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Abstract
Computational molecular design is a useful tool in modern drug discovery. Virtual screening is an
approach that docks and then scores individual members of compound libraries. In contrast to this
forward approach, inverse approaches construct compounds from fragments, such that the
computed affinity, or a combination of relevant properties, is optimized. We have recently
developed a new inverse approach to drug design based on the dead-end elimination and A*
algorithms employing a physical potential function. This approach has been applied to
combinatorially constructed libraries of small-molecule ligands to design high-affinity HIV-1
protease inhibitors [M. D. Altman et al. J. Am. Chem. Soc. 130: 6099–6013, 2008]. Here we have
evaluated the new method using the well studied W191G mutant of cytochrome c peroxidase. This
mutant possesses a charged binding pocket and has been used to evaluate other design approaches.
The results show that overall the new inverse approach does an excellent job of separating binders
from non-binders. For a few individual cases, scoring inaccuracies led to false positives. The
majority of these involve erroneous solvation energy estimation for charged amines, anilinium
ions and phenols, which has been observed previously for a variety of scoring algorithms.
Interestingly, although inverse approaches are generally expected to identify some but not all
binders in a library, due to limited conformational searching, these results show excellent coverage
of the known binders while still showing strong discrimination of the non-binders.
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Introduction
The computational analysis of protein-ligand complexes is important in a number of fields.
Current methods allow binding sites to be located1 and natural substrates to be identified for
a given protein.2,3 They also permit the rational design of inhibitors, and in the future will
likely allow potential drugs to be screened for harmful side effects. Whilst these methods are
extraordinarily useful, a number of difficulties need to be addressed that limit current
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approaches. The scoring functions used to evaluate and rank compounds are approximate
and may be inapplicable to varied libraries of compounds.4 This can lead to predictions of
both false positives and false negatives. False positives are a problem in all computational
methods. However, whilst false negatives are not desirable, it could be argued that from a
design perspective they are less problematic than false positives, where the aim is to predict
a set greatly enriched in high-affinity compounds. Compound scoring is also inextricably
linked to conformational sampling, and inadequate sampling can limit the effectiveness of
these methods. Recent work from this laboratory has focused on the development of a
method for molecular design of inhibitors using an inverse approach with physical potential
functions.5 The approach considers a library of potential ligands created combinatorially
from a set of scaffolds and side groups. Each chosen scaffold is first placed systematically in
the binding site in many different acceptable conformations and orientations. All scaffolds
contain a number of attachable positions where side groups can be substituted, generally at
hydrogen atoms. Every attachable position is associated with a library of side groups, each
member of which exists as a set of discrete rotameric conformations. This problem framing
is analogous to that used for inverse protein design.6-15 We use a pairwise decomposable
energy function with the dead-end elimination (DEE)8,16 and A*13 algorithms to prune
poor scoring compounds and poses to produce an energetically ordered list of the best
computed binders. This ranked list is then re-evaluated using more sophisticated energy
functions, which need not be pairwise additive, yielding a set of compounds predicted to
bind tightly. This method has been applied to the rational design of HIV-1 protease
inhibitors, which have shown high affinity binding in experimental validation.5 Here we
evaluate the method using a test system, which has been used with other design approaches,
and look for problems and potential solutions.

Small engineered binding sites have proven very useful for the study of protein-ligand
binding. In the 1990s, a number of such sites were engineered. A hydrophobic binding site
was created in a stable mutant of T4 lysozyme, L99A.17,18 Ninety-one different compounds
were tested for binding affinity, providing information on the relative specificity of the site.
This data was then used in computational studies.19-21 Later work yielded a double mutant,
L99A/M102Q, that was able to bind small polar ligands.20,22 A charged binding site was
also created from the protein cytochrome c peroxidase (CCP) by a mutation near the active
site, W191G.23 The resulting pocket is buried within the protein close to the heme group
and was found to bind a variety of small, typically singly-charged ligands. The protein and
the binding site can be seen in Figure 1. This CCP mutant has been used subsequently to
examine binding specificity, both experimentally24 and computationally.25,26 This has
proven useful in identifying problems in molecular docking, in particular with the scoring
functions that are employed, but inverse design methods have, thus far, not been tested in
this way. The CCP site is particularly attractive due to the availability of large amounts of
data. There are forty-three known binders and thirty-five of these have been crystallized
with the protein at high resolution. Here we report the application of our inverse design
approach to the engineered W191G CCP site with a set of small-molecule scaffolds and side
groups. The aim was to identify areas in which the algorithm performs well and to find
deficiencies and potential remedies.

Materials and Methods
Parallel designs were carried out in unbound and bound structures of the CCP W191G site.
The unbound structure was from PDB ID 1CMQ23 at 2.30 Å resolution. The ligand-bound
structure in complex with pyridine-2,6-diamine was selected from PDB ID 2ANZ26 at 1.75
Å resolution. The relatively large ligand in the bound state yields a cavity that can
accommodate ligands of varying sizes. The use of unbound and bound structures permits the
evaluation of induced fit effects. However, we are more concerned with the results from the
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bound structure because the inverse design method would commonly be used with a ligand-
bound structure.

Preparation of protein structures
The two protein structures were then prepared as follows. Coordinates for the protein, the
heme, the iron, and all the water atoms were taken from the PDB. The ligand was removed
from the bound state. The protein and water hydrogen-atom positions were built using the
HBUILD facility of the CHARMM27 program package with the CHARMM22 energy
function. All asparagine and glutamine residues were then checked manually for potential
hydrogen bonding and analyzed by NQ-Flipper.28 For 1CMQ, residues Q20, N24, N208,
N220, Q240, and Q292 were altered by swapping the coordinates of the nitrogen and
oxygen atoms to improve the hydrogen bonding patterns. For 2ANZ, residues Q20, N24,
N208, Q240, and Q292 were altered. Histidine residues were checked for orientations and
protonation state in the same manner, which resulted in all being assigned as delta
protonated in each case and none being flipped. The residues lysine, arginine, aspartate,
glutamate, cysteine, and tyrosine were also analyzed in this manner to check their
protonation state. There was no evidence of any unusual protonation states and thus all
lysine and arginine residues were assigned as positively charged, all aspartate and glutamate
residues were assigned as negatively charged, and all cysteine and tyrosine residues were
assigned as neutral. In the ligand-bound structure 2ANZ, the active site water molecule 1000
was retained within the site, as it is tightly bound and is present in all known complexes.
This water was also retained in previous studies.25,26 In the unbound structure the retained
water is number 308. The heme group present in CCP contains a ferric iron atom but the
CHARMM22 heme parameters correspond to a ferrous iron atom. Calculations were thus
performed to determine the partial charges on the heme atoms in this case. Calculations were
performed on the entire heme group from the structure 2ANZ along with the iron-
coordinating water molecule (1415) and the iron-coordinating histidine residue His175
capped with an acetylated N-terminus and an N-methylamido C-terminus. Hydrogen atoms
were initially built using Gaussview.29 The partial atomic charges on the water and the
protein atoms were constrained to the standard CHARMM22 charges to prevent charge
transfer and then calculations were performed with Jaguar.30,31 The restricted Hartree-Fock
model and the 3-21G basis set was used for all the atoms except the iron atom, for which a
6-31G+ basis set was used to account for d-orbitals. The system was geometry optimized to
refine the hydrogen-atom positions and charges for the heme group were calculated using a
RESP fit.32,33 The hydrogen-atom positions were then rebuilt using HBUILD27, consistent
with the changes to the conformations of asparagine and glutamine residues. After
minimization of the hydrogen-atom positions, the resultant structures were then rotated into
a new coordinate frame and the protein atoms were assigned PARSE charges34 for use with
Delphi.35 Precomputations for a grid-based estimation of van der Waals and electrostatic
interactions were carried out. The methodology for creating these grids is discussed in
reference 5.

Scaffold and Side Group Preparation
The sets of scaffolds and side groups describing the chemical and conformational space of
potential ligands was constructed from a set of known binders and non-binders published by
the Shoichet laboratory based on work performed for this site.26 The data can be found at
http://shoichetlab.compbio.ucsf.edu/ccp_binders_decoys.xls and the structures are included
here as supplementary figures 1 and 2. Each molecule was stripped to a core plus a number
of side groups, yielding the scaffold shown in Figure 2. There were thirty-five core pieces,
and these were combined with the twelve side groups shown in Figure 3, to give a total of
5843 possible compounds. This scheme provided for the computational construction of
every binder and non-binder from the original data. Due to the combinatorial nature of
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ligand construction, some molecules not in the original data set and not previously
characterized were also modeled and studied here. Both the scaffolds and the side groups
were initially created using Gaussview29 with a hydrogen placed at each attachment site.
The molecules were then geometry optimized with Gaussian 0336 using the restricted
Hartree-Fock model employing the 3-21G basis set. The resulting structures were then re-
evaluated with a single-point Gaussian 03 energy calculation using the restricted Hartree-
Fock model with the 6-31G* basis set. The partial atomic charges were then assigned using
a RESP fit.32,33 Previous work has shown that this scheme performs well compared to
performing both the minimization and single-point calculation with the 6-31G* basis set.37
Protonation states were assigned as in previous studies.26 A systematic set of conformations
was created for each scaffold and for each side group by rotating each rotatable torsion angle
in increments of 30°. Van der Waals radii were scaled by 0.75 and each conformation where
the scaled radii of any two non-bonded atoms overlapped was discarded. For all of the work
with small molecules, CHARMm22 torsional parameters, van der Waals parameters and van
der Waals radii were used throughout.38 This yielded an ensemble of conformations without
steric clashes for the molecular building blocks of the chemical library.

Inverse Design Methodology
The general methodology for carrying out the design has been discussed previously5 and is
displayed as a flowchart in Figure 4. Here we will briefly sketch the approach and stress
differences from previous work. The first step was to define the active site. This was done
by defining a box encompassing the entire site and placing spheres at each grid point in a
grid within this box with a resolution of 0.25 Å. Any spheres overlapping with the protein
were removed from the grid and thus the resultant shape followed the surface of the active
site and limited where atoms could be placed within the design. This differs from previous
work in which the active site was defined by the coordinates of substrates. The next stage
involved creating van der Waals and electrostatic grids for grid-based energy calculations.
The scoring function employed in the combinatorial search procedure contains three primary
components, a van der Waals packing term, a screened electrostatic interaction term, and
desolvation penalties for both the designed ligand and the receptor. Grids for van der Waals
energies are computed by placing a particular parameterized CHARMM atom type at each
grid-point and computing its van der Waals interaction energy with the rest of the receptor.
This is repeated for every atom type. To derive the van der Waals binding energy for a given
molecule, the energetic contribution of each atom is calculated by trilinearly interpolating
energies from the surrounding eight points of the appropriate grid. The target shape, in
which the design is performed, is fixed throughout the combinatorial search portion of the
algorithm, and calculations of grid-based potentials for the evaluation of electrostatic
interaction and desolvation are performed using the linearized Poisson—Boltzmann
equation. As shown previously, the electrostatic component of the binding free energy given
a fixed shape for the bound and unbound states, fixed charges on the receptor, and a set of
basis points within the ligand can be written as the sum of the screened electrostatic
interaction term and desolvation penalties for both the designed ligand and the receptor.39
The basis points within the ligand are set to a regular cubic lattice and the electrostatic
binding energy of any molecule can be approximated by trilinearly projecting each partial
atomic charge to the grid points. This approximation estimates the electrostatic binding free
energy of the molecule within the target shape, rather than the correct molecular surface of
the ligand derived from radius parameters. Keeping the target shape constant allows for
precomputation at each grid-point and is the basis for the fast grid-based electrostatics and
solvation approximation.

In addition to van der Waals and electrostatic solvation terms, additional components of the
score during the combinatorial search include a bump check against the target shape,
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ensuring that any molecule outside it has an infinite energy, as well as functional group/
scaffold and functional group/functional group bump checks to ensure that designed
molecules are not self-intersecting. Bump checks were chosen over traditional molecular
mechanics internal energies because it is unclear when designing a small molecule how
much internal strain is paid upon synthesis rather than binding. In order to use existing
implementations of combinatorial search algorithms such as DEE and A*, the scoring
function must be pairwise decomposable in functional group conformation and identity. This
means that the total energy of a given scaffold with added functional groups consists of a
constant term, a sum over the self energy contributions of each functional group alone, and a
sum over contributions for each pair of functional groups. The constant term includes the
grid-based van der Waals and electrostatic binding energy of the blunt scaffold, as well as
the constant receptor desolvation term. The self energy for each attached functional group in
a discrete conformation is the grid-based van der Waals contribution for all atoms, and the
self electrostatic binding energy of the functional group can be computed through grid
projection. In addition to electrostatic interaction and self desolvation, the indirect
desolvation between the functional group and the scaffold must also be added to the self
energy. Any functional group geometry that fails a bump check with the scaffold or with the
shape is removed from further consideration in the combinatorial search. The contribution of
a pair of functional groups to the binding free energy only contains the indirect solvation
effects between them. If the two functional groups fail a bump check and clash, their pair
energy contribution is infinite. The pairwise energy decomposition presented above is
crafted such that the energy sums to same value as if the entire molecule, complete with
scaffold and functional groups, was evaluated with the grid-based van der Waals and
electrostatics/desolvation functions.

We used a van der Waals grid spacing of 0.125 Å and an electrostatic grid spacing of 0.5 Å.
A finer grid size was used for the van der Waals component because the potential varies
more rapidly in space and higher resolution was necessary to capture the steep repulsion
when an atom of the ligand approaches the protein. On the other hand, the electrostatic
potential is smoother and a lower resolution grid was sufficient. The van der Waals
component is relatively inexpensive to compute at finer resolution in comparison to the
Poisson--Boltzmann electrostatics. Each conformation of each scaffold was then subject to
systematic placement in the active site with a translational enumeration of 0.25 Å and
rotational enumeration such that the maximum arc length of atoms from the centroid swept
out a distance of 1.0 Å between orientations. Scaffold poses were discarded if their
calculated van der Waals binding energy was greater than zero or any two non-bonded
atoms 0.75 scaled radii overlapped. The DEE/A* algorithm was then run on the set of low
energy scaffold poses, which placed all side groups in all conformations and combinations
on each scaffold pose. The torsion joining the scaffold to the side group was enumerated at
10°. The rigid binding free energy was computed for all the species created with the low
resolution energy function detailed in Table I. This yielded an energy ranked list of
molecules with the guarantee that no solutions were missed. For every scaffold pose, only
the lowest-energy conformation of each particular designed molecule was retained. The
ranked list was then pared down to a computationally feasible size by applying an energy
cutoff. Compounds greater than 25.0 kcal/mol above the lowest energy result were removed.
However, every copy of each binder and non-binder was retained to provide an estimate of
binding affinity for each one. The resultant set of molecules was then re-analyzed using the
medium resolution energy function detailed in Table I. At this stage another energy cutoff
was applied and compounds greater than 15.0 kcal/mol above the lowest energy result were
removed. All binders and non-binders were again retained. This final set of molecules was
then evaluated using the two high-resolution energy functions, one of which includes a
geometry optimization using CHARMM.27 The minimization is performed on the ligand in
a rigid protein structure for 1,000,000 steps using the adopted basis Newton-Raphson
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method. Minimization did not radically alter any of the ligand conformations, with the
RMSD between the initial and minimized structures varying between 0.24 Å and 1.16 Å.
The exact details of these two energy functions can again be seen in Table I. These
calculations provided a predicted binding free energy for each known binder and non-binder
in both the unbound and the bound state as well as some molecules that have not previously
been reported. These predictions were then compared with experiment to assess the
enrichment power of the method.

Results and Discussion
The aim of this work is to assess the ability of the design methodology to accurately separate
binders from non-binders. We used a guaranteed discrete search method to systematically
examine poses and conformations of a selected set of scaffolds and combined these
combinatorially with a selected set of side groups to compute a binding free energy for all
the known binders and non-binders plus a new set of untested compounds. The analysis
presented here evaluates the ability of the method to accurately predict the structure of the
complexes and the ability to discriminate binders from non-binders. After analysis with the
four scoring functions, the results of all the compounds were compiled and the predicted
binding free energies are given for known binders in Table II and non-binders in Table III.

Results Overview
The calculated relative binding free energies of all the predictions were between 0 and -30
kcal/mol. These are not absolute binding free energy values due to neglect of some factors,
such as translational and rotational entropy. Forty-one of the forty-three known binders had
a predicted binding free energy better than -15 kcal/mol using the energy minimization
scheme in both the bound and unbound state structures. In both cases, the compound
indoline (B9) was removed from consideration during the scaffold placement stage because
its predicted binding free energy was greater than 0.0 kcal/mol. Repeating the design for
indoline with a translational interval of 0.1 Å and rotational interval of 0.5 Å caused the
scaffold to be retained and the minimization scheme predicted a binding free energy of -22.9
kcal/mol using the bound structure. For the compound quinoline (B41), no favorable
placements were found in either case, even with a translational interval of 0.1 Å and a
rotational interval of 0.25 Å. This molecule is the largest of the known binders and does not
fit within either of the sites tested using tractable searches with this method. Unfortunately,
the crystal structure with quinoline is unavailable for study. We made one deviation from the
protocol described above. The small molecules dimethylamine (N16) and methylamine
(N17) dominated the initial designs in the bound structure, with over 120,000 placements for
dimethylamine and over 90,000 placements for methylamine. This compares with
approximately 13,000 placements for the next most prevalent scaffold. This dominated the
design without providing significant new information about the algorithm; these two
compounds were thus analyzed separately with a translational interval of 0.5 Å.

As expected, the minimized energies were uniformly lower than the unminimized high
resolution energies. The mean difference is 2.5 kcal/mol, but differs by as much as 8.6 kcal/
mol in the case of indoline. This is a highly significant difference in this context and
suggests that the minimization scheme may be important to properly rank potential binders.
This is shown in Table IV and discussed later in this section. To illustrate the ability of the
method to place molecules correctly, Figure 5 shows the predicted and experimental
positions of 2,4-diaminopyridine (B6) bound within the site. The hydrogen bonding
interactions are well predicted and the search and energy function clearly are able to identify
good interactions. This undoubtedly contributes to the high scoring of the true binders.
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Enrichment for Binders
These results will now be analyzed to determine the ability of the algorithm to discriminate
binders from non-binders. This property is known as enrichment and is a highly desirable
ability for any design approach. Recent work suggests that a good way to examine
enrichment is with a receiver operating characteristic (ROC) curve plot.40 A ROC curve is
calculated by first ranking all the predicted compounds in order of increasing binding free
energy. Compounds are then selected in order from this list and the fraction of true positives
is plotted against the fraction of false positives. Figure 6 shows ROC curves for all four
scoring functions for the design in the bound structure. We chose to look at the bound
structure as this reflects how our inverse design method would usually be used. However,
the results for the unbound structure are very similar. The minimized high resolution scoring
is the best, but selects the non-binder 4-aminosorcinol (N3) very early, causing worse
enrichment scores of intermediate compounds. 4-aminosorcinol is discussed later in this
section. Despite this, the minimization scheme is best able to partition the data into binders
and non-binders. Using a cutoff of -16.5 kcal/mol, the predicted set of binders contains
forty-two binders and only three non-binders, which is very good enrichment and compares
favorably with previous studies.22 However, also consistent with other studies was an
inability to reproduce the experimentally determined binding affinities. The set of known
binders has been experimentally tested24,26 and covers a narrow range of affinities
(Kd0.006 mM to 4.1 mM). Unfortunately, currently used scoring functions yield predicted
affinities that do not correlate well with experimental affinity41 and this is also the case
here. It is interesting to note that the energies predicted using the unbound structure of the
CCP mutant (1CMQ) yield very similar results to the bound structure (2ANZ). The R2

correlation between the predictions is 0.895. In this case there are no major conformational
changes upon binding and relatively little induced fit in the great majority of complexes.
However, it is important that the design methodology is not sensitive to slight differences in
structure.

We also assessed the importance of the SASA and desolvation terms by calculating ROC
curves for the set of predicted binders and non-binders with lowest total energy excluding
first the SASA term and then the desolvation term (data not shown). The enrichment without
the SASA terms yields an identical ROC curve and the enrichment without the desolvation
term slightly alters the order of some binders and non-binders but essentially has the same
enrichment power. This is an interesting result as it suggests that these terms may be
unnecessary in this particular case. However, it is expected that both SASA and desolvation
terms would be significantly more important in analyzing molecules of differing sizes and
charge distributions and thus must be included in this scoring function.

Electrostatics vs. van der Waals Interactions
Previous computational protein design work employing a similar set of energy functions
found that the predicted electrostatic contribution to binding affinity correlated better with
the experimental binding free energies than did the predicted total interaction.15 The van der
Waals contribution was actually misleading, enriching for bulkier groups at the expense of
smaller but more electrostatically optimal groups. We evaluated whether this finding also
applies in this case by plotting the enrichment using only the predicted electrostatic binding
free energy (data not shown). However, in this case the total binding free energy provides a
slightly better enrichment, although the electrostatic contribution alone is nearly as good.
This may reflect the difference between analyses at large, solvated protein interfaces and
within small, buried binding sites. Figure 7 shows a plot of the total electrostatic portion of
the binding free energy against the total non-electrostatic portion. It is interesting to note that
the total electrostatics free energy shows excellent discrimination between binders and non-
binders. This finding contributes to an ongoing discussion about the relative importance of
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terms within physical energy functions, such as the one employed here. The question is still
open, and requires experimental evidence and computational analysis to inform the debate.

Accuracy of Structural Predictions
We also tested the ability of the method to correctly predict the pose of each ligand in the
binding site, by comparison of the energy minimized structure with the actual crystal
structure. We chose to use two metrics for this purpose. The first is the root mean squared
deviation (RMSD) of the heavy atom positions for the predicted and crystal structure atom
positions. In all but one case (2ANZ), the crystal complexes are not the same as the
structures used to generate the results. We thus aligned each structure with the test structure
using the McLachlan algorithm42 as implemented in the program ProFit
(http://www.bioinf.org.uk/software/profit/). The alignment was performed on only protein
backbone atoms, but the entire protein and all heteroatoms, including the crystallographic
ligands, were rotated. The rotated ligands could then be used as a reference to compare with
the predictions made by the design method. The RMSD of the protein backbone atoms had
an average of 0.26 Å with a maximum of 0.87 Å. We also used another metric which is
perhaps more applicable to the methodology. We termed this the distance matrix similarity.
This value was calculated by taking the crystal structure and flagging all contacts between
protein and ligand atoms that are below a defined distance (5.0 Å in this case). The same
pair distances were then measured for the predicted protein-ligand complex. The similarity
was defined as the RMSD of these inter-atomic distances for all contacts. This metric
assesses the similarity of the contacts made by the ligands and helps to avoid the problem of
comparing predictions in non-native structures. Both metrics are given in Table II. The
metrics are highly correlated, with a regression coefficient of 0.964, but there are a few
deviations. The most significant is the case of benzimidazole (B40), where the similarity
metric is lower than expected. Analysis shows that this is due to a major loop repositioning
that accommodates the large ligand. A similar rearrangement may also be important in
allowing quinoline (B41) to bind. The alignment of predicted structures and crystal
structures for all thirty-five compounds with available data are shown in Figure 8. The
majority of compounds were predicted well, with RMSD values below 2.0 Å. The RMSD
results from inverse design were very similar to those obtained by docking in a previous
study.22 However, in that case each ligand was docked into its own crystal structure, which
is likely to improve results.

Sampling Resolution
To examine the effect of sampling, we repeated the design with an increased translational
interval of 0.5 Å. This led to a reduced run time for the algorithm but the results highlighted
a problem. Unsurprisingly, indoline and quinoline were again removed at the scaffold
placement stage; additionally, six known binders were present within the initial results but
with poor energies (compounds B3, B15, B20, B33, B39, and B40 in Table IV). The
predicted binding free energies were also predicted to be poor at both medium and high
resolution. However, using the energy minimization scheme, these compounds recover
improved interactions and then eventually score very well. Within a normal design,
compounds predicted to be so poor at medium resolution may be eliminated and not be
analyzed at the high resolution of detail. These six compounds could thus have been lost.
This is again due to the large size of these molecules and thus difficulty in placing them
within the binding site. Finer sampling of conformational space, while computationally more
expensive, produces better recovery of known binders and is expected to provide better
coverage in new discovery projects.
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Structural Orientation Recovery
Despite the successes using the inverse design method, there are a common set of problems
that led to less accurate structural predictions. These include ring flips that interchange
carbon atoms with heteroatoms and neglect of structural waters that are relevant for some
ligands. Compounds B12, B15, B25, and B31 illustrate the recovery of a ring-flipped
version of the correct structure (Figure 8). Examination of these cases shows that the correct
orientation is always a viable structure but commonly has a computed affinity that is 2-3
kcal/mol worse than the incorrect orientation. These energy differences arise mainly from
van der Waals interactions. Analysis of these results suggests that sampling is not the
problem and that it is likely the van der Waals potential, particularly involving sulfur, is
responsible.

Structural Water
The structures for compounds B18 and B43 were both not well predicted due to the presence
of structural water molecules observed in their co-crystal structure that were absent in the
designs. Figure 9 shows the crystal structure and predicted positions for 1H-imidazol-2-
ylmethanol (B18). The actual pose has three good hydrogen bonds, one with a structural
water molecule. Our calculations did not include this water and the molecule makes one
good and two poor hydrogen bonds, one which is made by the water in the true structure.
The effect of structural water molecules on predicted ligand binding geometry has been
recognized as an important issue in molecular design, along with the role of induced fit and
binding site relaxation. We have recently developed a method for placing structural water
molecules during the design process.43 When this methodology was applied to this case, the
algorithm was able to find the correct placement for the ligand and the water molecule, as
shown on the right of Figure 9. The predicted binding free energy is -22.8 kcal/mol
compared to -21.5 kcal/mol when using the normal design scheme. The RMSD of the ligand
is 0.55 Å compared to 2.82 Å with the normal design scheme. This shows that structural
discrepancies can result not from a problem with the sampling scheme or scoring function
directly, but due to a neglect of structural waters. This is not an uncommon problem, but one
that can be solved with inverse design methods as shown here, albeit at some computational
cost.

False Positives
Having analyzed the results for how well the algorithm is able to discriminate binders from
non-binders, it is useful to look at the cases when it makes errors. In each case, the lowest
energy minimized score is taken as the prediction of the binding free energy. There are four
non-binders we will analyze in this way. The molecules methylamine and dimethylamine are
both predicted to bind very well using this method, due to favorable van der Waals and
electrostatic interactions. The issue here is likely an inadequate desolvation penalty. Both
molecules are highly charged and may well form strong hydrogen bonds with the solvent.
The continuum electrostatic treatment used to compute the ligand electrostatic desolvation
penalty may not accurately treat this effect. The errors for methylamine and dimethylamine
could also be attributable to these relatively small molecules not adequately filling the active
site and thus leaving vacuous space when bound. One other issue that arises is with the
molecule toluene (N2), which is a known non-binder but is grouped with the binders based
on its computed affinity of -18.2 kcal/mol. In this case the difficulty may be an assumption
of the model, that binding takes the ligand from a fully solvated state to a bound state.
Toluene is only very sparingly soluble in water (approximately 0.53 g/L) and is unlikely to
be dissolved and dispersed in water. The prediction that toluene has a better interaction with
the protein than with the solvent may well be correct, but it is still not a true binder and may
adopt an incompletely solvated unbound state. The most problematic compound is the non-
binder 4-aminosorcinol (N3). In its protonated form it is predicted to have a binding free
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energy of -26.2 kcal/mol. This is only 3 kcal/mol worse than the compound with the lowest
predicted energy. The experimental binding affinities in the original study were determined
at pH 4.5 and pKacalculations with Jaguar suggest that the nitrogen atom will be protonated
below pH 6.1. However, we performed calculations on the unprotonated version of 4-
aminosorcinol as a test. The predicted binding free energy in this case is -17.5 kcal/mol, still
placing it in the category of predicted binders. This compound also appeared to cause
consternation when it was first tested and was predicted then as a binder.26 A likely
explanation for the problem with 4-aminosorcinol is a poorly predicted desolvation penalty.
It is known that atomic charges for amines calculated by commonly employed quantum
mechanical (QM) methods44,45 can lead to estimations for hydration free energies that vary
as much as 5.0 kcal/mol from experiment37 or by as much as 8.4 kcal/mol for charged
amines and anilinium ions.46 One of the three incorrectly predicted non-binders in this test
set contains a charged amine group and one contains an anilinium ion and two phenol
groups. Predictions of hydration free energies are also poor for phenols37. Recently
reparameterised force-fields such as OPLS-AA47 and GROMOS48,49 have proven more
effective at dealing with solvation calculations for neutral amines. We thus made predictions
of the electrostatic portion of the desolvation energy for ammonium (NH4+),
methylammonium (MMA+), dimethylammonium (DMA+), trimethylammonium (TMA+),
anilinium, and phenol using partial atomic charges from Gaussian,36 PARSE,34 and OPLS-
AA.47 The calculations were performed using one solvated calculation and one vacuum
calculation with a salt concentration of 0.145 M. The experimental desolvation energies
were taken from a previous study.50 The desolvation cavity terms were calculated by
multiplying the molecular surface area calculated using CHARMM by the empirical
constant 0.005 kcal/mol/Å2.51 The results in Table V show that the Gaussian scheme used
in this work (highlighted in italics) is not especially accurate at predicting the solvation
energies for phenol or charged amines, and this is particularly true for anilinium. These
problems are compounded for the molecule 4-aminosorcinol, which might be construed as
consisting of two phenols and one anilinium and could thus be underpredicted by over 13
kcal/mol. The OPLS-AA charges perform better than the Gaussian charges but are still
inaccurate for the anilinium ion. The PARSE charges do poorly at dielectric 4 but very well
at dielectric 2, though they were parameterized at dielectric 2. The Gaussian scheme also
performs better at dielectric 2. This result is initially promising but unfortunately does not
solve the problem. When the calculations on 4-aminosorcinol were repeated using a
dielectric value of 2, the results predict very similar binding free energies (-26.2 kcal/mol
compared with -27.2 kcal/mol at dielectric 4) due to the balance between desolvation
penalty and the electrostatic interaction.

A number of difficulties clearly remain with the design methodology, as four false positives
are predicted amongst the set of binders. The issue of solubility can be addressed relatively
easily by estimating the water solubility of each predicted binder. There are many accurate
techniques designed for this purpose.52 This issue of correctly predicting desolvation
penalties for phenols, charges amines and anilinium ions is more problematic and cannot be
easily solved with our current methodology. In future studies, it would be beneficial to flag
such troublesome groups and fix the problem with a more empirical method. However, that
is a non-physical solution and this study again highlights the need for more accurate
modeling of these species, for improved scoring functions and greater enrichment in drug
discovery.

New Predicted Binders
Despite problems with a few individual compounds, the majority of predictions are
excellent. It is thus useful to look at the compounds designed for which experimental data is
not present. Defining the cutoff for binding as -16.5 kcal/mol, there are 17 new compounds
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predicted (Table VI). Many of these predictions seem sensible, in that they exhibit similarity
with known binders. Compounds K and N contain three and four nonmethyl rotatable bonds,
which might decrease the affinity of these compounds. Cyclopentane (Q) is also predicted as
a binder due to favorable van der Waals and hydrophobic interactions. However, like
toluene, it may have solubility issues that diminish its binding in water. Compound P
contains two phenol groups and based on what we have learned in this study, we might
perform further analysis on this molecule before fully classifying it as a predicted binder.
Compounds H, L, and M are all 2-thiolimidazole derivatives and are unlikely to be
protonated at pH 4.5 and are thus likely to be non-binders, like their parent compound. This
highlights the importance of pKa values and pH of binding assays. This is another problem
that can be addressed relatively easily by analyzing the suggested binders using post-
processing techniques to predict protonation states.52,53 However, care must be taken when
making these predictions, as protonation states are known to change upon binding54 and this
may markedly affect affinity. Despite these issues, the remaining eleven compounds contain
no protonated amines, phenol groups, or anilinium groups, which have been problematic,
and are excellent predictions for true binders. This analysis highlights some of the lessons
we have learned in this study and how they can be used to eliminate false positives.

Conclusion
We have recently developed a molecular design approach that employs the DEE and the A*
algorithms to design potential inhibitors for drug discovery. The aim of this work was to
investigate the performance of the algorithm by assessing its ability to score and rank a set
of known binders and non-binders. The extensive experimental data available for this system
allowed us to identify cases where the algorithm performed well and cases where it
performed less well, with the aim of making further improvements. The study highlighted a
number of issues with the process of separating binders from non-binders.

The first issue is with sampling. It is clear that to capture compounds that bind well, they
must be placed favorably within the binding site. The number of true positives increased
with increased sampling and to capture all the known binders required a translational
interval of 0.25 Å. In cases such as dimethylamine and methylamine where this generated
too many placements to feasibly search, new techniques will be required to prune the
solutions found to a reasonable size, whilst retaining enough to ensure good coverage of the
space.

The second issue involves subtleties with the scoring function used. The low, medium, and
high resolution functions all do a good job of predicting binding proclivity, but minimization
is often able to find significantly better poses in many cases. Our results show that a
combination of a fine level of sampling and a hierarchical energy function can yield
excellent results. For the work here, the minimization scheme led to further improvement.
Using this, we were able to select a set of the top scoring compounds, which included forty-
two of forty-three binders and only three non-binders. This is an excellent enrichment.

The third issue is with the scoring of charged amines, anilinium ions, and phenols. Previous
studies have shown that it is difficult to correctly model the solvation of these molecules and
to predict their affinity for this site. Most analyses conclude that the problem is due to
incorrectly estimated partial charges and that this is a result of the failure of commonly used
QM methods in this particular case. Calculations have shown that the errors in solvation can
be miscalculated by up to 8.4 kcal/mol for charged amines. This is a large enough error to
account for the misclassification of dimethylamine and 4-aminosorcinol as binders.
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The study also highlights the importance of two other issues that have been identified by
others previously. Firstly, it may be important to make an estimate of the solubility for any
predictions made. A compound may have a good predicted binding energy and truly fit the
steric and electrostatic requirements of the site but be too insoluble in water to actually
qualify as a binder. In this case, toluene (N2) may be misclassified for this reason. Secondly,
it is important to ensure that molecules are assigned the correct protonation states. The
binding free energy of a neutral molecule and its charged state may be markedly different.
This is shown here computationally by the difference between predicted binding energies for
4-aminosorcinol (-17.5 kcal/mol) and its protonated state (-26.2 kcal/mol). The problem is
also highlighted by the prediction of protonated analogues of 2-thiolimidazole as binders. 2-
thiolimidazole is not protonated and is a non-binder. However the design creates it by
combining imidazole, which is protonated, with a thiol side chain.

The design method detailed in this paper also performs well when compared to other
methods tested using this site. Direct comparison of enrichment is not possible due to
differences in approach, but the enrichment is very good, as it was in the previous study26.
Recovery of the crystal structure pose yields predictions which are very similar to previous
studies, with an average RMSD of 1.09 Å compared with 1.04 Å25,26 and 1.06 Å.26
However, it should be noted that the approach used here uses a discrete rather than
continuous search and is tailored for enrichment rather than structural recovery.

From the results of this study, it can be concluded that the approach used for searching
conformational space and for compound scoring is generally very good and can provide
excellent enrichment, despite problems with a few individual compounds. It is encouraging
that inverse design methods can perform as well as forward design methods in enriching for
true binders and recapitulating known binding modes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The cytochrome c peroxidase mutant W191G from PDB ID 2ANZ. On the left is a ribbon
diagram with alpha helices in red and beta sheets in green. The heme group, the ligand 2,6-
diaminopyridine and the conserved active site water molecule (1000) are displayed as atom-
colored sticks. The active site is highlighted in a black box. The active site is shown in more
detail on the right. The ligand is displayed as atom colored ball and sticks and the water
molecule plus residues H175, L177, M230 and D235 are displayed as atom colored sticks.
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Figure 2.
The set of scaffolds used to describe potential ligands. The letter R represents the positions
on the scaffold at which side groups can be attached. Scaffolds with no R group represent a
single ligand.
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Figure 3.
The set of side groups used to describe potential ligands. The R represents the position
where each side group attaches to the scaffold.
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Figure 4.
Outline of the inverse design scheme displayed as a flowchart.
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Figure 5.
The compound 2,4-diaminopyridine (B6) bound with the CCP mutant, showing the
important binding site residues named in black and interactions in green. The
crystallographic ligand is displayed as thin yellow sticks and the predicted ligand and active
site water oxygen are displayed as atom colored sticks.
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Figure 6.
A ROC curve plot of the false positive rate against the true positive rate for the selection of
binders and non-binders. The low, medium and high resolution energy functions are colored
red, yellow and green respectively. The minimization scheme is colored blue. The diagonal
dotted black line represents a random selection.

Huggins et al. Page 21

Proteins. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
The sum of the electrostatic interaction and desolvation terms plotted against the sum of all
the non-electrostatic terms for every binder in green and non-binder in red. The line of
constant total energy for the highest scoring compound (-27.63 kcal/mol) is shown as a
constant black line and the line of constant energy for the cutoff (-16.50 kcal/mol) is shown
as a black dotted line. Four non-binders are highlighted by black circles and named in red.
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Figure 8.
Predicted positions for the known binders (thick wire) and the actual crystal structure
positions (thin wire). The molecule number and PDB ID are given in each case.
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Figure 9.
The compound 1H-imidazol-2-ylmethanol (B18) bound with the CCP mutant in the 2ANZ
crystal structure with the lowest energy predicted position using the standard design scheme
(left) and the lowest energy predicted position using the new structural water design (right).
The important binding site residues and interactions are shown. The true water molecule is
shown as a red dot in both figures, although it only exists in the crystal structure. The
predicted water molecule is shown as a green dot in the right picture.
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Table III

Predicted binding free energies for known non-binders.a

Compound
ID

High Resolution Score
2ANZ (kcal/mol)

Energy Minimized
Score 2ANZ (kcal/mol)

Energy Minimized
Score Apo
(kcal/mol)

N1 −8.34 −12.45 −11.80

N2 −16.10 −18.19 −17.08

N3 −22.76 −26.24 −23.57

N4 −11.49 −13.15 −11.27

N5 None None None

N6 −11.30 −14.91 −14.45

N7 −11.95 −12.03 −10.34

N8 −6.87 −13.99 −16.01

N9 −15.58 −16.50 −14.03

N10 −14.24 −15.92 −14.43

N11 −11.04 −11.48 −11.05

N12 −10.77 −11.12 −14.89

N13 −4.36 −9.66 −12.17

N14 None None None

N15 −9.98 −9.70 −9.70

N16* −18.64 −19.59 −19.16

N17* −14.67 −15.05 −14.90

a
The high resolution energy score and the energy minimized score are shown. dimethylamine (N16*) and methylamine (N17*) were studied using

a translational interval of 0.5 Å.
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