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Introduction
Maturation-promoting factor, an activity that can mediate mi-
totic entry, was discovered in 1971, and during the late 80s was 
characterized as a complex of cyclin B and Cdk1. Soon after 
this, the general framework for cyclin B–Cdk1 regulation became 
clear: cyclin B levels are periodically regulated by transcrip-
tion and degradation cycles, Cdk1 needs to be phosphorylated 
on its T loop for full activity, and the activation of cyclin B–Cdk1 
is regulated by the opposing activities of Wee1 and Cdc25 (for 
review see O’Farrell, 2001). Since then, additional layers of 
complexity have been added to the model.

Cyclin B
In Xenopus egg extracts, cyclin B–Cdk1 is activated when the 
level of cyclin B reaches a threshold concentration (Solomon  
et al., 1990). Thus, a critical regulatory step in the activation of 
cyclin B–Cdk1 is the amount of cyclin B available to form a 

complex with Cdk1. In human cells, high cyclin B levels are 
temporally restricted to G2 phase and early mitosis by regulated 
transcription and protein degradation. Transcription of cyclin B 
starts in S phase and peaks in late G2 (Fig. 1). Several transcrip-
tion factors, including NF-Y, FoxM1, and B-Myb, have been 
shown to activate transcription of the cyclin B1 promoter (for a 
review on cyclin B transcription and degradation, see Fung and 
Poon, 2005). Interestingly, all these transcription factors are ac-
tivated by Cdk activity, ensuring that transcription of cyclin B is 
efficient only when cyclin A–Cdk2 activity builds up during  
S and G2 phase (Dynlacht et al., 1994; Ziebold et al., 1997; 
Saville and Watson, 1998; Chae et al., 2004; Major et al., 2004; 
Laoukili et al., 2008).

Degradation of cyclin B is regulated by the anaphase-
promoting complex/cyclosome (APC/C), a multisubunit E3 ligase 
that can poly-ubiquitinylate many mitotic regulators to target 
them for destruction by the proteasome. Poly-ubiquitinylation 
of cyclin B starts in metaphase, when the spindle assembly 
checkpoint is silenced (Acquaviva and Pines, 2006; van Leuken 
et al., 2008). APC/C continues to promote degradation of cyclin B 
until early S phase, where its activity is down-regulated due 
to a combination of phosphorylation by cyclin A–Cdk2 and 
binding of the APC inhibitor Emi1 (Lukas et al., 1999; Hsu  
et al., 2002). Autodestruction of the APC E2 ligase UbcH10 has 
also been suggested to regulate APC/C inactivation, although 
recent data suggest that UbcH10 destruction may not regulate 
APC/C inactivation in S phase (Rape and Kirschner, 2004; 
Walker et al., 2008). Thus, the combined regulation of transcrip-
tion and protein degradation ensures that high cyclin B expres-
sion is limited to G2 and the early stages of mitosis (Fig. 1).

Like many cell cycle regulators, cyclin B shuttles between 
the nucleus and the cytoplasm. However, in S and the major part 
of G2 phase, the cyclin B nuclear export outweighs the cyclin B 
nuclear import, resulting in a predominately cytoplasmic local-
ization of cyclin B (Hagting et al., 1998; Toyoshima et al., 1998; 
Yang et al., 1998). In mid G2 phase, concomitantly with centro-
some maturation, cyclin B starts to accumulate at the centrosomes 
(see “The outer feedback loops”). Thus, in late G2, the local con-
centration of cyclin B is highest at the centrosomes (Fig. 1). In 
agreement with the cyclin B concentration being important for 
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lation in G2 phase, resulting in the inhibition of cyclin B–Cdk1 
activity (O’Farrell, 2001). Wee1 is predominantly nuclear, but 
has also been found to associate with centrosomes, whereas 
Myt1 is bound to membrane structures in the cytoplasm (Baldin 
and Ducommun, 1995; McGowan and Russell, 1995; Liu et al., 
1997). Once active, cyclin B–Cdk1 complexes can phosphory-
late Wee1 and Myt1 to promote their inactivation, thereby fur-
ther amplifying Cdk1 activation. Although Cdk1-dependent 
phosphorylation of Wee1 starts a cascade that promotes Wee1 
degradation (Watanabe et al., 2004), Cdk1-dependent phosphory-
lation of Myt1 starts a cascade that inhibits Myt1 kinase activity 
(Booher et al., 1997; Nakajima et al., 2003).

In addition, cyclin B–Cdk1 can activate Cdc25 dual-
specificity phosphatases, which can dephosphorylate T14 and 
Y15 in Cdk1 (O’Farrell, 2001). In human cells, there are three 
Cdc25 isoforms: Cdc25A, Cdc25B, and Cdc25C (for a review 
on human Cdc25s, see Boutros et al., 2006). All Cdc25s shuttle 
between the nucleus and the cytoplasm in G2 phase, but Cdc25A 
appears to be mainly nuclear and Cdc25C appears to be mainly 
cytoplasmic, whereas there are conflicting reports regarding the 
localization of Cdc25B (for review see Boutros et al., 2006). 
Both Cdc25B and Cdc25C are also targeted to the centrosome 
in G2 phase (Dutertre et al., 2004; Boutros et al., 2006; Busch  
et al., 2007; Bonnet et al., 2008), where Cdc25B is thought to 
participate in the initiation of cyclin B–Cdk1 activation (Gabrielli 
et al., 1996; Lammer et al., 1998; Karlsson et al., 1999; Lindqvist 

cyclin B–Cdk1 activation in Xenopus extracts (Solomon  
et al., 1990), in human cells, autophosphorylated cyclin B is first 
detected on the centrosomes (Jackman et al., 2003).

Collectively, sufficiently high levels of cyclin B to trigger 
activation of cyclin B–Cdk1 complexes require timely tran-
scriptional activation, inhibition of proteasomal degradation, 
and, possibly, concentration of cyclin B at specific sites within 
the cell. However, mere association of cyclin B to Cdk1 is not 
sufficient to form an active complex, as the Cdk subunit is sub-
ject to posttranslational modifications that affect kinase activity. 
Cdk1 needs to be phosphorylated on T161 in the T loop to pro-
duce an active kinase. This is mediated via the Cdk-activating 
kinase, which appears to function as a constitutively active en-
tity, providing no clues to regulation of Cdk1 activation (Tassan 
et al., 1994). In addition, when bound to cyclin B in interphase, 
Cdk1 is phosphorylated on T14 and Y15, resulting in inhibition 
of kinase activity. The dephosphorylation of these residues 
forms the core of the feedback loops that control activation of 
cyclin B–Cdk1 to promote mitotic entry.

The inner feedback loops
Cdk1 T14 and Y15 phosphorylation is controlled by the balance 
between Wee1/Myt1 kinases and Cdc25 phosphatases. These 
kinases and phosphatases are in turn directly regulated by Cdk1 
activity, which we will refer to as the inner feedback loops. The 
Wee1 and Myt1 kinases are responsible for T14/Y15 phosphory

Figure 1.  Regulation of cyclin B accumulation. A combination of temporally regulated degradation and transcription ensures that cyclin B levels peak 
in late G2 phase and during early mitosis. After silencing of the spindle checkpoint in mitosis, cyclin B is degraded by the APC/C. APC/C activity 
maintains low cyclin B levels through G1 phase until silencing of APC/C in S phase by a combination of direct inactivation by cyclin A–Cdk2, binding 
of the inhibitor Emi1, and, possibly, autodestruction of the APC/C E2 ligase UbcH10. Starting in S phase and peaking in late G2 phase, accumulating 
cyclin A–Cdk2 activity also activates the transcription factors B-MYB, NF-Y, and FoxM1, which directly enhance cyclin B transcription. In addition to 
transcription and degradation, the local concentration of cyclin B is enhanced during centrosome maturation by Plk1- and Aurora A–dependent target-
ing of cyclin B to the centrosome.
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Cdk1 activation. These feedbacks are superimposed on the 
inner feedback loops, thus we refer to them as the outer feed-
back loops. Cdk1-dependent phosphorylation not only affects 
the activity and stability of its targets directly, but can also create 
a docking site for Polo-like kinase-1 (Plk1; Elia et al., 2003a,b). 
In this way, Plk1 is targeted to several hundred different Cdk1 
substrates (Lowery et al., 2007). Relevant for the inner feed-
back, Cdk1-dependent phosphorylation of Wee1 mediates Plk1 
recruitment and subsequent Plk1-dependent phosphorylation of 
Wee1 (Watanabe et al., 2005). Dual phosphorylation of Wee1 by 
Cdk1 and Plk1 creates a phosphodegron on Wee1 that is recog-
nized by the F-box protein -TrCP, a component of the SCF–
-TrCP ubiquitin ligase, resulting in rapid poly-ubiquitinylation 
and proteasomal degradation of Wee1 (Watanabe et al., 2004). 

et al., 2005). When active, Cdk1 activates Cdc25C, stabilizes 
Cdc25A, and affects the localization of Cdc25B (Hoffmann et al., 
1993; Baldin et al., 2002; Mailand et al., 2002; Boutros et al., 
2006). The functional relevance of cyclin B–Cdk1 phosphorylat-
ing human Cdc25s is most likely not completely understood, 
however, as a recent study has identified many additional cyclin B–
Cdk1 phosphorylation sites on Cdc25B (Bouche et al., 2008).

Thus, through the inner feedback loops, cyclin B–Cdk1 
can stimulate its further activation by directly activating its acti-
vators and deactivating its inactivators (Fig. 2 A).

The outer feedback loops
Besides direct regulation of Cdk1 T14/Y15 phosphorylation, 
several feedback mechanisms more indirectly regulate cyclin B–

Figure 2.  Feedback loops that regulate cy-
clin B–Cdk1 activity. (A) The inner feedbacks. 
Myt1 and Wee1 kinases phosphorylate Cdk1 
on T14 and Y15, thereby inhibiting cyclin B–
Cdk1 activity. The T14 and Y15 phosphory-
lations can be antagonized by Cdc25A, -B, 
and -C. Once activated, cyclin B–Cdk1 ac-
tivity inhibits Wee1 and Myt1, and activates 
the Cdc25 phosphatases. Thus, by the inner 
feedback loops, cyclin B–Cdk1 inhibits its 
inhibitors and activates its activators. (B) Di-
rect Plk1-dependent feedback. Cyclin B–Cdk1 
phosphorylation of many targets, including 
Wee1, Myt1, and Cdc25C, creates a docking 
site for Plk1. Binding of Plk1 both guides Plk1 
to its substrate and stimulates Plk1 activity by 
releasing its inhibitory polo-box domains. In  
this way, cyclin B–Cdk1–mediated phosphory-
lation can trigger a second round of Plk1- 
mediated phosphorylation of a target protein.  
(C) Feedback through Bora-Aurora-Plk1. Cyclin B– 
Cdk1–mediated phosphorylation of Bora in
creases Bora binding to Plk1. Bora can also 
associate with Aurora A, and is required for 
efficient Aurora A–mediated activation of 
Plk1. By regulating Bora phosphorylation, cy-
clin B–Cdk1 can thereby activate Plk1. Plk1 in 
turn activates cyclin B–Cdk1 at different levels  
(Fig. 2, B, D, and E). Aurora A can also stimu-
late cyclin B–Cdk1 activation through activa-
tion of Cdc25B and regulation of centrosome 
maturation (Fig. 2 D). Although Aurora A activ-
ity is regulated by Cdk, it is currently unclear 
if these processes depend on cyclin B–Cdk1– 
mediated phosphorylation of Bora. (D) Feed-
back through centrosome maturation. The local 
concentration of cyclin B–Cdk1, an important 
regulatory step for cyclin B–Cdk1 activation, is 
enhanced by targeting to the maturating centro
some in late G2 phase. Moreover, many  
additional proteins in the mitotic entry network 
are targeted to centrosomes, thereby creating 
high local concentrations of cyclin B–Cdk1  
activators. Both Aurora A and Plk1 activities 
are required for centrosome maturation and 
stimulate cyclin B accumulation on centro-
somes. (E) Feedback through transcription. Plk1  
directly activates the transcription factor 
FoxM1. FoxM1 stimulates the expression of 
multiple proteins in the mitotic entry network, 
including cyclin B. Thus, cyclin B–Cdk1–
mediated activation of Plk1 through Bora/
Aurora A increases the production of several 
cyclin B–Cdk1 activators, thereby further stimu-
lating cyclin B–Cdk1 activation.
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function in the mitotic entry network, such as Plk1, Aurora A, 
Cdc25B, and Cdc25C, are also specifically recruited to centro-
somes in late G2. Their recruitment coincides with centrosome 
maturation, when the size of the pericentriolar material (PCM) 
surrounding the centrioles dramatically increases. Although not 
completely understood, centrosome maturation and recruitment 
of cyclin B–Cdk1 to centrosomes both depend on the activities of 
Plk1 and Aurora A (for review see Barr and Gergely, 2007). Thus, 
by regulating the size of the PCM and possibly by direct targeting 
of certain proteins to the PCM, Aurora A and Plk1 can enhance the 
local concentration of many proteins in the mitotic entry network, 
thereby facilitating the activation of cyclin B–Cdk1 (Fig. 2 D).  
Indeed, in Caenorhabditis elegans, centrosomes influence the 
timing of nuclear envelope breakdown in a manner that is de
pendent on Aurora A (Hachet et al., 2007; Portier et al., 2007), 
whereas in human cells, the relevance of centrosomes for timing 
of mitotic entry remains unclear. Interestingly, both Aurora A and 
Plk1 centrosomal localization and centrosome maturation re-
quires Cdk11(p58), a kinase specifically produced from an inter-
nal ribosomal entry site (IRES) in G2 and M phase (Cornelis  
et al., 2000; Petretti et al., 2006). The activation of the Cdk11(p58) 
IRES in G2 phase involves G2- and M-specific binding of hnRNP 
C1/C2, and it will be interesting to see whether this binding is 
regulated by any protein in the cyclin B–Cdk1 feedback loops 
(Schepens et al., 2007).

Recently, Plk1 was also shown to activate FoxM1 directly 
(Fu et al., 2008). FoxM1 enhances the transcription of multiple 
genes in the mitotic entry network, including cyclin B, Plk1, and 
Cdc25 phosphatases (Laoukili et al., 2005; Wang et al., 2005; 
Wierstra and Alves, 2007). In this way, Cdk1-dependent activa-
tion of Plk1 through Bora/Aurora A will enhance the concentra-
tion of many proteins in the mitotic entry network, thereby further 
stimulating cyclin B–Cdk1 activation (Fig. 1 E). In conclusion, 
multiple feedback loops function in parallel to enhance cyclin B–
Cdk1 activation. These feedback loops affect cyclin B–Cdk1 at 
several levels, ranging from direct activation through the inner 
feedback to enhancing the concentration of mitotic entry network 
components through regulation of transcription and specific re-
cruitment to defined subcellular sites. Recent proteomic screens 
have shown that several thousands of proteins, including at least 
30 kinases without known mitotic function, are phosphorylated 
during mitosis (Daub et al., 2008; Dephoure et al., 2008; Xiang  
et al., 2008). The selected proteins and feedback loops discussed 
here are therefore likely to constitute only a minor, albeit central, 
part of the mitotic entry network.

Redundancy in the mitotic entry network
If many feedback loops function in parallel, what is their relative 
importance? RNAi-mediated depletion or pharmacological inhi-
bition of Cdc25A, Cdc25B, Cdc25C, Plk1, Bora, Aurora A, cy-
clin B1, cyclin B2, Wee1, or Myt1 typically elicits a limited effect 
on mitotic entry (Marumoto et al., 2002; Bulavin et al., 2003; 
Hirota et al., 2003; van Vugt et al., 2004; Lindqvist et al., 2005; 
Liu and Ruderman, 2006; Bellanger et al., 2007; Gong  
et al., 2007; Nakajima et al., 2008; Seki et al., 2008b). Either no 
effect on the timing of mitotic entry is observed, or at best, entry 
is delayed by a couple of hours. Although the possibility exists 

In parallel, Plk1-dependent phosphorylation of Myt1 results in 
inhibition of Myt1 kinase activity (Nakajima et al., 2003), and 
Plk1-dependent phosphorylation of Cdc25C promotes accumu-
lation of Cdc25C in the nucleus (Toyoshima-Morimoto et al., 
2002; Elia et al., 2003a). Whether Plk1 can phosphorylate 
Cdc25A and Cdc25B in a similar Cdk1-dependent manner is 
currently unclear. In addition, Plk1 can also phosphorylate  
cyclin B directly, and this coincides roughly with autocatalytic 
phosphorylation of cyclin B–Cdk1 (Toyoshima-Morimoto  
et al., 2001; Yuan et al., 2002; Jackman et al., 2003). Thus, 
Cdk1-dependent phosphorylation of components of the inner 
feedback can mediate an additional round of phosphorylation by 
Plk1, thereby strengthening or modulating the feedback (Fig. 2 B). 
Interestingly, mitotic Plk1 is also phosphorylated on two Cdk con-
sensus sites, and although the relevance of these phosphorylation 
events is not known, it remains a distinct possibility that Cdk1 can 
directly modulate Plk1 function (Daub et al., 2008).

In G2 cells, Plk1 is present both at the centrosomes and at 
the kinetochores, where its localization is strongly influenced 
by targeting to phosphorylated proteins (Hanisch et al., 2006; 
Kang et al., 2006; Qi et al., 2006; Soung et al., 2006; Neef et al., 
2007). The activation of Plk1 requires phosphorylation of a con-
served residue (T210) in the T loop of the kinase. In human 
cells, the T210 residue of Plk1 is phosphorylated by Aurora A in 
G2 (Macurek et al., 2008; Seki et al., 2008b). Where exactly this 
phosphorylation first occurs is not clear, but given that Aurora A 
is predominately centrosomal and that T210-phosphorylated 
Plk1 can be detected on the centrosome in G2 phase, it is likely 
to occur initially on centrosomes (Macurek et al., 2008).

Aurora A can be activated through autophosphorylation of 
T288 in its T loop (Walter et al., 2000; Littlepage et al., 2002). 
However, to phosphorylate Plk1 on T210, Aurora A requires the 
cofactor Bora (Macurek et al., 2008; Seki et al., 2008b). Although 
Bora has been found to bind to Plk1 in the absence of Cdk1 (Seki 
et al., 2008a), Cdk1 does phosphorylate Bora (Hutterer et al., 
2006; Chan et al., 2008), and this phosphorylation enhances Bora 
binding to Plk1 (Hutterer et al., 2006; Chan et al., 2008). Thus, 
by phosphorylating Bora, Cdk1 ensures that Bora can efficiently 
bind to Plk1, possibly stimulating Bora/Aurora A–mediated acti-
vation of Plk1. In this way, an additional feedback loop is formed 
in which cyclin B–Cdk1 can stimulate its own activation through 
stimulation of Plk1 activation (Fig. 2, A–C). Moreover, Aurora A 
was shown to directly phosphorylate Cdc25B, and could thereby 
stimulate cyclin B–Cdk1 activation even further (Dutertre et al., 
2004). However, whether this Aurora A–dependent phosphoryla-
tion of Cdc25B requires Bora is currently unclear. In addition, 
Aurora A can be inactivated by dephosphorylation of T288 in the 
activatory T loop by the phosphatase PP1. Interestingly, PP1 is 
also subject to regulation by Cdk1 activity, so cyclin B–Cdk1 can 
potentially regulate Aurora A through PP1 (Katayama et al., 
2001; Marumoto et al., 2002; Satinover et al., 2006). Nonethe-
less, both Aurora A and Plk1 kinase activities are down-regulated 
after inhibition of Cdk activity (Abrieu et al., 1998; Marumoto  
et al., 2002; unpublished data), which is consistent with the no-
tion that these kinases participate in the same feedback loop.

As mentioned in the introduction, cyclin B concentration in 
late G2 phase is highest at centrosomes. But other players that 
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activation, Plk1 and Aurora A are activated. Because the latter are 
both necessary for centrosome maturation and formation of a bi-
polar spindle in mitosis, this provides efficient coordination of 
these events with the eventual decision to enter mitosis (Barr and 
Gergely, 2007; Petronczki et al., 2008). Moreover, Plk1 can en-
hance the transcription of multiple proteins necessary for mitotic 
progression via its effect on FoxM1 (Laoukili et al., 2005; Wang 
et al., 2005; Wierstra and Alves, 2007; Fu et al., 2008). These 
feedback loops will therefore not only promote an efficient acti-
vation of cyclin B–Cdk1, but will also ensure that other regula-
tory factors needed for successful cell division are coordinately 
activated. Supporting this notion, short-circuiting the inner feed-
back by expression of a Wee1-/Myt1–insensitive version of Cdk1 
leads to abnormal cell division (Pomerening et al., 2008). Simi-
larly, shortening G2 phase by injection of active cyclin A–Cdk2 
leads to mitotic abnormalities (Furuno et al., 1999). Moreover, 
the amount of cyclin B–Cdk1 activity needed to enter mitosis is 
relatively low, but cells that do enter mitosis with reduced cyclin B– 
Cdk1 levels show reduced phosphorylation of at least some of 
the components of the mitotic entry network, and these cells fail 
to execute a normal mitosis (Lindqvist et al., 2007). The mitotic 
defects of cells entering mitosis after deregulation of Cdk1 feed-
back loops or Cdk1 levels are pleiotropic, probably reflecting the 
large amount of substrates of Cdk1 and associated components in 
the feedback loops. Thus, although big parts of the mitotic entry 
network are redundant for mitotic entry, the activation of the full 
network, ensured by the multiple feedback loops, appears to be 
essential for proper coordination of the various mitotic events.

System level considerations
The activation of cyclin B–Cdk1 in Xenopus egg extracts is a bi-
stable, switch-like process (Pomerening et al., 2003; Sha et al., 
2003), and because of the feedback loops described in the previ-
ous sections, this is probably true in human cells as well (Lindqvist 
et al., 2007; Pomerening et al., 2008). Bistability here means that 
the majority of cyclin B–Cdk1 complexes are inactive, active, or 
approaching one of these states. Therefore, a cell will or will not 
enter mitosis, but cannot rest in an intermediate state. A conse-
quence of bistability is hysteresis, the memory of a system, which 
is manifested by a resistance to change between the stable states 
(for review see Mitrophanov and Groisman, 2008). Because of 
hysteresis, the threshold level of cyclin B required for cyclin B–
Cdk1 activation is higher than the threshold level required for in-
activation of cyclin B–Cdk1 (Fig. 3). This means that active 
cyclin B–Cdk1 can remain active, despite fluctuations in cyclin B 
levels. These conditions occur during mitotic entry, where a large 
pool of active cyclin B–Cdk1 translocates to the nucleus. Despite 
the dip in cyclin B–Cdk1 concentration in the cytoplasm, the 
cytoplasmic activation of cyclin B–Cdk1 proceeds during the trans
location (Lindqvist et al., 2007). Moreover, although not sufficient 
to execute a normal mitosis, cells that enter mitosis with relatively 
low levels of cyclin B–Cdk1 retain high cyclin B–Cdk1 activity 
per complex in mitosis (Lindqvist et al., 2007; Rodriguez-Bravo 
et al., 2007), and mitotic cells containing unaligned chromosomes 
can withstand large losses of cyclin B without exiting mitosis 
(Brito and Rieder, 2006). Thus, because of hysteresis, once cyclin B– 
Cdk1 is activated, a cell is likely to enter mitosis and remain 

that the limited effects depend on partial inhibition/depletion of 
the targets, it seems that many of the proteins involved in the mo-
lecular network that initiates mitotic entry are redundant for the 
decision to enter mitosis. Indeed, a more sustained delay is ob-
served when combinations of proteins are inhibited/depleted, like 
Cdc25A together with Cdc25B or cyclin B1 together with cyclin 
B2 (Lindqvist et al., 2005; Bellanger et al., 2007; Gong et al., 
2007). However, a systematic and exhaustive analysis of the rela-
tive contribution of the various components of the mitotic entry 
network is currently lacking. This is largely caused by technical 
limitations, as small molecule inhibitors only exist to a limited set 
of proteins, and RNAi efficiency decreases with simultaneous tar-
geting of multiple genes. Importantly, the centrosomes, which are 
thought to function as scaffolds to bring together proteins in the 
mitotic entry network, besides functioning as microtubule orga-
nizing centers, are redundant for mitotic entry (Hinchcliffe et al., 
2001; Khodjakov and Rieder, 2001; Doxsey et al., 2005). Indeed, 
Drosophila can develop without centrosomes, showing that their 
presence is not necessary for cell cycle progression (Basto et al., 
2006). Whether the centrosomes play a role for mitotic entry in 
human cells would require a detailed analysis in the background 
of inhibition of other feedback loops. Thus, cyclin B–Cdk1 acti-
vation is promoted by multiple redundant feedback loops, but the 
relative contribution of these separate feedback loops to the deci-
sion to enter mitosis is currently not well resolved.

Checkpoint recovery
To avoid propagation of harmful mutations, cells arrest their pro-
gression through the cell cycle in response to DNA damage. When 
DNA damage is inflicted on a cell in G2 phase, this cell cycle arrest 
is achieved through posttranslational modification of many, if not 
all, proteins in the mitotic entry network (for review see Bartek and 
Lukas, 2007). Upon repair of the damaged DNA, the cell can in 
principle resume the cell cycle, a process we refer to as checkpoint 
recovery (van Vugt et al., 2004). However, due to the modifications 
caused by DNA-damage signaling, the activity and levels of the 
proteins in the mitotic entry network are different compared with 
an unperturbed G2 cell (Smits and Medema, 2001; Karlsson-
Rosenthal and Millar, 2006; Bartek and Lukas, 2007; Bassermann 
et al., 2008). As such, checkpoint recovery constitutes a specialized 
form of mitotic entry, in which the redundancy in the mitotic entry 
network might be diminished. Indeed, proteins that are normally 
redundant for mitotic entry, including Aurora A, Plk1, and Cdc25B, 
are essential during checkpoint recovery (van Vugt et al., 2004; 
Macurek et al., 2008). This is a likely consequence of the dramatic 
changes in the mitotic entry network that have occurred during the 
checkpoint arrest (e.g., Cdc25A is degraded; Falck et al., 2001). 
Although the outer feedback (Fig. 2, B–E) is not essential for mi-
totic entry during an unperturbed cell cycle, at least parts of it be-
come important for a restart of the cell cycle after checkpoint 
activation. Therefore, depending on the history of a G2 cell, differ-
ent pathways within the mitotic entry network will be of different 
importance for the decision to enter mitosis.

The mitotic entry network and mitosis
The feedback loops governing cyclin B–Cdk1 activation dis-
cussed earlier will ensure that, concomitantly with cyclin B–Cdk1 
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some separation (Lindqvist et al., 2007). Similarly, Plk1 activa-
tion can be detected 5 h before mitosis (Macurek et al., 2008). 
Both Plk1 and cyclin B–Cdk1 activity rise gradually until mi-
totic entry, when a rapid increase in activity occurs, arguing that 
the initial activation of the mitotic entry network is a gradual 
process that slowly builds up during G2.

So what makes the feedback loops take so long to build up 
full cyclin B–Cdk1 activation? One clue may come from the 
subcellular trafficking of cyclin B. Phosphorylation of cyclin B 
both hides a nuclear export sequence and enhances nuclear im-
port, thereby causing the phosphorylated cyclin B–Cdk1 com-
plex to move to the nucleus (Li et al., 1997; Hagting et al., 1999). 
The identity of the kinase phosphorylating S147 is unclear, and 
affirmative proof that S147 is truly phosphorylated in human 
cells is currently lacking. However, Plk1 and cyclin B–Cdk1 it-
self can phosphorylate other residues in cyclin B (Toyoshima-
Morimoto et al., 2001; Yuan et al., 2002; Jackman et al., 2003). 
At least in Xenopus, Cdk1 preferentially phosphorylates resi-
dues on the cyclin B to which it is bound (Borgne et al., 1999), 
and phosphorylation of these residues enhances cyclin B–Cdk1 
nuclear import (Yang et al., 2001). Thus, it is likely that activa-
tion of cyclin B–Cdk1 in human cells will also stimulate auto-
phosphorylation, which in turn increases cyclin B–Cdk1 nuclear 
import. The regulation of cyclin B–Cdk1 nuclear import is 
probably also affected by other components of the mitotic entry 
network. In the nucleus, the Wee1 concentration is high, and 
cyclin B–Cdk1 can rapidly be inactivated. The now inactivated 
cyclin B–Cdk1 can no longer sustain its autophosphorylation, 
but can after export from the nucleus be reactivated and reauto-
phosphorylated. Thus, as the activation is ongoing on the cen-
trosomes, and possibly in the cytoplasm, this causes the activated 
cyclin B–Cdk1 to relocalize to the nucleus, where it is subse-
quently inactivated and exported, causing a delay in the activa-
tion of the mitotic entry network (Fig. 4).

The activation of the majority of cyclin B–Cdk1 com-
plexes will be achieved when enough cyclin B–Cdk1 enters the 
nucleus to sustain the feedback loops involving stabilization of 
Cdc25A and degradation of nuclear Wee1. This is likely to co-
incide with phosphorylation of S147 in cyclin B1, which would 
reduce cyclin B–Cdk1 nuclear export. Whether the phosphory-
lation of this residue is regulated by cyclin B–Cdk1–dependent 
feedback loops is currently not clear. Nonetheless, concomi-
tantly with a rapid increase in cyclin B–Cdk1 activity, cyclin B–
Cdk1 import outweighs its export, resulting in an efficient 
translocation of cyclin B–Cdk1 to the nucleus (Jackman et al., 
2003; Lindqvist et al., 2007). This rise in nuclear cyclin B–Cdk1 
activity enables the phosphorylation of nuclear cyclin B–Cdk1 
targets, including structural lamins, which leads to nuclear en-
velope breakdown and entry into mitosis shortly after cyclin B–
Cdk1 accumulates in the nucleus.

Even though local cyclin B–Cdk1 concentration is above 
the activation threshold, and activation is ongoing, full activation 
and entry into mitosis will not occur until a global activation  
is reached. The centrosomal/cytoplasmic activation, coupled 
with the nuclear import and subsequent export of cyclin B–Cdk1, 
can therefore potentially coordinate nuclear and cytoplasmic 
events; when nuclear envelope breakdown occurs, centrosomes 

there until the spindle checkpoint is satisfied, allowing cyclin B 
degradation. Hysteresis does not only facilitate a faithful mitosis, 
the resistance to change between stable states also delays the acti-
vation of cyclin B–Cdk1 in G2. This may give a cell an extended 
opportunity to block mitotic entry in case of checkpoint activa-
tion, and decreases the chance that a cell will enter mitosis be-
cause of local fluctuations in the levels of cyclin B or regulators 
of cyclin B–Cdk1 activity. Hysteresis regulating cyclin B–Cdk1 
activity is most likely complemented by cell cycle–dependent 
regulation of phosphatases that reverse the phosphorylation of 
Cdk1 targets (Mochida and Hunt, 2007; Skoufias et al., 2007).

Implications on shuttling for the duration 
of cyclin B–Cdk1 activation
The bistable, switch-like activation of cyclin B–Cdk1 indicates 
that at any given time, the majority of cyclin B–Cdk1 complexes 
are inactive, active, or approaching one of these states. Impor-
tantly however, this does not necessarily mean that the initial 
activation of cyclin B–Cdk1 will occur very rapidly. Indeed, al-
though the activation of the major part of cyclin B–Cdk1 takes 
place in the last 30 min preceding prometaphase, lower levels of 
Cdk1 activation can be detected in G2 phase well before centro-

Figure 3.  Bistability and hysteresis governing cyclin B–Cdk1 activity. 
The graph shows the theoretical relationship between cyclin B–Cdk1 con-
centration and cyclin B–Cdk1 activity. Note that the graph only shows 
steady-state end points and therefore does not contain any information 
on how much time is needed to reach the indicated activity. Because of 
the cyclin B–Cdk1–dependent feedback loops, the majority of cyclin B–
Cdk1 complexes are either active, inactive, or approaching one of these 
states. A major determinant for whether cyclin B–Cdk1 will be active or 
inactive is the concentration of cyclin B–Cdk1 complexes; cyclin B–Cdk1 
activation is triggered above a threshold concentration of cyclin B–Cdk1 
complexes (red arrow). However, once the feedback loops are active, 
they can sustain cyclin B–Cdk1 activity at cyclin B–Cdk1 concentrations 
below the activation threshold. Therefore, the inactivation threshold is 
lower than the activation threshold (blue arrow). In this way, the feedback 
loops provide a resistance to change between the stable states. This re-
sistance ensures that cyclin B–Cdk1 activity, and thereby the decision to 
enter or exit mitosis, is relatively insensitive to local fluctuations of mitotic 
entry network components.
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ensures that the initial cyclin B–Cdk1 activation does not come 
before S phase (Fig. 1; Fung and Poon, 2005). However, check-
point components such as ataxia telangiectasia and Rad3 related 
(ATR), microcephalin, and Chk1 have at least a basal level of ac-
tivity during S phase, and centrosomal Chk1 inhibits cyclin B–
Cdk1 activation during S phase in the absence of external DNA 
damage (Kramer et al., 2004; Alderton et al., 2006; Schmitt et al., 
2006; Loffler et al., 2007). Thus, the combined balance of grow-
ing Cdk activity during S and G2 phase and the activity of certain 
checkpoint signaling components during S phase determines 
when the initial cyclin B–Cdk1 activation can start to build up.

As discussed in this review, the regulation of cyclin B–
Cdk1 activation consists of a network of interactions that func-
tion in feedback loops. We therefore propose that there is little 
upstream or downstream in the signal transduction within the 
mitotic entry network, but rather a large spiral of events that 
slowly build up to a critical threshold at which full activation is 
rapidly achieved. The relative importance of individual players 
in this spiral will depend on the history of the cell, where at least 
ectopic DNA damage changes the requirement for individual 
proteins within the mitotic entry network.

As mentioned in the article, we only discuss a selected set of feedback loops 
that regulate cyclin B–Cdk1 activation. We apologize to authors whose work 
is not cited due to space restrictions. We thank Monica Alvarez, Wytse Bruinsma, 
Geert Kops, Susanne Lens, and Libor Macurek for critical comments on  
the manuscript.
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