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Abstract
Replica exchange accelerated molecular dynamics (REXAMD) is a method that enhances
conformational sampling while retaining at least one replica on the original potential, thus
avoiding the statistical problems of exponential reweighting. In this paper we study three methods
that can combine the data from the accelerated replicas to enhance the estimate of properties on
the original potential: weighted histogram analysis method (WHAM), pairwise multistate Bennett
acceptance ratio (PBAR), and multistate Bennett acceptance ratio (MBAR). We show that the
method that makes the most efficient use of equilibrium data from REXAMD simulations is the
MBAR method. This observation holds for both alchemical free energy and structural observable
prediction. The combination of REXAMD and MBAR should allow for more efficient scaling of
the REXAMD method to larger biopolymer systems.

Introduction
Free energy is the driving force behind biochemical problems of great importance, from
drug binding to protein function. A computational approach to free energy calculation
affords complete control over the system and method, as well as atomistic detail of the
results. The use of computational free energy calculation can theoretically provide free
energies for very specific processes that are difficult to isolate in experiment. Among the
necessary conditions for accurate free energy prediction are accurate sampling and efficient
use of the collected data.

The sampling of computational molecular dynamics has been practically limited due to the
topography of the potential energy surface, which requires femtosecond timesteps when
propagating the system, and the in the case of biopolymers, sampling many isolated regions
of the potential energy. These issues mean that a large number of molecular dynamics steps
need to be computed in order to simulate systems with micro-to millisecond relaxation
times, but the most heroic brute force approaches have yielded only tens of microseconds.1–
3 Accurate sampling can also be achieved through methodological developments that
increase the sampling efficiency. For example, temperature replica exchange molecular
dynamics (TREMD) has enjoyed a surge in popularity following the seminal publication of
Sugita and Okamoto.4 TREMD overcomes local energy barriers by simultaneously
simulating the dynamics of a set of non-interacting systems at different temperatures.
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Conformations sampled at high temperatures are more likely to overcome conformational
barriers and exhibit higher sampling efficiency than low temperatures. The sampling
efficiency passes between replicas through periodic Metropolis Monte Carlo attempts, which
retain the detailed balance of the system. Despite the advantage of conformational exchange
between temperatures, TREMD increases the energy of all degrees of freedom instead of
activating those specifically important to conformational sampling.

Hamiltonian modification schemes selectively modify the system potential energy and can
greatly enhance sampling over TREMD.5 For example, by applying a harmonic bias along a
reaction coordinate of interest, umbrella sampling increases the number of conformations
sampled local to the bias minimum.6,7 Accelerated molecular dynamics (AMD), on the
other hand, typically applies a bias along the dihedral degrees of freedom, decreasing the
potential barrier between states while retaining the general shape of potential basins.8
Unlike umbrella sampling AMD does not require prior knowledge of the reaction
coordinate, although parameterization of the amount of bias should be done to optimize the
acceleration. AMD has been used to reproduce NMR residual dipolar couplings, measures
of molecular motion on up to the millisecond time scale, in the third IgG-binding domain of
protein G.9 Despite the promise of AMD to increase the computational efficiency of
conformational sampling, each observable must be exponentially reweighted in order to
recover the unbiased ensemble average, which Shen and Hamelberg showed yields large
statistical uncertainties when applying to highly accelerated simulations.10

In order to increase the statistical efficiency of AMD we recently developed a replica
exchange accelerated molecular dynamics (REXAMD) scheme, which combines the
selective activation of accelerated molecular dynamics and replica exchange.11 The
resulting Hamiltonian replica exchange simultaneously simulates the dynamics on potentials
of varying acceleration instead of varying temperature. We previously demonstrated the
effectiveness of REXAMD for alchemical free energy calculations of small model systems.
11 These free energy calculations only used the ∂V/∂λ values sampled from the ground, or
unaccelerated, state. This analysis strategy makes no use of data generated in the accelerated
states and limits the computational efficiency of the method as a result. Furthermore, the
computational efficiency will decrease as the system size increases because the number of
replicas required for an efficient replica exchange will increase.12 In order to mitigate this
decrease in computational efficiency we will briefly introduce and compare the performance
of three methods of recombining multi-state data from REXAMD simulations: WHAM,
MBAR, and PBAR.

The most widely used method to combine different biased simulations and produce an
estimate of the unbiased result is the weighted histogram method (WHAM).13 Central to
this approach is the definition of an observable of interest, for example ∂V/∂λ. The bias from
each of the multiple states is removed through an exponential reweighting of the biased
probability density function of the observable. These unbiased probability density functions,
one from each state, are then combined in a weighted sum at each value of the observable
subject to the constraints that the weighted variance be minimized and the weights
normalized. The WHAM formulation has been extended to REXAMD and applied to
combine the (φ, ψ) distribution from accelerated potentials during a REXAMD simulation,
yielding the unbiased (φ, ψ) distribution of various oligopeptides.14 While making use of
the data generated in accelerated states improves the computational efficiency of the
REXAMD method, WHAM suffers from an inherent systematic bias that plagues all
histogram methods. The bias arises when the probability density of the observable varies
greatly over the interval spanned by the bin, an observation rigorously derived by Kobrak.15
Decreasing the bin width attenuates the problem, but increases the statistical error of the
histogram of the simulation data used to approximate the population density. The optimal
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bin width that balances these two effects should be found for each specific system, but the
effects are always present.

The pairwise multistate Bennett acceptance ratio method (PBAR) method developed by
Maragakis et al. extends the maximum likelihood derivation of the Bennett acceptance ratio
method to handle multiple pairs of states simultaneously.16 The PBAR method is applicable
to both equilibrium and non-equilibrium work data and requires that the work data between
different pairs of states be independent. The independence criterion is a practical limitation
when applying the PBAR method to the equilibrium samples generated from REMD
simulations; the total amount of samples per state Ni must be split into independent samples
for each pair of states Nij, thus reducing the statistical quality of the estimates. The PBAR
method was validated on a gas-phase alchemical mutation of a capped amino acid simulated
using TREMD and showed considerable precision and accuracy from a large data set (360
ns).

Shirts and Chodera developed a different multistate Bennett acceptance ratio method
(MBAR).17 The MBAR approach requires equilibrium samples from each state and the
energy of each sampled structure at every state. This lends itself naturally to a REMD
approach when the temperature or Hamiltonian modification is straightforward and
computing the energy of a structure at the different states is easy. In extreme cases post-
processing of the equilibrium samples to compute the energy at different states can be
expensive, such as when a soft-core alchemical potential is used.18,19 The MBAR analysis
uses all of the equilibrium data for each pair of states, and therefore should scale better with
the number of states than the PBAR method for equilibrium simulations. Validation was
performed by constructing the potential of mean force of the extension of a DNA hairpin in
an optical double trap from different constant force trajectories.

In this paper we will first describe the analytical model system and REXAMD simulation
scheme. The WHAM, PBAR and MBAR techniques will be discussed in further depth,
highlighting the main equations and practical implementation. The performance of WHAM
and MBAR will then be compared against the previous ground state approach. The MBAR
and PBAR methods will then be compared, and finally the extension of MBAR to
computing equilibrium structural properties will be investigated.

Model System and Methods
A simple, analytically solvable model system provides a wealth of information against
which to compare the simulation performance. We selected a linear four-atom molecule
(pseudo-butane) with no van der Waals or electrostatics forces, leaving the dihedral angle as
the sole degree of freedom. There are two stable conformations at ± 90 degrees (p-form and
m-form, respectively) with different relative depths shown in Figure I. The alchemical
change progressed from the dominant p-form to the dominant m-form according to a linear
scaling of the potentials (Equation 1), and due to the symmetry of the endpoints the
alchemical free energy change is zero. The energetic barrier between the two conformations
is at least 8 kcal/mol for all λi, and thus requires aggressive acceleration in order to generate
an equilibrium distribution.

Equation 1

The REXAMD simulations have four states each, ranging from un-accelerated (s00) to an
acceleration that results in a completely flat potential energy surface along the torsional
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degree of freedom (s03). The exchange rate between these states is higher than 50%, and
thus efficient mixing of the replicas occurs on a very short timescale.20 The exchange
period of the REXAMD simulations is 1 ps and the simulations are coupled to a 300K
Langevin thermostat with a collision frequency of 50 ps−1. The instantaneous energy and
dV/dλ values are taken from the exchanging structures. Systems corresponding to the
endpoint lambda values (0.0 and 1.0) as well as the lambda values corresponding to a five-
point Gaussian quadrature (0.04691, 0.23077, 0.50000, 0.76923, 0.95309) were simulated
for five nanoseconds, and each λi REXAMD simulation was run four times.

The WHAM method applied to REXAMD relies on unbiasing the probability densities of a
specific reaction coordinate for each state j through exponential reweighting (Equation 2).

Equation 2 is exact in the limit of zero bin width, but  must be approximated by a
finite bin width histogram of the observable Q. Kobrak showed analytically that the
discretization of a continuous observable Q required by WHAM results in a competition
between systematic and statistical error.15 In the formalism of WHAM for REXAMD the

systematic error arises from the approximation of the  and  from

a finite bin width and increases with increasing bin width. The discretized  and

 are estimated from histograms of the sampled data, which introduces a

statistical error that decreases with increasing bin width. The  from each state are
then combined according to Equation 3 with a set of weights wj (Q) that minimize the
variance at each Q. These conditions result in a set of self-consistent equations that can be
iterated over until the desired level of precision is achieved (Equation A15 in Reference 14).

Equation 2

Equation 3

The MBAR method is rooted in the identity given in Equation 4 (Equation 5 in Reference
17) where qi(x) and qj(x) designate the un-normalized probability density functions of the
configuration x in states i and j respectively, αij(x) is some arbitrary function, Zi and Zj are
the configuration integrals from state i and j respectively, and Γ indicates that the integrals
are evaluated over all configuration space. Approximating the expectation values as discrete
averages of equilibrium data and summing over all states results in a set of K estimating
equations (Equation 5), where K is the total number of states and Ni is the number of
structures sampled at state i. The details of the selection of the function αij(x) are outside of
the scope of this paper, but the selection exhibits the lowest variance of common
reweighting estimators.17,21 The solution of Equation 5 yields estimates for the partition
function Zi of each state.

Equation 4
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Equation 5

The Python implementation of MBAR, PyMBAR (https://simtk.org/home/pymbar), was
used for all MBAR analysis. The statistical uncertainty of the free energies and expectation
values are based on an estimate of the asymptotic covariance matrix of the provided data,
which requires an uncorrelated dataset. Correlation can be removed from the molecular
dynamics data by subsampling the original data set at an interval greater than or equal to the
equilibrium relaxation time of the molecular dynamics system. For this work we used the
subsampling technique implemented in PyMBAR.17

The PBAR method extends the maximum-likelihood derivation of the Bennett acceptance
ratio to multiple states. The log likelihood (Equation 6) involves the Fermi function f(x)=1/
(1+ex)of the instantaneous work values between states Wij,, the free energy between states
ΔFij, and the constant Mij = kBTln(Nij/Nji) that accounts for a different number of samples in
the forward and reverse direction. The instantaneous work Wij is defined as the difference in
potential energies of a specific configuration at states i and j, and these work values must be
independent for Equation 6 to hold. This requires that a structure xni pulled from an
equilibrium simulation of state I can only be used to calculate the work to go to a single
other state. The entire set of xni must be separated into K non-overlapping sets of xnij, which
greatly reduces the number of data points per state pair ij compared to MBAR.17 The log
likelihood has well defined derivatives and thus any optimization method can be used to find
the set of Zi that maximizes the likelihood function. We implemented the PBAR method in
Python using a gradient descent optimization. In order to estimate the statistical uncertainty
of the PBAR method the PBAR calculation was repeated multiple times using random
subsets of the provided work data and we report the average and standard deviation of the
results.16

Equation 6

Combining Multistate Information for TI
The first application of the REXAMD method to alchemical free energy calculations used
the instantaneous dV/dλ values taken from the un-accelerated, or ground state, to compute
〈dV/dλ〉λi for use with Gaussian quadrature thermodynamic integration (Equation 7).11 The
ground state only represents 1/N of the total data, where N is the number of replicas per
REXAMD, and therefore a significant fraction of the data is never used. Multiple REXAMD
simulations at each λi are then used to estimate the statistical uncertainty of the TI Gaussian
quadrature calculation. This was previously referred to as the reweighted runs strategy, but
we will refer to this approach as TI-GS (Ground State) in this paper. The five-point
Gaussian quadrature 〈dV/dλ〉λi from the four combined runs are summarized in Table I. The
analytical results are not within the estimated statistical uncertainty of the TI-GS values, so
there is room for the multistate methods to show improvement.
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Equation 7

In TI-WHAM the four replicas of a REXAMD simulation at a specific λi are combined to
estimate 〈dV/dλ〉λi. The instantaneous dV/dλλi values were separated into 8000 bins, which
gave the optimal estimates of 〈dV/dλ〉λi. We then calculated the unbiased probability density
function of dV/dλλi and subsequently the 〈dV/dλ〉λi shown in Table I. The WHAM estimates
of 〈dV/dλ〉λi deviate strongly from the analytical results, and are actually worse than the TI-
GS estimates. The steep curvature of the population density of dV/dλλi (not shown) forces a
narrow bin width, which in turn increases the statistical error of the histogram
approximation leading to a poor estimate of the biased probability density function and
eventually 〈dV/dλ〉λi. The high accuracy of the computed free energy change from TI-
WHAM is an artifact of using a symmetric alchemical change, and cannot be expected in
realistic systems.

The Individual Lamda TI-MBAR also uses the four REXAMD replicas for each λi to
compute 〈dV/dλ〉λi. This is exactly equivalent to the TI-WHAM method in the limit of zero
bin width and should exhibit less bias.17 The 〈dV/dλ〉λi in Table I show improvement over
both the TI-GS and TI-WHAM results, and are very close to the analytical results. The
combined TI-GS result is calculated with four duplicate simulations of five nanoseconds
each, resulting in a total of 20,000 structures per 〈dV/dλ〉λi. The Individual Lambda TI-
MBAR runs utilize the four REXAMD states of five nanoseconds each for a similar 20,000
structures per 〈dV/dλ〉λi, and yield results that are quite comparable to the combined TI-GS
result (Table II). In other words, these results imply that Individual Lambda TI-MBAR is
able to calculate 〈dV/dλ〉λi to a comparable accuracy as TI-GS with only a quarter of the data
required by TI-GS.

A more efficient use of the data is to simultaneously use all four states from all five λi and
thus utilize 100,000 structures per 〈dV/dλ〉λi. This All Lambdas TI-MBAR performs very
well when considering the four individual five nanoseconds runs, but really shines when all
four runs are combined (Table II). It is noteworthy that the MBAR estimate of the statistical
uncertainty for a relatively low number of data points, namely the individual runs of All
Lambdas TI-MBAR, is too low to account for the offset of the calculated free energy from
the analytical result. An increase in the number of samples used does correct this, but this
effect should be studied further to gain confidence in the MBAR uncertainty estimate as it
applies to larger systems.

Direct Multistate Free Energy Estimates
The TI-MBAR method was helpful in comparing the advantage of MBAR over TI-WHAM,
but the PBAR and MBAR methods were developed to directly estimate the free energy
difference between states. The λi endpoints (0.0 and 1.0) need to be simulated in order for a
direct estimate of the free energy difference from MBAR and PBAR, and the results in
Table III include data from all seven λi. The addition of the endpoint data improves the
combined runs TI-MBAR result from +0.002 ±0.006 to -0.002 ±0.005 kcal/mol. The direct
MBAR method shows slightly better accuracy and precision than TI-MBAR for all of the
runs as well as the combined data set. The performance gain of MBAR relative to TI-MBAR
is expected to increase with the system size as the bias inherent the Gaussian quadrature
process will be more evident in complex, non-symmetric alchemical changes.
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Interestingly, the direct MBAR method also outperforms the PBAR results. Shirts and
Chodera predicted that because the PBAR method requires independent sets of work values
between each pair of states MBAR would make better use of equilibrium data.17 To get
independent sets of work values the Ni samples per state must be distributed into Nij sets that
will be used to calculate the instantaneous work to go from state i to state j. With K total
states and Ni structures per state each Nij can have at most Ni/K structures, and for large
values of K the decrease in the number of available data points relative to the equilibrium
number ni is large. For example, the four replicas and seven λi used in the model system
PBAR calculation result in 27 pairs of states ij for a given state i. The 27 pairs of states
reduce the 5000 Ni structures to only 185 Nij structures. In order to better use the equilibrium
data set Maragakis et al. suggested repeating the PBAR analysis with different random
subsets Nij and reporting the average and standard deviation.16 The average should be
recovered with this method, but due to the small number of Nij in each PBAR calculation the
standard deviation can be expected to be significantly higher in PBAR than MBAR, which is
observed in Table III.

The MBAR Subsets results follow the procedure outlined above for sampling random
subsets of the total Ni structures and reporting the average and standard deviation. The size
of Ni for each MBAR Subset was limited to same size required by PBAR (185 for the
individual runs, 740 for the combined runs), although for MBAR to work properly it must
use the same 185 structures from Ni for each pair of states ij. The MBAR Subset results are
comparable to the PBAR results, showing that the increased precision of the direct MBAR
method is indeed due to the more efficient use of equilibrium data.

Equilibrium Conformations
The REXAMD method is not limited to free energy calculations, and has been used for
determining equilibrium structural properties in conjunction with the WHAM method.14
The calculation of expectation values using MBAR instead of WHAM should avoid the bias
introduced by discrete binning during the reconstruction process.15,17 The MBAR method
naturally computes equilibrium expectation values, and this can be extended to computing
population histograms and potential of mean force for observables. Figure II illustrates the
distribution of the model system’s dihedral angle from a single simulation at λi= 0.5 where
the potential energy surface is symmetric. The five thousand structures from the ground state
method (Figure II) show an overpopulation of the p-form. All four REXAMD states at λi =
0.5 can be used to generate the unbiased probability density histogram using WHAM. The
result does show a higher degree of symmetry than the ground state method, but the
systematic error introduced by the large bin widths causes the result to deviate strongly from
the analytical result. Decreasing the bin width does reduce this effect (data not shown), but
finding the optimal bin width to balance the systematic and statistical errors can be difficult.
15 If instead all four states of all seven λi are used by MBAR to compute the population
histogram the probability density the analytical result is completely recovered (blue in
Figure II). This finding reiterates the benefit of using MBAR over WHAM when combining
equilibrium distributions from different biases.

Many important equilibrium conformational analysis techniques can be expressed as
expectation values, and thus would greatly benefit form the combination of REXAMD and
MBAR. For example, the covariance matrix and the related principal components analysis
and quasi-harmonic entropy (for the mass-weighted covariance matrix), which are very
sensitive to sampling, are defined in terms of expectation values (Equation 8). The root
mean squared deviation and the root mean squared fluctuation are also expectation values
that are frequently used in conformational analysis.
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Equation 8

Conclusion
All REMD methods require an increasing number of replicas as the system size increases,
and it becomes important to make efficient use of all of the replica data and not just the data
at the desired temperature or acceleration. We set out to determine the best way to combine
the biased data from REXAMD simulations to improve the accuracy of free energy
calculations and structural analysis. The performance of WHAM and MBAR at computing
〈dV/dλ〉λi from multiple acceleration states at specific λi was compared to 〈dV/dλ〉λi from the
ground state (no acceleration). TI-WHAM performed worse than the TI-GS, and this result
was discussed in light of the competing errors when selecting the WHAM bin width. The
Individual Lambda TI-MBAR, which is comparable to TI-WHAM in terms of number of
structures used to compute each 〈dV/dλ〉λi, was very close to the analytical result. The
asymptotic covariance matrix estimator was not able to cover the offset from the analytical
results and indicates that MBAR will underestimate the statistical uncertainty when used
with a relatively low number of samples. The All Lambdas TI-MBAR represented the most
efficient method of calculating 〈dV/dλ〉λi with MBAR given the five intermediate λi and with
this amount of data the estimates of 〈dV/dλ〉λi were both precise and accurate. The results
were comparable to using four times as much ground state data, and show that the
computational gain by combining the replica information from REXAMD is excellent.

The MBAR and PBAR methods were then compared against each other, which required
simulating the alchemical endpoints. The MBAR method was approximately an order of
magnitude more precise than the PBAR method. The inefficiency of PBAR relative to
MBAR was shown to be due to the requirement of independent data sets for PBAR, which
reduced the amount of data available for each pair of states during the analysis. The most
efficient way of combining equilibrium samples of REXAMD data is conclusively MBAR.
We then demonstrated the usefulness of MBAR in combining multiple states to generate
unbiased structural quantities. The combination of REXAMD and MBAR should allow
large system sizes to be efficiently sampled and analyzed.
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Figure 1.
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Figure 2.
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Table II

Comparison of TI and TI-MBAR methods.

Run

Alchemical Free Energy (kcal/mol)

TI-GS Individual Lambda TI-MBAR 2 All Lambdas TI-MBAR 3

01 −0.055 −0.04 ± 0.02 +0.02 ± 0.01

02 −0.051 −0.07 ± 0.03 −0.02 ± 0.01

03 +0.040 +0.04 ± 0.03 +0.02 ± 0.01

04 −0.067 −0.05 ± 0.03 −0.02 ± 0.01

Combined −0.03 ± 0.021 −0.02 ± 0.01 +0.002 ± 0.006

1
The combined TI-GS results report the average and standard error from the four individual runs.

2
The individual lambda method only uses information from a specific lambda value to compute 〈dV/dλ〉λi at each λi.

3
The all lambdas method uses information from all the lambda values to compute 〈dV/dλ〉λi. at each λi.
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Table III

Comparison of TI-MBAR to MBAR and PBAR

Run

Free Energy (kcal/mol)

TI-MBAR1 MBAR1 MBAR Subsets2 PBAR3

01 +0.01 ± 0.01 +0.005 ± 0.009 −0.00 ± 0.03 −0.01 ± 0.02

02 −0.02 ± 0.01 −0.016 ± 0.009 −0.01 ± 0.03 −0.02 ± 0.02

03 +0.00 ± 0.01 +0.000 ± 0.009 +0.01 ± 0.03 +0.00 ± 0.02

04 +0.00 ± 0.01 +0.001 ± 0.009 −0.01 ± 0.03 −0.01 ± 0.02

Combined −0.002 ± 0.005 −0.001± 0.005 −0.00 ± 0.01 −0.007 ± 0.008

1
The uncertainty of the TI-MBAR and MBAR comes from the asymptotic covariance matrix estimator from Shirts and Chodera.17

2
The uncertainty in the MBAR Subsets results is estimated from the standard deviation from 1000 different subsets of 185 random reduced

potential values per state for the individual runs, and 1000 different subsets of 740 random reduced potential values for the combined result.

3
The uncertainty in the PBAR results is estimated from the standard deviation from 1000 different subsets of 185 random work values per pair of

states for the individual runs, and 1000 different subsets of 740 random work values for the combined result.
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