase assay was carried out by means of the Dual-Glo Luciferase Reporter Assay System
(Promega) using 20 μl of the cell lysate. Luciferase activities were determined using a Spectra
Fluor Plus microplate reader (TECAN). Firefly luciferase activity was normalized with respect
to renilla luciferase activity, and shown as relative luciferase activity (relative luciferase
activity = firefly luciferase activity/renilla luciferase activity). The transfection efficiency
(using pRL-CMV) of each cell line is shown as relative light units (RLU) of renilla luciferase
per 1 × 104 cells (Table 1). The Pearson correlation coefficient was used to determine
statistically significant correlations. This coefficient was determined using the computer
program R (http://www.r-project.org/).

2.5. sEH activity assay
sEH was released from 1 × 106 cells by sonication (Sonic Dismembrator Model 100, Fisher
Scientific) for 3 sec in 500 μl of cell lysis buffer (20 mM sodium phosphate, pH 7.4; 5 mM
EDTA; 1 mM DTT; 1 mM PMSF; and 0.01% Tween-20). Cell debris was removed by
centrifugation (10,000 × g) for 15 min at 4°C and the supernatant was stored at −80°C until
used. sEH activity was measured in a 100 μl reaction volume containing 0.05 mM of racemic
[3H]-trans-1,3-diphenylpropene oxide (t-DPPO) as substrate as described previously [46]. The
reaction mixture was incubated at 30°C for 30 min. The reaction was then quenched by the
addition of 60 μl of methanol, and 200 μl of isooctane was added in order to extract the
remaining epoxide from the aqueous phase. Parallel reactions were performed in which 1-
hexanol (200 μl) was used for extraction (instead of the isooctane) in order to measure potential
glutathione S-transferase activity which can also transform the substrate [46]. Diol (or
glutathione conjugate) in the aqueous phase was quantified using a scintillation counter (Wallac
Model 1409, Wellesley, MA).

2.6. Semi-quantitative RT-PCR
The cells were released from the washed culture dish by use of trypsin (0.05% trypsin, 0.53
mM EDTA) and subsequently washed three times with PBS (centrifugation at 1,000 × g for 5
min at 5°C). Total RNA was extracted from the cells using an RNeasy Mini kit (Qiagen). Total
RNA (1 μg) was converted to cDNA using Superscript II reverse transcriptase (Invitrogen).
The primers and the PCR conditions employed are as follows: GAPDH: 5′-
CAGCCTCAAGATCATCAGCA-3′ (sense) and 5′-TTCTAGACGGCAGGTCAGGT-3′
(antisense), EPHX2: 5′-GTGTTCATTGGCCATGACTG-3′ (sense) and 5′-
CTCAGTGACCATCCTGCTGA-3′ (antisense); 28 cycles composed of steps at 95°C for 30
sec, 55°C for 30 sec, and 72°C for 30 sec. The products of the PCR were separated on a 2%
agarose gel containing ethidium bromide and visualized with UV light. Relative mRNA
abundance was quantified by densitometry using ImageJ software (http://rsb.info.nih.gov/ij/)
with normalization to GAPDH (EPHX2/GAPDH).
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2.7. Electrophoretic mobility shift assay (EMSA)
EMSA was used to measure the ability of nuclear extracts to bind to nts −54 to −33 (Oligo 1:
5′-CAGGGCAGGGGCGGGGCAGAGC-3′), −74 to −47 (Oligo 2: 5′-
GTGTGGGGAGGAGGCGGGGCCAGGGCAG-3′), −86 to −64 (Oligo 3: 5′-
CCCGTTAAGGGGGTGTGGGGAGG-3′), or −102 to −80 (Oligo 4: 5′-
GGGCAGAGGGCGGAGTCCCGTTA-3′) of the 5′-flanking region of EPHX2. The single-
stranded oligonucleotides (Oligos 1 to 4 above) were labeled at the 3′-end with biotin (3′ End
Labeling kit, Pierce), then annealed to their respective antisense strands to form labeled double-
stranded DNAs. The binding reaction (20 min at room temperature) was carried out in a final
volume of 20 μl of binding buffer (10 mM Hepes, pH 7.5, 2.5 mM MgCl2, 50 mM NaCl, 0.5
mM DTT, 4% glycerol, 1 μg of poly dI-dC, 1 μg of BSA) containing the biotin-labeled probe
(20 fmol), with or without nuclear extract from the 293T cell line. The nuclear extract was
prepared with NE-PER Nuclear and Cytoplasmic Extraction Reagents (Pierce) according to
the manufacture’s protocol. In the supershift experiments, the nuclear extract was preincubated
with anti-Sp1 antibody (Santa Cruz Biotechnology) for 30 min on ice. DNA-nuclear extracts
and/or anti-Sp1 antibody complexes were separated on 6% nondenaturing polyacrylamide gels
and visualized by the LightShift Chemiluminescent EMSA kit (Pierce) following the
manufacturer’s protocol.

2.8 Chromatin immunoprecipitation (ChIP) assay
ChIP assays were carried out using a ChIP assay kit (Upstate Biotechnology) according to the
manufacturer’s protocol. 293T cells (1 × 106 cells) were seeded into 10 cm-diameter tissue
culture plates (Falcon) then incubated for 3 days after which the cells were crosslinked with
1% formaldehyde at 37°C for 10 min. Following fixation the cells were rinsed with ice-cold
PBS containing 1x complete, EDTA-free, protease inhibitor cocktail (Roche), then detached
from culture surface using a Teflon policeman, and then centrifuged (400 × g for 4 min at 4°
C) to pellet the cells. SDS lysis buffer (400 μl) was added to the cell pellet and the cells were
lysed by incubation for 10 min on ice. The lysate was sonicated 4 times for 10 sec (Sonic
Dismembrator Model 100, Fisher Scientific) in order break the chromosomal DNA into
fragments of less than 1 kb. This solution was then centrifuged using a microcentrifuge (10,000
× g for 10 min at 4°C) and the supernatant was diluted 10-fold in ChIP dilution buffer. The
diluted supernatant (20 μl) was used as the “Input” for immunoprecipitation and subsequent
PCR.

Immunoprecipitation was performed overnight at 4°C with 1 μl of anti-Sp1 antibody (2 μg/
μl) or 2 μl of control rabbit IgG (1 μg/μl). Immuno-complexes were isolated from the overnight
immunoprecipitation reaction by the addition of 30 μl of a salmon sperm DNA/protein A
agarose slurry (supplied in the kit), and incubation for 1 h at 4°C. The precipitates were washed
sequentially with 1 ml each of low-salt wash buffer, high-salt wash buffer, and LiCl wash
buffer, then twice with TE buffer. The immuno-complexes were eluted by adding 500 μl of
elution buffer (1% SDS, 0.1 M NaHCO3) and incubation for 15 min at room temperature. In
order to remove the DNA crosslinks, 20 μl of 5 M NaCl was added to the eluates and the
solution was heated at 65°C for 6 h. Following heating 20 μl of 1 M Tris-HCl (pH 6.5) and 2
μl of 10 mg/ml proteinase K, were added and the solution was incubated at 45°C for 1 h. The
released DNA fragments were purified with a Gel Extraction kit (Qiagen) in a final volume of
50 μl. The DNA fragments were used as a template for PCR using forward (5′-
GAGATTCTAGCCTGGGGTCC-3′) and reverse (5′-ACGCAGCTAACCTGGGAGAT-3′)
primers that amplified the −214 to +28 nts region of the 5′-flanking region of EPHX2. PCR
was performed following the semi-quantitative RT-PCR method described above for 28, 33 or
38 cycles of amplification. The resulting DNA was resolved on a 1% agarose gel and stained
with ethidium bromide.
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3. Results
3.1. Sequencing of the −5974/+28 construct

The nucleotide sequence of the 5′-flanking region of EPHX2 from the HepG2 cells (in the
−5974/+28 construct) was nearly identical to that found on human chromosome 8 nts 5,716,979
to 5,722,980 (GenBank accession no. NT_023666). There were three differences between our
sequence and the NT_023666 sequence. Our sequence had an extra CTCTT repeat at nt
5,719,222, and lacked T and CACACACA sequences at nts 5,721,164 and 5,722,557,
respectively.

3.2. Putative transcriptional start site of EPHX2
The transcriptional start site of EPHX2 was predicted by two methods: in silico analysis of the
5′-flanking region (to 5,974 nts upstream) and 5′-RACE. The Dragon GC+ Promoter Finder
program predicted transcription initiation at the first T in the sequence CTTCGC, i.e., nt
5,722,954 of the NT_023666 sequence. In contrast, DBTSS analysis of 210 human sEH-
encoding ESTs showed that transcription initiates at the first C (nt 5,722,953) in the CTTCGC
sequence in 40 of these ESTs (~20%); whereas, transcription initiates at the first T in CTTCGC
in only 2 of the 210 ESTs (<1%). In comparison, sequencing of 5′-RACE products identified
numerous 5′-prime ends, which corresponded to nts 5,722,945, 5,722,957, 5,722,968,
5,722,973, 5,722,977, 5,722,981, 5,722,997, and 5,722,999 of the NT_023666 sequence.
Consistent with these findings, multiple transcriptional start sites have been shown to be
associated with a TATA-less, GC-rich sequences [47,48]. In this study, transcription initiation
was predicted to occur at the first C of the CTTCGC sequence (nt 5,722,953) of the 5′-flanking
region of EPHX2.

3.3. Relative transcriptional activity of the 5′-flanking region of EPHX2
The in silico analysis of the 5′-flanking region (to 5,974 nts) of EPHX2 did not identify a
consensus TATA box or CAAT sequences. However, the in silico analysis did identify a 751
nts-long region (nts −344 to +407) with high GC content (~64%) near the predicted
transcriptional start site (Fig. 1). A CpG island was also identified around nts −291 to +507
(Fig. 1A). In order to test the in silico predictions, a transient expression assay based on a
reporter firefly luciferase gene was established. In the human liver cancer-derived HepG2 cell
line, the reporter plasmid carrying nts −374 to +28 of EPHX2 (−374/+28 construct) gave the
same relative luciferase activity as a plasmid carrying nts −5,974 to +28 (−5974/+28 construct)
indicating that the −374 to +28 sequence was the minimal essential promoter (Fig. 1B).
However, the relatively low transfection efficiency of HepG2 cells (i.e., only 1/160th the
efficiency of 293T cells, see below) made it difficult to measure relative luciferase activity
when reporter plasmids carrying DNA fragments shorter than the −374 to +28 region were
tested.

In order to identify a cell line which supported higher transfection efficiency and transcriptional
activity, 9 human cell lines (Table 1) were screened. Initially, endogenous sEH activity and
relative mRNA abundance of EPHX2 (Table 1) were measured in these cell lines under the
assumption that high sEH activity would directly correlate to high levels of EPHX2 mRNAs.
A good correlation (r = 0.73, p<0.05) was found between sEH activity and relative mRNA
abundance. All of the cell lines tested showed lower sEH activities in comparison to that
reported from a S9 fraction prepared from human kidney using the same t-DPPO substrate
(1,200 to 5,500 pmol/min/mg) [21]. Of the 9 cell lines tested, HuH-7 showed the highest sEH
activity (940 pmol/min/mg) and relative mRNA abundance (EPHX2/GAPDH = 0.99). sEH
activity was not detected in the SN12C cell line under the conditions used in this study, even
though the cell line showed low levels of relative mRNA abundance of EPHX2 (Table 1).

Tanaka et al. Page 6

Biochim Biophys Acta. Author manuscript; available in PMC 2009 June 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The ability of the −5974/+28 and −374/+28 constructs to induce relative luciferase activity
was tested in the 9 human cell lines in which sEH activity was screened (Fig. 2). No correlation
was found between sEH activity and relative luciferase activity of the −5974/+28 and −374/
+28 constructs {r = 0.32 (p = 0.4) and 0.04 (p = 0.9), respectively}. There was, however, a
weak correlation between sEH activity and the ratio of the relative luciferase activity of the
−5974/+28 construct with respect to the −374/+28 construct {(−5974/+28)/(−374/+28)} (r =
0.66, p = 0.05). The shorter −374/+28 construct showed the same or higher relative luciferase
activity in comparison to the longer −5974/+28 construct in 8 of the 9 cell lines tested (Fig. 2).
This suggested that the −5974 to −375 region may contain “inhibitory sequences”. In contrast,
the −5974/+28 construct showed 1.7-fold higher relative luciferase activity in comparison to
the −374/+28 construct in the HuH-7 cells.

The transfection efficiency (shown as RLU of renilla luciferase per 1 × 104 cells in Table 1)
of the pRL-CMV plasmid was more than 10-fold higher in 293T cells than in the 8 other cell
lines tested. Transfection efficiency in the 293T cell line was about 160-fold higher than that
of HepG2 cells.

3.4. Transcriptional analysis of the GC-rich region of the 5′-flanking region of EPHX2
The in silico analysis identified numerous potential cis-elements within the GC-rich region
(nts −400 to +20) of the 5′-flanking region of EPHX2 (Fig. 3). These potential regulatory
elements include c-Rel/NFκB, AP-1, and cMyc/Max1 elements, as well as 20 potential Sp1
binding sites. Sp1 sites are also referred to as GC boxes [49–51]. In order to identify functional
regulatory elements within this region, nested deletions were generated and the ability of the
resulting fragments to activate the firefly luciferase gene in pGL3-Basic was determined in
293T cells (Fig. 4). Reporter plasmids carrying nts −374 to −165 of the 5′-flanking region of
EPHX2 showed identical relative luciferase activities. Relative luciferase activity gradually
declined in reporter plasmids carrying shorter lengths of the 5′-flanking region (from nts −165
to −63). Relative luciferase activity was not detected in reporter plasmids containing less than
63 bp of the 5′-flanking region. Statistically significant (p<0.01) differences were found in
reporter plasmids carrying deletions of nts −165 to −155 (AP-1), −104 to −86 (Sp1), −86 to
−63 (Sp1), and −63 to −41 (Sp1s and cMyc/Max1). Potential regulatory elements found in
these regions are indicated within the parentheses.

3.5. Transcriptional regulation of the GC-rich region of the 5′-flanking region of EPHX2
Reporter plasmids carrying nested deletions of the 5′-flanking region of EPHX2 indicated that
the −165 to +28 nts region is important for transcriptional activity (Fig. 4). In order to test
whether specific regions within the −165 to +28 nts region were important for full promoter
activity, deletion of nts −104 to −87 or −63 to −42 from the −374/+28 construct were generated
(Fig. 5). The −374/+28Δ(−104/−87) and −374/+28Δ(−63/−42) constructs resulted in 20% and
40% reductions, respectively, of relative luciferase activity in comparison to the −374/+28
construct. Deletions of both regions, the −374/+28Δ(−104/−87, −63/−42) construct, resulted
in an 80% drop in relative luciferase activity. Deletion of the entire −104 to −42 region −374/
+28Δ(−104/−42) construct, also showed an approximately 80% drop in relative luciferase
activity (Fig. 5).

The results of luciferase reporter assay (Figs. 4 and 5) indicated that the −63 to −42 nts region
is essential for EPHX2 transcription. This 22 nts-long region contained or overlapped six
potential regulatory elements including four Sp1, one c-Myc, and one Max1 sites (Fig. 3). Only
the putative Sp1 site that starts at nt −47 showed complete identity to the Sp1 consensus
sequence GGGGCGGGGC [52]. Thus, reporter constructs, −63/+28TT and −374/+28TT, in
which the conserved Sp1 site was mutated from GGGGCGGGGC to GGTTCGGGGC were
tested in the luciferase reporter assay. No relative luciferase activity (p<0.01) was observed
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with the −63/+28TT construct, whereas, the −374/+28TT construct showed a 23% reduction
in relative luciferase activity (p<0.01) (Fig. 6). The transcriptional activity of the −374/+28TT
construct (5.4 ± 0.4) was slightly higher than that of the −374/+28Δ(−63/−42) construct (4.3
± 0.7), in which the Sp1 consensus sequence was completely removed (Fig. 5).

3.6. EMSA and ChIP assay
Electrophoretic mobility assays were performed in order to test whether the putative Sp1 sites
that are located within nts −102 to −33 of the 5′-flanking region of EPHX2 can bind to proteins
in the nuclear extract of 293T cells (Fig. 7A). On the basis of the supershift with anti-Sp1
antibody, Sp1 in the nuclear extract of 293T cells bound to nts −54 to −33 (Oligo 1), −74 to
−47 (Oligo 2), and −102 to −80 (Oligo 4). However, Sp1 appeared not to bind to a DNA
fragment containing nts −86 to −64 (Oligo 3). Additionally, ChIP assays were performed to
further test whether Sp1 binds to the EPHX2 flanking region (Fig. 7B). The chromosomal
DNA-protein complexes from 293T cells were specifically recognized by the anti-Sp1
antibody, and the subsequent PCR using a pair of oligonucleotide primers that targeted the
−214 to +28 region of the EPHX2 confirmed that Sp1 was binding to the Sp1 binding site
within this region.

4. Discussion
Soluble epoxide hydrolase is a key enzyme in the arachidonic acid pathway in mammals [3].
Inhibition of sEH has been associated with improvements in various disease models such as
high blood pressure, atherosclerosis, and kidney failure presumably by increasing EETs and
possibly other fatty acid epoxides [10,13,15,53,54]. On the other hand, our observations also
suggest that increased expression of EPHX2 could lead to cardiovascular diseases. In contrast
to the large body of work that has been done on the enzymatic properties and biological roles
of sEH, the transcriptional regulation and tissue-enriched expression of EPHX2 is poorly
defined. Here we characterize the essential and enhancing elements of the promoter of
EPHX2. Transcriptional repressors of EPHX2, analogous to compounds that inhibit enzymatic
activity, could be potential targets for therapeutic application. Alternatively, enhancement of
EPHX2 transcription may offer beneficial effects in certain cases [55]. For example, increased
EPHX2 transcription could reduce or inhibit angiogenesis that is caused by EETs in cancerous
tissues [56]. In agreement with this, sEH expression is generally reduced in human malignant
tissues [57]. Furthermore, a variety of lipid epoxides including both fatty acids and terpenes
[58] are excellent substrates for sEH. This suggests that sEH may catalyze other important
chemical mediators that are involved in disease induction.

The in silico analysis of the 5′-flanking region of the EPHX2 did not identify typical TATA or
CAAT box motifs. However, a GC-rich region was found between nts −374 and +28 of
EPHX2 (Fig. 1A). This approximately 0.4 kb-long region was found to contain the minimal
essential sequence for full relative luciferase activity (Fig. 1B). Androgen {e.g., GG(A/T)
ACANNNTGTTCT [59]} and PPAR-alpha {e.g., AGGTCA(A/T)AGGTCA [60] responsive
elements were not found in the 5′-flanking region (nts −5,974 to +28) of EPHX2. This was
somewhat surprising since PPAR-alpha agonist such as clofibrate[23,31,33] and testosterone
[31] have been shown to increase hepatic sEH activity in rodents. These response elements
may, however, be found in other regions or they may be different from the response elements
in rodents. Furthermore, there may be inherent differences between human and rodent models
such that the extrapolation of potential enzyme induction effects observed with PPAR ligands
in the rodent model to humans should be done with caution. These observations also illustrate
the need for similar reporter analysis systems for EPHX2 in rodents and other non-human
model species.
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Our analysis of the 5′-flanking region of EPHX2 indicated that the GC-rich region (−374 to
+28) of EPHX2 is involved in the basic transcriptional regulation of EPHX2. To further
evaluate the role of this region as a core promoter, we evaluated the ability of the −374/+28
construct to induce luciferase activity in 9 human cell lines. We found that the transfection
efficiency of these cell lines varied by more than 1,000-fold. Furthermore, correlations between
sEH activity and relative luciferase activity for each construct (−5974/+28 and −374/+28) were
not found. There was, however, a weak correlation (r = 0.66, p = 0.05) between sEH activity
and a ratio of the relative luciferase activity of the −5974/+28 construct with respect to the
−374/+28 construct {(−5974/+28)/(−374/+28)} (Fig. 2). These findings suggested that in
addition to promoter effects, tissue-enriched factors are also important. Additionally, these
findings suggested that the mechanisms of transcriptional regulation among these cells could
be different. Using the cell line (293T) with the highest transfection efficiency, we found that
the −165 to +28 nts region is the minimal sequence necessary for full luciferase activity (Fig.
4). Furthermore, luciferase activity gradually declined in reporter plasmids carrying shorter
lengths of the 5′-flanking region (from nts −165 to −63). This suggested that one or more of
the four regulatory elements located in this region {−165 to −155 (AP-1), −104 to −86 (Sp1),
−86 to −63 (Sp1), and −63 to −41 (Sp1s and cMyc/Max1)} are functionally active.

Transcriptional regulation of genes that are expressed under TATA-less promoters often
involves sequences that are found within GC-rich regions [48]. Sp1 binding sites are also
commonly located within CpG islands in order to maintain the appropriate methylation pattern
of downstream genes [61–63]. Through analysis of the minimal essential sequence (nts −165
to +28) required for full expression, we found numerous potential regulatory elements,
especially Sp1 sites in this −165 to +28 region (Fig. 3). We showed that nts −63 to −42 are
more important for EPHX2 transcription than nts −104 to −87 (Fig. 5). Electrophoretic mobility
assays also showed that Sp1 binds to nts −54 to −33, nts −74 to −47, and nts −102 to −80 but
not nts −86 to −64 (Fig. 7A). Furthermore, the ChIP assay showed that Sp1 binds to the −214
to +28 region of the EPHX2 (Fig. 7B). Only one completely conserved Sp1 consensus sequence
motif, GGGGCGGGGC (nts −47 to −38), was found within the −165 to +28 nts region.
Mutation of this sequence to GGTTCGGGGC resulted in a loss of transcriptional activity (Fig.
6). This suggested that in EPXH2, the Sp1 site immediately upstream of the putative
transcriptional start site is essential for expression. Because Sp1 expression is generally
ubiquitous [64] such a promoter system could explain the ubiquitous expression of sEH in
numerous tissues in mammals [17,20,21,23,25–30,65–67]. However, it does not explain the
regulation of EPHX2 by PPAR-alpha agonists and testosterone as predicted from in vivo
induction studies in rodents. As discussed earlier, this discrepancy could be due to the effects
of clofibrate and testosterone being indirect rather than direct, but it also could illustrate a
difference between man and rodents.

Ang II is known to increase sEH activity and sEH protein levels in kidney [10] and vascular
endothelium [34]. Ang II induces the promoter activity of EPHX2 in transient transfection
assays, through the binding of c-Jun to the AP-1 binding site of the promoter. These data tie
the regulation of sEH and EETs to the rennin-angiotensin dependent regulation of blood
pressure and inflammation [34]. The molecular basis of the high basal levels of sEH expression
in renal, hepatic and a few other tissues as well as its regulation by endogenous compounds
and xenobiotics awaits further work.
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Figure 1.
GC-content and putative minimal essential promoter analysis of the 5′-flanking region of
EPHX2. (A) GC-content (%) of the 5′-flanking region of EPHX2 from 6,000 nts upstream to
500 nts downstream of the putative transcriptional start site. A moving window of 200 nts was
used to calculate the GC content. The bar indicates a putative CpG island (−291 to +507). (B)
The minimal promoter sequence for expression of a reporter firefly luciferase (luc) gene in
HepG2 cells was found from 374 nts upstream to 28 nts downstream (−374/+28 construct) of
the putative transcriptional start site of EPHX2. The −5974/−325 construct lacks 352 nts (from
324 nts upstream to 28 nts downstream) of the −5974/+28 construct. The pGL3-Basic construct
contains no EPHX2-derived sequence. The transcriptional activity of these constructs is shown
in terms of relative luciferase activity (i.e., firefly luciferase activity/control renilla luciferase
activity). Error bars indicate the standard deviation of three independent experiments. The
arrow indicates the putative transcriptional start site of EPHX2.
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Figure 2.
Relative luciferase activity of two reporter constructs carrying 6.0 kb (−5974/+28 construct)
or 0.4 kb (−374/+28 construct) of the 5′-flanking region of EPHX2 in 9 human cell lines
(described in Table 1). The results are expressed as relative luciferase activity (i.e., firefly
luciferase activity/control renilla luciferase activity). The numbers above the bars indicate the
ratio of the relative luciferase activity of the −5974/+28 construct divided by that of the −374/
+28 construct. Error bars indicate the standard deviation of three independent experiments.
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Figure 3.
Nucleotide sequence of the 5′-flanking region of EPHX2 from −400 nts upstream to 20 nts
downstream of the putative transcriptional start site. The sequence corresponds to nts 5,722,553
to 5,722,972 of human chromosome 8 (GenBank accession no. NT_023666). The putative
transcriptional start site C is marked by +1 and indicated by a bold arrow. Numbers to the left
and right indicate nucleotides upstream (−) and downstream (+) of the putative transcriptional
start site. Putative transcription factor binding sites (Sp1, c-Rel/NFκB, AP-1, and c-Myc/Max1)
are indicated below the sequence. The 5′ ends of the nested deletions (−272 to −3) used in the
promoter analysis (see Fig. 4) are indicated by arrows above the sequence. The underlined text
indicates the oligonucleotides (Oligos 1 to 4) used for EMSA in Fig. 7A. The GG to TT
mutation site of the −374/+28TT and −63/+28TT constructs is boxed and indicated by bold.
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Figure 4.
Relative luciferase activity following transfection of human 293T cells with reporter plasmids
carrying nested deletions of the 5−-flanking region (from 374 nts upstream to 28 nts
downstream) of the putative transcriptional start site of EPHX2. The nucleotide sequence of
the 5′ ends of the nested deletions are shown in Fig. 3. The results are expressed as the relative
luciferase activities (i.e., firefly luciferase activity/control renilla luciferase activity). Error bars
indicate the standard deviation of three independent experiments. The number and relative
locations of the putative Sp1 binding sites within are shown to the left and bottom, respectively.
The arrow indicates the putative transcriptional start site.
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Figure 5.
Relative luciferase activity was measured following transfection of human 293T with reporter
plasmids carrying various deletions of the −374/+28 construct {−374/+28Δ(−104/−87), −374/
+28Δ(−63/−42), −374/+28Δ(−104/−87, −63/−42), and −374/+28Δ(−104/−42)}. The results
are expressed as relative luciferase activity (i.e., firefly luciferase activity/control renilla
luciferase activity). Error bars indicate the standard deviation of three independent
experiments. The arrow indicates the putative transcriptional start site.
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Figure 6.
Mutational analysis of the −374 to +28 and −63 to +28 nts regions of the 5′-flanking region of
EPHX2. Relative luciferase activity following transfection of human 293T with reporter
plasmids carrying GG to TT mutations of the −374/+28 (−374/+28TT) and −63/+28 (−63/
+28TT) constructs. The mutations are described in the text and shown in Fig. 3. The results
are expressed as relative luciferase activity (i.e., firefly luciferase activity/control renilla
luciferase activity). Error bars indicate the standard deviation of three independent
experiments. The arrow indicates the putative transcriptional start site.
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Figure 7.
EMSA and ChIP assay of the 5′-flanking region of EPHX2. (A) The electrophoretic mobility
shift assay was performed using biotin-labeled probes (Oligo 1: −54 to −33, Oligo 2: −74 to
−47, Oligo 3: −86 to −64, and Oligo 4: −102 to −80). Following incubation with nuclear extract
and/or anti-Sp1 antibody, the reaction was separated by 6% native PAGE. A 100-fold molar
excess of unlabeled probe was used in the competition assays. Arrows at the right indicate
DNA-nuclear extract complex (shift) or DNA-nuclear extract- anti-Sp1 antibody complex
(supershift). (B) The chromatin immunoprecipitation assay was performed using chromosomal
DNA fragments (Input) from 293T cells. Immunoprecipitation was performed with control
IgG or anti-Sp1 antibody. Following heat and proteinase K treatment, the released
chromosomal DNA fragments were used as template for PCR using primers that specifically
amplified the −214 to +28 region of the 5′-flanking region of EPHX2. The number of PCR
cycles is shown to the left.
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Table 2
Primers and templates used to generate the reporter plasmids

Primer (5′ - 3′)

F3: GGGCATAAGAGACTTTGGACTTT

F4: CGTTACATCCAGAGGCGAGA

F5: TCTGACTCCCTTTCCTGTGC

F6: TTTCCTGTGCCCCTCCCCC

F7: CCCCTCCCCCTGCCTCTTTC

F8: TGCCTCTTTCCCGGCCAGAG

F9: GCCAGAGTCCAGCCTTAACC

F10: CCGGGCAGAGGGCGGAGTC

F11: CCCGTTAAGGGGGTGTGGGG

F12: AGGCGGGGCCAGGGCAGG

F13: GGGCAGAGCCGGGCCAAG

F14: GCTGGGCGGGTCATGCGC

F15: TGGCCTTCGCGCATCTCCC

F16: GGGGGTGTGGGGAGGGGGCAGAGCCGGGCCAAG

F17: TCGGGGCAGAGCCGGGCC

R3: GGTACCTATCGATAGAGAAATGTTCTGGC

R4: GTTAAGGCTGGACTCTGGCC

R5: CCTCCCCACACCCCCTTAAC

R6: TTAACGGGGTTAAGGCTGGACTCTGGCC

R7: ACCTGCCCTGGCCCCGCC

Construct Primer set Template used

−272/+28 F3+R3 −374/+28

−230/+28 F4+R3 −374/+28

−165/+28 F5+R3 −374/+28

−155/+28 F6+R3 −374/+28

−146/+28 F7+R3 −374/+28

−136/+28 F8+R3 −374/+28

−123/+28 F9+R3 −374/+28

−104/+28 F10+R3 −374/+28

−86/+28 F11+R3 −374/+28

−63/+28 F12+R3 −374/+28

−41/+28 F13+R3 −374/+28

−24/+28 F14+R3 −374/+28

−4/+28 F15+R3 −374/+28

−374/+28Δ(−104/−87) F11+R4 −374/+28

−374/+28Δ(−63/−42) F13+R5 −374/+28

−374/+28Δ(−104/−87,−63/−42) F16+R6 −374/+28

−374/+28Δ(−104/−42) F13+R4 −374/+28

−63/+28TT F17+R7 −63/+28
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Primer (5′ - 3′)

−374/+28TT F17+R7 −374/+28
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