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After fluid resuscitation, vasoactive drug treatment represents the major cornerstone for

correcting any major impairment of the circulation. However, debate still rages as to the

choice of agent, dose, timing, targets, and monitoring modalities that should optimally be used

to benefit the patient yet, at the same time, minimize harm. This review highlights these areas

and some new pharmacological agents that broaden our therapeutic options.
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Haemodynamic optimization is a daily preoccupation in

the ward, emergency department, operating theatre, and

critical care unit. Optimizing tissue perfusion does not

simply mean improving arterial pressure, cardiac output,

or both, but rather delivering oxygen from the lungs to the

mitochondria in amounts adequate to sustain required

metabolism. However, the wide range of available thera-

peutic options and haemodynamic endpoints, in addition

to a relative dearth of compelling evidence as to best prac-

tice, drives impassioned debate and a variety of manage-

ment stratagems. Outside the cardiac arrest/arrhythmia

scenario, fluid resuscitation is universally accepted as the

usual first step of haemodynamic optimization. However,

the choice of fluid remains highly contentious. This par-

ticular topic is beyond the scope of our article, so the

reader is referred to recent articles32 47 81 94 106 arguing the

various pros and cons and reviews.12 87 This paper will

focus on vasoactive treatments, in particular pressors and

inotropes. However, rather than a drug-by-drug analysis,

for which in-depth pharmacological descriptions have

been reviewed elsewhere,45 53 104 119 we shall concentrate

on areas of continuing uncertainty. As much as selecting

the ‘best’ agent, it is also incumbent to discuss how best

use can be obtained from these drugs, recognizing they

carry a multitude of often covert side-effects.

Tissue perfusion: are we all talking the same
language?

An adequate supply of oxygen and substrate to mitochon-

dria that enables sufficient oxidative ATP production to

match metabolic demands can be considered the absolute

priority of the circulation.112 Consideration of the three

components of the oxygen delivery equation (cardiac

output, haemoglobin concentration, and arterial oxyhae-

moglobin saturation) allows the clinician to formulate an

appropriate management response in the face of a specific

cardiorespiratory problem. However, tissue oxygen deliv-

ery is a global measure and does not necessarily reflect

changes occurring within an organ bed, nor whether the

amount delivered is adequate for metabolic needs.

At the organ level, blood flow and perfusion pressure

are controlled by extrinsic factors, including neurological

(e.g. sympathetic innervation), biochemical (pH, PCO2,

and PO2), hormonal (renin–angiotensin system), and vaso-

active mediators (e.g. nitric oxide and prostaglandins).

Autoregulation represents intrinsic control, whereby affer-

ent arteriolar tone changes as a result of modifications in

perfusion pressure. However, organs do not behave in the

same fashion with regard to flow dependency. The kidney,

brain, and myocardium are considered to autoregulate

themselves (i.e. their regional blood flow is held constant

within an arterial pressure range). Consequently, below

and above these thresholds, organs may encounter

ischaemia or, conversely, a luxury perfusion that could

potentially increase oedema formation and jeopardize

perfusion.

Acute disease pathology can compromise normal

complex physiological responses so conventional concepts

such as autoregulation may not necessarily apply. For

example, septic shock is associated with increased spatial

and temporal microcirculatory heterogeneity,20 whereas

perfusion thresholds may be blunted.97 Age and chronic

diseases such as hypertension are also associated with cir-

culatory remodelling. As a consequence, little is known
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about the best perfusion pressure to target in an individual

patient, particularly one who is critically ill.

Which target, using what monitor?

Vital signs are the first available clinical indicators of well-

being in the ward or emergency department. Low arterial

pressure, tachycardia, impaired mental status, chest pain,

delayed capillary refill, decreased urinary output, or both

should trigger an urgent attempt to diagnose and correct the

impaired circulation. Yet even the apparently simple goal

of adequacy of arterial pressure is a matter of lively debate.

On the basis of normal human physiology and animal

studies,8 50 a mean arterial pressure 65 mm Hg has been

widely adopted as the minimum acceptable level.19

However, this takes no account of the individual’s pre-

morbid arterial pressure, as described earlier. Acute renal

insufficiency has been the most studied ‘failure’, owing to

its easily accessed parameters. Although initial studies

suggested benefit from maintaining higher arterial pressure

levels, especially in previously hypertensive patients,21 22 37 84

more recent reports demonstrate failure to improve clinical

outcomes through this strategy.10 52 Mean arterial pressures

of 60 mm Hg (or even lower) could be adequate in most

critically ill patients, as shown by Dünser and colleagues27

in a retrospective study of patients in septic shock. The

lower target did not worsen clinical outcomes, although

kidney function was compromised to some extent. Thus,

both global and regional circulations should be simul-

taneously considered, accepting the fact that current tools

do not lend themselves to monitoring of regional vascular

beds. Furthermore, there is a trade-off in terms of the

potentially harmful effect of the increased dose of vaso-

pressor needed to achieve higher values.

Arterial pulse pressure variation, an increasingly

popular tool for guiding fluid responsiveness, is also

subject to several crucial limitations that are frequently

overlooked, including the requirement for large tidal

volume,16 and possible confounding by the concurrent use

of PEEP, vasopressors,72 and the presence of arrhythmias

or any spontaneous breathing effort.

Similarly, the utility of central venous pressure (CVP)

monitoring is increasingly questioned, because static

measurements of filling pressure correlate poorly with

right ventricular end-diastolic volumes, and are poorly pre-

dictive of fluid responsiveness unless the CVP is low (,5

mm Hg).82 Furthermore, there is often a poor relationship

between right and left heart filling pressures, both in the

critically ill patient and those with chronic cardiorespira-

tory disease. More useful and valid information is obtained

from assessing the dynamic response in CVP to a thera-

peutic intervention such as a fluid challenge.

Central venous oxygen saturation (ScvO2
) has recently

gained attention as a monitoring modality, predominantly

through the work of Rivers and colleagues85 where

survival benefit was achieved through the use of a

threshold ScvO2
value of 70% as a primary target for the

early resuscitation of septic patients. This variable reflects

the balance between oxygen supply and demand to the

upper body, as it is usually sampled from the superior

vena cava. However, ScvO2
does not necessarily reflect

whole-body ‘mixed’ venous oxygen saturation measured

in the pulmonary artery.111 Increased values are often

encountered in established sepsis, and may reflect

increased microvascular shunting, metabolic shutdown

with decreased utilization of oxygen, or both.86

A range of continuous/intermittent cardiac output moni-

toring devices are now available, ranging from highly inva-

sive (the pulmonary artery catheter) to minimally invasive

(e.g. thoracic bioimpedance and transthoracic echocardio-

graphy), with numerous technologies (e.g. oesophageal

Doppler and calibrated/uncalibrated pulse contour analysis

systems) sitting in between. Each and every technique

carries its own inherent limitations, ranging from validity in

specific population subsets, reliability, ease of use, cost,

necessary expertise, and risk profile. As underlined by the

various non-protocolized multicentre pulmonary artery

catheter studies,40 41 92 99 placement of the monitoring tool

in itself does not directly affect outcomes. Even protoco-

lized studies9 67 failed to show outcome benefit in patients

in established organ failure, though a number of periopera-

tive studies have shown reductions in mortality, morbidity,

and hospital stay through the use of stroke volume or

oxygen delivery-targeted optimization.11 101 Clearly, how

and when the clinician uses the added information from

flow monitoring dictates the degree of accrued benefit.

The final monitoring modality to consider relates to tools

that can assess cellular well-being. This is the Holy Grail of

tissue perfusion monitoring, though, as highlighted above,

responses in different organ beds do vary. Specific bio-

chemical markers are released on organ injury, such as tro-

ponin or B-type natriuretic peptide for the myocardium,

and a variety of biomarkers for the kidney, including

urinary interleukin-18, plasma cystatin C, and plasma and

urinary neutrophil gelatinase-associated lipocalin.44 70 79 110

At present, plasma lactate, arterial base deficit, and mixed

venous oxygen saturation are the only biomarkers of whole-

body tissue perfusion, and these are neither particularly

specific nor, in some situations, sensitive. For example,

hyperlactataemia may represent an exaggerated aerobic gly-

colysis with excess production of pyruvate that is stimu-

lated by endogenous55 or exogenous66 catecholamines. A

high lactate level should thus not be considered automati-

cally as an indicator of a tissue oxygen debt mandating an

increase in systemic oxygen transport.

In which setting?

Context is crucial. For example, the inflammatory

response, fluid losses, and capillary leak occurring both
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during and after extensive major surgery will generally far

exceed those seen during minor surgery. Likewise, a

young, fit patient will generally tolerate a given insult far

better than a patient with severe co-morbid illness and

limited cardiorespiratory reserve. However, many contro-

versies remain; for example, the desirability of restrictive

vs liberal perioperative fluid regimens or the use of supra-

normal oxygen delivery targets.12 39 48 All aspects of the

patient, surgical procedure, illness, or both should be taken

into account, including iatrogenic factors that affect

oxygen delivery and consumption such as the use of blood

transfusion, sedation, mechanical ventilation, and tempera-

ture modulation. For example, oxygen consumption (VO2)

increases by 15% per 18C increase in temperature. During

cardiopulmonary bypass surgery, there is the added com-

ponent of non-pulsatile flow affecting tissue perfusion.63 78

To what benefit?

As described earlier, haemodynamic optimization has only

been shown to be beneficial in selected populations. The

concept of supranormal oxygen delivery was introduced by

Shoemaker and colleagues95 who proposed that supranormal

values of oxygen transport and consumption could result in

fewer postoperative complications. However, although this

practice benefits high-risk surgical patients56 115 117 and

those presenting with early stage sepsis,85 it proved singu-

larly ineffective38 or even harmful42 in critically ill patients

with established organ failure. This may relate simply to

timing. The failed organs may have moved into a phase of

metabolic shutdown as a consequence of prolonged inflam-

mation and mitochondrial dysfunction,1 and beyond the

point whereby restoring perfusion could reverse the organ

failure rapidly. In a retrospective analysis of their data,

Hayes and colleagues43 could identify specific patterns

relating to eventual survival or non-survival, with non-

survivors being unable to increase VO2 in response to

aggressive augmentation of oxygen delivery.

To what harm?

Vasopressors and inotropes are frequently used in serious

and often life-threatening situations. Catecholamines and

related compounds (e.g. phosphodiesterase inhibitors and

dopaminergic drugs) have long been the mainstay of such

treatment and have evolved as an integral part of patient

management with relatively little validation of comparative

safety and efficacy. The primacy of catecholamines has

only been challenged in recent years, particularly with the

utilization of agents from different classes, including vaso-

pressin and its longer-acting analogue terlipressin and, the

calcium sensitizer, levosimendan. Comparisons between

these different agents will be drawn in a later section, but it

is initially worth focusing on the harm these agents carry as

these may have a significant deleterious impact on patient

survival. Although tachyarrhythmias and digital, cardiac, or

mesenteric ischaemia are well-recognized side-effects of

catecholamine therapies, there are many other equally, if

not more, sinister complications.96 These include increased

myocardial work yet decreased metabolic efficiency,

increased oxygen expenditure,29 30 thermogenic effects,23 24

and cellular injury. Indeed, a standard laboratory model to

induce myocardial injury or damage is to infuse adrenergic

or dopaminergic agents. Reactive oxygen species gener-

ation also increases with catecholamine administration.

Neri and colleagues69 showed that even short-term adminis-

tration was associated with myocardial damage, cell death,

an initial increase in cytokine production followed by a

later decline, and reduced anti-oxidative defences.

Increased superoxide radical production was also shown

using norepinephrine in ex vivo heart preparations.89

Catecholamines also have effects on the splanchnic circula-

tion54 62 that may lead to ileus, malabsorption, stress ulcera-

tion,98 and deranged liver function.114 Numerous studies

have also demonstrated a thrombogenic effect through the

use of adrenergic agents.113

Further pernicious effects of catecholamines include

promotion of bacterial growth34 – 36 59 68 and accelerated

biofilm formation.59 Combined with their immunomodula-

tory properties74 – 76 106 107 108 116 that will vary depending

on dose and duration, this will markedly increase the risk

of nosocomial infection. Some studies suggest that

norepinephrine also impairs the energy metabolism of

human circulating monocytes, thus contributing to their

dysfunction.7 58

Catecholamines will also induce insulin resistance and

hyperglycaemia and stimulate lipolysis; these features are

all detrimental to outcomes in critically ill patients.109

Dopamine also has well-known hypophysial effects; even

low ‘renal’ doses can reduce the blood concentrations of

anterior pituitary-dependent hormones except cortisol

(e.g. prolactin),4 with consequent effects on immune

function.105

Remarkably, there have been relatively few randomized,

controlled studies of inotropes compared against non-

inotropic medical management. In two studies, the use of

different phosphodiesterase inhibitors resulted in worse

outcomes.14 15 A recent cohort revealed that perioperative

use of dobutamine in cardiac surgery was independently

associated with major cardiac morbidities31 while analysis

of a large registry of patients in decompensated heart

failure also revealed worse outcomes in patients given cat-

echolamines compared with nitrates, even after adjustment

for illness severity.2

Which drug?

Norepinephrine is currently recommended as the first-line

catecholamine for use in septic shock19 and haemorrhagic

shock.18 However, recent large-scale studies failed to
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demonstrate any superiority (alone or in combination with

dobutamine) over epinephrine, either in septic shock3 or

in ICU patient requiring vasopressor support for any

reason.65 66 There is also an increasing awareness of the

potential harm of catecholamines96 allied to studies in both

animal models and patients suggesting that, paradoxically,

beta-blockers can be used successfully to reduce sympath-

etic tone in sepsis.73 93 A variety of options have emerged

over the last decade that holds promise for the future.

Vasopressin’s story began more than a decade ago with

the recognition that low doses that would not affect

healthy people caused a profound vasopressor effect in

patients with inflammation. Numerous papers have

reported its use in septic shock,28 46 51 80 ischaemic and

postcardiotomy cardiogenic shock,64 vasodilatory shock,26

and in unstable brain-dead patients.13 Though the rationale

for the exogenous use of this hormone is based on the

concepts of relative vasopressin deficiency and altered bar-

oreflex sensitivity, there does appear to be increased sen-

sitization peripherally on V1 receptor-mediated calcium

signalling in vascular smooth muscle.6 Despite its

endogenous role as an antidiuretic hormone (acting on

renal V2 receptors), it improved urine output when given

to septic shock patients.80 The recent VASST study91 com-

paring norepinephrine and vasopressin failed to demon-

strate overall survival benefit from vasopressin; however,

the a priori defined subset with less severe shock did

show a statistically significant reduction in mortality. A

recent retrospective analysis of the VASST study database

suggested a beneficial synergy between vasopressin and

corticosteroids.90 An alternative to vasopressin is its syn-

thetic, longer-acting analogue, terlipressin, which has

greater specificity for the V1 receptor.77 The main safety

concerns regarding vasopressin and terlipressin relate to

excessive vasoconstriction causing ischaemia of limb

extremities, the heart, and the splanchnic circulation.

However, the complication rate was similar to norepi-

nephrine in the VASST study where only low doses of

vasopressin were used.

Nitric oxide is produced in excess in sepsis and other

shock states, including cardiogenic and haemorrhagic

shock. This causes excessive vasodilatation, vascular

hyporeactivity, and myocardial depression. A multicentre

study of a non-specific NO synthase inhibitor, L-NMMA,

in septic shock was terminated prematurely because of

increased harm.57 The same drug used in a multicentre

study of cardiogenic shock showed no benefit over

placebo.103 At present, a phase III trial of pyridoxalated

haemoglobin polyoxyethylene, a NO scavenger, is under-

way after promising results in a phase II trial.49

Levosimendan, the first of a new class of drug,100 is a

calcium sensitizer which increases stroke volume without

a corresponding increase in cardiac work.17 It also has a

peripheral effect on opening ATP-sensitive potassium

channels, causing vasodilation. Despite promising early

studies in patients with decompensated heart failure,33 71 83

a more recent trial failed to show outcome benefit.61

Importantly, levosimendan does enable ongoing use or

introduction of beta-blockade into this patient popu-

lation,60 suggesting superiority of levosimendan over

dobutamine. A preconditioning dose of levosimendan

improved outcomes after cardiac surgery102 while early

studies report its successful use in myocardial depression,5

splanchnic perfusion impairment,25 or renal failure118

related to sepsis. This likely relates to calcium desensitiza-

tion being a major mechanism of cardiac dysfunction in

sepsis.88 While a generally safe agent, hypotension has

been reported during initial bolus dose loading.

Conclusion

Many areas of uncertainty still exist about how to best

monitor tissue perfusion, what specific goals to target in

individual patients, and how to manage them optimally

with fluid and drugs. Our ever-increasing understanding of

underlying pathophysiology, coupled with the develop-

ment and investigation of novel techniques and drugs, will

undoubtedly result in improved treatments and outcomes.

In the meantime, we should remain cognizant of the

potential harm of our current therapies.
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