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The Salt Overly Sensitive (SOS) pathway plays an important role in the regulation of Na+/K+ ion homeostasis and salt

tolerance in Arabidopsis thaliana. Previously, we reported that the calcium binding proteins SOS3 and SOS3-LIKE CALCIUM

BINDING PROTEIN8 (SCaBP8) nonredundantly activate the protein kinase SOS2. Here, we show that SOS2 phosphorylates

SCaBP8 at its C terminus but does not phosphorylate SOS3. In vitro, SOS2 phosphorylation of SCaBP8 was enhanced by the

bimolecular interaction of SOS2 and SCaBP8 and did not require calcium ions. In vivo, this phosphorylation was induced by

salt stress, occurred at the membrane, stabilized the SCaBP8-SOS2 interaction, and enhanced plasma membrane Na+/H+

exchange activity. When a Ser at position 237 in the SCaBP8 protein (the SOS2 phosphorylation target) was mutated to Ala,

SCaBP8 was no longer phosphorylated by SOS2 and the mutant protein could not fully rescue the salt-sensitive phenotype

of the scabp8 mutant. By contrast, when Ser-237 was mutated to Asp to mimic the charge of a phosphorylated Ser residue,

the mutant protein rescued the scabp8 salt sensitivity. These data demonstrate that calcium sensor phosphorylation is a

critical component of SOS pathway regulation of salt tolerance in Arabidopsis.

INTRODUCTION

Maintenance of Na+/K+ ion homeostasis is essential for plant

growth and development in saline conditions where accumula-

tion of salts leads to significant reductions in plant growth. The

Salt Overly Sensitive (SOS) pathway inArabidopsis thaliana plays

an important role in regulating Na+/ K+ ion homeostasis during

plant growth in high salt conditions. SOS3 (Liu and Zhu, 1998), a

calcium binding protein, perceives an increase in cellular calcium

levels induced by salt stress. Upon sensing the calcium signal,

SOS3 interacts with, activates, and recruits SOS2, a protein

kinase, to the plasma membrane (Halfter et al., 2000; Quintero

et al., 2002). This complex further activates SOS1 (Shi et al.,

2000), a Na+/H+ exchanger (antiporter), to regulate Na+/K+ ion

homeostasis and prevent the accumulation of toxic levels of Na+

(Zhu et al., 1998; Zhu, 2002).

The Arabidopsis genome encodes nine additional SOS3-LIKE

CALCIUM BINDING PROTEINS (SCaBPs), also known as CAL-

CINEURIN B-LIKE (CBL) calcium binding proteins (Luan et al.,

2002; Gong et al., 2004; Kolukisaoglu et al., 2004). SOS3 is also

known as CBL4 (Kim et al., 2000; see Supplemental Figure

1 online for a protein alignment of the SCaBP/CBL family

members). Four SCaBP/CBL proteins have been shown to

regulate ion homeostasis. SCaBP1/CBL2 interacts with and

activates SOS2-LIKE PROTEIN KINASE5 (PKS5), and this

complex negatively regulates the activity of AHA2, a plasma

membrane H+-ATPase (Fuglsang et al., 2007). CBL1/SCaBP5

and CBL9/SCaBP7 interact with and activate CBL-INTERACT-

ING PROTEIN KINASE23 (CIPK23); this complex in turn acti-

vates the activity of AKT1, a plasma membrane K+ channel, to

regulate K+ homeostasis (Xu et al., 2006; Cheong et al., 2007).

Recently, we identified SCaBP8/CBL10 as another regulator of

SOS2 that, in contrast with SOS3, which mainly functions in

root tissue, preferentially protects shoot tissue from salt stress.

Like SOS3, SCaBP8 interacts with, activates, and recruits

SOS2 to the plasma membrane to activate SOS1 in the plant

plasma membrane or SOS1 expressed in yeast (Quan et al.,

2007).

A number of SCaBP/CBL proteins contain the four helix-loop-

helix structural domains (EF-hands) found in many calcium

binding proteins. These SCaBP proteins share significant se-

quence similarity with the B subunit of calcineurin in yeast and a

neuronal calcium sensor in animals, with sequences only differ-

ing at their N and C termini (Gong et al., 2004). Both the B subunit

of calcineurin and neuronal calcium sensor proteins are myris-

toylated in vivo; however, it is not known if this modification is

required for their function (Zhu et al., 1995). Similar protein

domains have been shown to regulate the localization or activ-

ities of several SCaBP proteins. Three out of 10 of the SCaBP/

CBL family proteins have the MGXXXS/T (K) myristoylation

signature sequence (Gong et al., 2004; Kolukisaoglu et al.,
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2004; Batistic et al., 2008). This N-terminal myristoylation and

acylation were shown to be required for plasma membrane

localization of CBL1/SCaBP5 (Batistic et al., 2008), while a

myristoylation domain at the SOS3 N terminus was shown to

be important for SOS3 function in salt tolerance (Ishitani et al.,

2000). While SCaBP8 lacks an N-terminal myristoylation motif,

an N-terminal 25–amino acid hydrophobic domain is required for

SCaBP8 plasmamembrane localization (Quan et al., 2007). Both

SOS3 and SCaBP8 activate SOS2 and SOS1; however, they

cannot replace each other in reciprocalmutant complementation

assays, suggesting that each has a unique function(s) in the

response of Arabidopsis to growth in salt.

In this study, we report that SOS2 phosphorylates SCaBP8,

but not SOS3, and that this modification is important for SCaBP8

function in salt tolerance by stabilizing themembrane localization

of the SCaBP8-SOS2 complex.

RESULTS

SOS2 Phosphorylates SCaBP8 at Its C Terminus

The SOS3 and SCaBP8 calcium sensors have been shown to

specifically function in the salt stress response of Arabidopsis

(Liu and Zhu, 1998; Quan et al., 2007) but perform unique

functions in the regulation of SOS2. One possible mechanism

underlying this difference in regulation is that the SCaBP8 protein

may require an additional modification, such as phosphorylation

Figure 1. SOS2 Phosphorylates SCaBP8.

(A) SOS2 phosphorylates SCaBP8 but not SOS3. Kinase assay was initiated by adding radiolabeled ATP to the mixture of SOS2 kinase and SOS3/

SCaBP8. SDS-PAGE gel with Coomassie blue–stained SOS2 and SCaBP8 (SC8) proteins (top panel); autoradiograph showing SCaBP8 phospho-

rylation by SOS2 (bottom panel, bottom band) and SOS2 autophosphorylation (bottom panel, top bands).

(B) Calcium does not affect SCaBP8 phosphorylation. SDS-PAGE gel with Coomassie blue–stained SOS2, SOS3, and SCaBP8 proteins (top panel);

autoradiograph showing SCaBP8 phosphorylation (bottom panel, bottom bands) and SOS2 autophosphorylation (bottom panel, top bands).

(C) Model of SCaBP8 C-terminal deletions.

(D) SOS2 phosphorylates the SCaBP8 C terminus. SDS-PAGE with Coomassie blue–stained SOS2 and SCaBP8 proteins (top panel); autoradiograph

showing SCaBP8 phosphorylation (bottom panel, bottom band) and SOS2 autophosphorylation (bottom panel, top bands).

(E) SOS2 phosphorylates SCaBP8 at Ser-237. SDS-PAGE with Coomassie blue–stained SOS2 and SCaBP8 proteins (top panel); autoradiograph

showing SCaBP8 phosphorylation (bottom panel).

SC8, SCaBP8; SC8L, SCaBP81-211aa; SC8M1, SCaBP81-234aa; SC8M2, SCaBP81-213aa; SC8M3, SCaBP81-201aa; SC8S237A, SCaBP8 with S237 mutated

to A; SC8T242A, SCaBP8 with T242 mutated to A; SC3S237AT242A, SCaBP8 with S237 and T242 mutated to A.
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by SOS2. To test this, we monitored SOS2 phosphorylation of

SOS3 or SCaBP8 in vitro and, surprisingly, found that SOS2

phosphorylated SCaBP8 but not SOS3 (Figure 1A). SCaBP8L, a

mis-spliced cDNA of SCaBP8 that retains the seventh intron and

encodes a 211–amino acid protein truncated at its C terminus

(Quan et al., 2007), was not phosphorylated by SOS2 (Figure 1A),

indicating that the phosphorylation site in SCaBP8 is located in

its C terminus. Because SCaBP8 is a calciumbinding protein that

is thought to sense calcium signals triggered by salt stress to

activate SOS2 (Harper et al., 2004; Quan et al., 2007), we

determined if calcium is required for SOS2 phosphorylation of

SCaBP8. To do this, 0.5 mM calcium or 5 mM EGTA were

included in the SOS2 kinase assays. The results indicate that

phosphorylation is not enhanced by the presence of calcium

(Figure 1B).

SOS2 Phosphorylates SCaBP8 at Ser-237

To determine the SOS2 phosphorylation site in SCaBP8, we

generated three additional SCaBP8 truncated proteins with

C-terminal deletions: glutathione S-transferase (GST)-SCaBP81-201,

GST-SCaBP81-213, and GST-SCaBP81-234 (Figure 1C). None of

these proteins were phosphorylated by SOS2 (Figure 1D). These

results indicated that the phosphorylation site must be in the last

12 amino acids of the SCaBP8 C terminus as the SCaBP81-234

construct had only these 12 amino acids removed. To map the

phosphorylation site, we mutated all of the Ser and Thr residues

in this region to Ala. When Ser-237 was changed to Ala

(SCaBP8S237A), the mutant protein was no longer phosphory-

lated by SOS2 (Figure 1E). As a control, Thr-242 was also

mutated to Ala. While SCaBP8T242A was still phosphorylated by

SOS2, the double mutant SCaBP8S237A/T242A (containing both

the T242A and S237Amutations) was not (Figure 1E). Our results

demonstrate that Ser-237 is the only amino acid phosphorylated

by SOS2 in vitro. When we compared the C-terminal sequences

of the SCaBP/CBL family members, Ser-237 was found to be

conserved in eight of the SCaBP proteins, including SOS3 (see

Supplemental Figure 1 online).

SOS2 Phosphorylation of SCaBP8 Is Enhanced by

SCaBP8-SOS2 Interaction

SCaBP8 has been shown to interact with SOS2 via a FISL motif

in the SOS2 kinase (Quan et al., 2007). Deletion of this motif or

Figure 2. SOS2–SCaBP8 Interaction Enhances SCaBP8 Phosphorylation.

(A) Highest levels of autophosphorylation and MBP phosphorylation are seen with SOS2T/DDF. SDS-PAGE with Coomassie blue–stained MBP and

SOS2 proteins (top panel); autoradiograph showing SOS2 autophosphorylation (bottom panel, top bands) and MBP (bottom panel, bottom bands)

phosphorylation.

(B) Quantification of data shown in (A). The signals were quantified by ImageQuant 5.0 software.

(C) Addition of exogenous FISL motif peptide reduces SOS2 phosphorylation of SCaBP8. SDS-PAGE with Coomassie blue–stained SCaBP8, FISL-

GST, and SOS2 proteins (top panel); autoradiograph showing SOS2 autophosphorylation (bottom panel, top bands) and SCaBP8 phosphorylation

(bottom panel, bottom bands).

(D) Quantification of data shown in (C). The signals were quantified by ImageQuant 5.0 software.

All data represent means6 SE of at least three replicate experiments. Auto, SOS2 autophosphorylation; substrate activity, MBP phosphorylation; SOS2DF,

SOS2 protein with the FISL motif deleted; SOS2T/DDF, SOS2 protein with the FISL motif deleted and a Thr-to-Asp mutation in the kinase domain.
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a change in a Thr in the SOS2 kinase loop to Asp (T/D) has

been shown to increase SOS2 activity (Guo et al., 2001). To test

if the interaction between SCaBP8 and SOS2 is required for

phosphorylation, recombinant SOS2 protein, SOS2 protein with

the FISL motif deleted (SOS2DF), and SOS2 protein with the

combined FISL deletion and T/D change (SOS2T/DDF) were

used in our in vitro kinase assays. SOS2T/DDF had the highest

activity both in terms of autophosphorylation and phosphory-

lation of the substrate Myelin Basic Protein (MBP), followed by

SOS2DF and SOS2 (Figures 2A and 2B). These results are

consistent with data described by Guo et al. (2001). However,

when SCaBP8 was used as a substrate, the SCaBP8 phos-

phorylation level was significantly higher in the assay with wild-

type SOS2 protein compared with the assays with SOS2DF or

SOS2T/DDF protein (Figures 2C and 2D). These data suggest

that, while SOS2-SCaBP8 interaction is not essential for SOS2

phosphorylation of SCaBP8, this interaction dramatically en-

hances the phosphorylation. Additional support for this con-

clusion came from experiments in which we added FISL

peptide to our SOS2-SCaBP8 kinase assays. The results

showed that blocking the SOS2–SCaBP8 interaction with

added FISL peptide significantly reduced SOS2 phosphoryla-

tion of SCaBP8 (Figures 2C and 2D).

SOS2 Phosphorylation of SCaBP8 Is Induced by NaCl

in Planta

To determine if SCaBP8 is phosphorylated by SOS2 in planta,

phosphorylation site-specific antibodies were generated by im-

munizing rabbits with the chemically synthesized phosphory-

lated peptide C-TAFPpSFIFNTE-NH2 (phosphorylated form). To

select the phospho-specific antibodies, the serum was first

incubated with the phosphopeptides that had been coupled to

SulfoLink resin. After washing the column, the phospho-specific

antibodies were eluted at pH 2.7 and immediately neutralized.

The antibodies were then run over a column containing the

unphosphorylated polypeptide C-TAFPSFIFNTE-NH2 to remove

antibodies not specific for the phosphoserine. The flow-through

was collected and characterized (Miermont et al., 2000). To

evaluate the specificity of the antibodies for the Ser-237 phos-

phorylation site, SCaBP8 proteins were incubated with SOS2

protein in kinase buffer in the presence or absence of ATP. The

proteins were then separated using SDS-PAGE and detected by

immunoblotting. A strong cross-reaction was detected only

when SCaBP8 was incubated with both SOS2 and ATP (Figure

3A). In the absence of ATP, a very weak signal appeared only

after a significantly longer exposure. These results suggest that

the antibodies specifically recognize phosphorylated Ser-237 in

SCaBP8.

To examine SCaBP8 phosphorylation in vivo, we gener-

ated 35S:6myc-SCaBP8, 35S:6myc-SCaBP8S237A, and

Figure 3. SOS2 Phosphorylates SCaBP8 in Vivo.

(A) Anti-phosphoserine237 antibodies detect SCaBP8Ser237 phosphoryla-

tion in vitro. SDS-PAGE with Coomassie blue–stained SCaBP8 proteins

(top panel); autoradiograph showing SCaBP8 phosphorylation detected

by anti-phosphoserine237 antibodies (bottom panel).

(B) Anti-phosphoserine237 antibodies detect SCaBP8 but not SCaBP8S237A

or SCaBP8S237D in transgenic wild-type plants under salt stress. Pro-

teins extracted from the transgenic plants expressing 6myc-SCaBP8,

6myc-SCaBP8S237A, and 6myc-SCaBP8S237D were analyzed with anti-

phosphoserine237 (top panel) or anti-myc (bottom panel) antibodies.

Seedlings were treated with NaCl or water for 12 h.

(C) No SCaBP8Ser237 phosphorylation is detected in sos2 mutant plants.

Proteins extracted from the wild-type (Col-0) or sos2 plants expressing

6myc-SCaBP8 were analyzed with anti-phosphoserine237 (top panel) or

anti-myc (bottom panel) antibodies.

(D) Only NaCl induces SCaBP8Ser237 phosphorylation in vivo. Wild-type

(Col-0) seedlings expressing 6myc-SCaBP8 were treated with 100 mM

NaCl, 100 mM KCl, 100 mM mannitol, or water for 3 h. Proteins were

extracted and analyzed using anti-phosphoserine237 (top panel) or anti-

myc (bottom panel) antibodies.

(E) NaCl concentration affects SCaBP8 phosphorylation. Wild-type

(Col-0) seedlings expressing 6myc-SCaBP8 were treated with a range

of NaCl concentrations. Proteins were extracted and analyzed with anti-

phosphoserine237 (top panel) or anti-myc (bottom panel) antibodies.

(F) SCaBP8 phosphorylation increased with longer NaCl treatment. Wild-

type (Col-0) seedlings expressing 6myc-SCaBP8 were treated with 100

mM NaCl for the indicated times. Proteins were extracted and analyzed

with anti-phosphoserine237 (top panel) or anti-myc (bottom panel) anti-

bodies.

SC8, SCaBP8; SC8S237A, SCaBP8 in which S237 was changed to A;

SC8S237D, SCaBP8 in which S237 was changed to D.
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35S:6myc-SCaBP8S237D transgenic lines in wild-type Arabi-

dopsis (Columbia-0 [Col-0] background) and 35S:6myc-SCaBP8

transgenic lines in the sos2 mutant background. Total proteins

were extracted from 10-d-old seedlings of these four transgenic

lines and subjected to immunoblots using either anti-myc or anti-

phosphoserine237 antibodies. Anti-cmyc (anti-myc) antibody

readily detected myc-labeled SCaBP8 in all transgenic plants,

but no signal was observed when anti-phosphoserine237 anti-

bodies were used. Because the SOS pathway specifically func-

tions in the response of Arabidopsis to growth in salt, we

reasoned that SOS2 phosphorylation of SCaBP8 might be in-

duced by salt stress. To test this, transgenic plants were treated

with 100 mMNaCl or water for 12 h, and proteins were extracted

and assayed by immunoblotting. The phosphoserine237 signal

was detected only in protein extracts from wild-type plants

expressingmyc-SCaBP8 treated with NaCl (Figures 3B and 3C).

No phosphoserine237 signal was seen in wild-type plants ex-

pressing either myc-SCaBP8S237D or myc-SCaBP8S237A (Figure

3B) or in sos2 mutant plants expressing myc-SCaBP8 (Figure

3C). Nearly equal amounts ofmyc-SCaBP8, myc-SCaBP8S237A,

or myc-SCaBP8S237D protein were present in the assays as

demonstrated by immunoblots with anti-myc antibodies (Figures

3B and 3C). Our data demonstrate that SOS2 specifically phos-

phorylates SCaBP8S237 and that this phosphorylation is induced

by salt stress.

To further determinewhether the phosphorylation is specific to

NaCl stress, the 35S:6myc-SCaBP8 transgenic plants in the

wild-type background were treated with NaCl, KCl, or mannitol.

Immunoblots showed that phosphorylation was detected only

after NaCl treatment evenwhen similar amounts ofmyc-SCaBP8

protein were present in each treatment (Figure 3D). To determine

if calcium affects this phosphorylation, transgenic plants were

treated with 5 or 50 mM CaCl2, and proteins were analyzed by

immunoblot assays. Calcium treatment did not significantly

enhance phosphorylation (see Supplemental Figure 2 online).

SOS2 phosphorylation of SCaBP8 reached a maximum level at

NaCl concentrations between 150 and 200 mM and declined at

higher NaCl concentrations (Figure 3E). The SCaBP8 phosphor-

ylation level increased gradually with longer NaCl treatments

(Figure 3F).

SOS2 Phosphorylates Membrane-Bound SCaBP8

SCaBP8 recruits SOS2 to the plasma membrane in yeast and

Arabidopsis (Quan et al., 2007). To determine if SOS2 phos-

phorylates membrane-bound SCaBP8, the 35S:6myc-SCaBP8

transgenic plants were treated with NaCl, and membrane and

soluble proteins were isolated and used in immunoblot assays

with anti-phosphoserine237 antibody. The phosphorylation of

SCaBP8S237 was detected in total protein extract and in the

membrane protein fraction, but not in the soluble protein

fraction (Figure 4A). Arabidopsis AHA2 and MAPK3 antibodies

were used as markers to label the membrane and soluble frac-

tions, respectively. Using anti-myc antibodies, myc-SCaBP8

protein was detected in all three fractions. These results sug-

gest that the phosphorylated SCaBP8 protein is membrane

bound.

Previously, we demonstrated that a 25–amino acid hydro-

phobic domain in the N terminus of SCaBP8 is required for

plasma membrane localization in yeast and onion cells (Quan

et al., 2007). To determine the importance of plasma membrane

localization for SCaBP8 function in salt tolerance, we removed

this peptide from SCaBP8 (SCaBP8DN) using PCR-based

mutagenesis. The truncated protein was fused to a myc-tag,

expressed under the control of the 35S promoter, and trans-

formed into wild type and the scabp8 mutant. T2 seed from >50

independent T1 transgenic lines in the scabp8 background

were tested for salt tolerance; none could rescue the mutant

phenotype, suggesting that this peptide is essential for

SCaBP8 function in salt tolerance (see Supplemental Figure 3

online). To further demonstrate that this peptide is essential for

SCaBP8 localization to the membrane in Arabidopsis, we

separated membrane and soluble protein fractions from the

transgenic plants expressing SCaBP8DN. The myc-SCaBP8DN

protein could be detected in the total protein extract and

soluble protein fraction but was below detection levels in the

Figure 4. SCaBP8 Phosphorylation Takes Place at the Membrane.

(A) SCaBP8Ser237 phosphorylation was detected only in membrane

fractions. Seedlings of wild-type (Col-0) plants expressing 6myc-

SCaBP8 or 6myc-SCaBP8DN, in which a 25–amino acid hydrophobic

domain in the N terminus of SCaBP8 that is required for SCaBP8 plasma

membrane localization was removed, were treated with 100 mMNaCl for

3 h. Membrane and soluble fractions were separated by centrifugation at

48C for 60 min at 140,000g. Equal aliquots of total (T), supernatant (S),

and pellet (P) proteins were separated by SDS-PAGE followed by

analysis with anti-myc (loading control), anti-phosphoserine237, anti-

MAPK3 (loading control for a soluble-protein fraction), or anti-AHA2

antibodies (loading control for a cell membrane fraction).

(B) SCaBP8Ser237 phosphorylation was not detected in 6myc-

SCaBP8DN transgenic plants. Seedlings of wild-type (Col-0) plants

expressing 6myc-SCaBP8 or 6myc-SCaBP8DN were treated with 100

mM NaCl or water for 3 h. Proteins were extracted and analyzed with

anti-phosphoserine237 (top panel) or anti-myc (bottom panel) antibodies.

(C) Anti-phosphoserine237 antibodies detect SCaBP8Ser237 phosphoryla-

tion of SCaBP8DN in vitro. SDS-PAGE with Coomassie blue–stained

SCaBP8 proteins (top panel); autoradiograph showing SCaBP8DN

phosphorylation detected by anti-phosphoserine237 antibodies (bottom

panel).

SC8DN, SCaBP8DN in which a 25–amino acid hydrophobic domain in

the N terminus has been deleted; AHA2, isoform of the plasma mem-

brane H+-ATPAse; MAPK3, mitogen-activated protein kinase3.
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Figure 5. SCaBP8S237 Phosphorylation Is Required for SCaBP8 Function in Salt Tolerance.

Growth of scabp8 expressing SCaBP8S237D and SCaBP8S237A. Five-day-old wild-type, transgenic scabp8 plants containing SCaBP8S237D or

SCaBP8S237A and scabp8 mutant seedlings were transferred onto Murashige and Skoog (MS) medium ([A] and [D]), MS medium containing 50 mM

NaCl ([B] and [E]), or 100 mM NaCl ([C] and [F]). Shoot fresh weight ([G] and [J]), primary root growth ([H] and [K]), and root fresh weight ([I] and [L])

were measured 10 d after transfer. Open bars, wild type; gray bars, SCaBP8S237D transgenic plants; light-blue bars, SCaBP8S237A transgenic plants;

black bars, scabp8. All data represent means 6 SE of at least three replicate experiments. Asterisks indicate significant difference between the

transgenic line and the wild type or between the transgenic line and scabp8 (Student’s t test, *P < 0.05 and **P < 0.01).
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membrane fraction (Figure 4A). When we examined the phos-

phorylation status of SCaBP8DN in transgenic scabp8 plants,

the phosphorylated protein was also below the level of detec-

tion (Figure 4B). As a control, we purified SCaBP8DN and SOS2

proteins from Escherichia coli, incubated them in kinase buffer

with or without ATP, and analyzed the phosphorylation using

our anti-phosphoserine237 antibodies. As shown in Figure 4C,

SOS2 phosphorylated SCaBP8DN in vitro. Together, these

results indicate that the phosphorylation event occurs after

SCaBP8 reaches the membrane.

Additional support for SCaBP8 phosphorylation after it

reaches the membrane came from studies in which we demon-

strated that phosphorylation of SCaBP8 is not required for

targeting to the plasma membrane. These studies were based

on analysis of the subcellular localization of SCaBP8S237A and

SCaBP8S237D mutant proteins in yeast using the Sos Recruit-

ment System (Quintero et al., 2002). This system canmonitor the

interaction between a plasma membrane–located protein and a

cytoplasmic protein fused to the human hSos protein, a func-

tional homolog of the yeast Ras GEF CDC25. When two proteins

interact at the plasma membrane, the human hSos protein

restores Ras activation and rescues the thermosensitive yeast

mutant cdc25-2 (Aronheim et al., 1997). We have shown previ-

ously that SCaBP8 recruits SOS2 to the plasma membrane of

yeast (Quan et al., 2007). Mutant proteins SCaBP8S237A and

SCaBP8S237D were coexpressed with the reporter fusion protein

SOS2:hSos to test whether recruitment of the protein kinase to

the plasma membrane was affected by mutation of Ser-237 in

SCaBP8. As shown in Supplemental Figure 4 online, the S237A

and S237D mutations did not significantly affect the targeting of

SCaBP8 to the plasma membrane or the recruitment of SOS2.

Moreover, when the targeting of SCaBP8 and SCaBP8S237A to

the plasma membrane was monitored directly in the presence of

the wild-type SOS2 protein or an inactive SOS2 kinase (with a

mutation in an essential Lys residue at position 40; SOS2K40N), no

difference in subcellular localization was found.

SCaBP8 Phosphorylation Is Required for Salt Tolerance

To determine if phosphorylation of SCaBP8 at Ser-237 is re-

quired for salt tolerance in Arabidopsis, we transformed

35S:6myc-SCaBP8S237A and 35S:6myc-SCaBP8S237D into the

scabp8 mutant. T2 seed from >100 independent T1 transgenic

lines from each transformation were tested for their growth in

salt. In 93 lines out of a total of 112 independent transgenic lines

harboring SCaBP8S237D, the salt-sensitive phenotype was com-

pletely suppressed. Partial rescue was seen in 14 lines, while

scapb8 mutant levels of sensitivity were seen in only five lines.

These numbers are comparable to the complementation rates

reported previously for the 35SP:SCaBP8 construct (Quan et al.,

2007). These results suggest that mimicking the phosphorylation

status of Ser-237 made SCaBP8 fully functional in Arabidopsis.

By contrast, no transgenic line was found among 121 T2 lines

harboring SCaBP8S237A in which the salt-sensitive phenotype of

scabp8was fully suppressed. Complementation was partial in 78

lines and negligible in the remaining 43 lines. These results

demonstrate that phosphorylation of SCaBP8 is essential for salt

tolerance (Figure 5). RT-PCR analysis showed that expression of

SCaBP8 was similar in the 35S:6myc-SCaBP8S237A, 35S:6myc-

SCaBP8S237D, and 35S:6myc-SCaBP8DN transgenic lines (see

Supplemental Figure 5 online), demonstrating that differences in

complementation were not due to differences in levels of trans-

gene expression.

SCaBP8 Phosphorylation Enhances Its Interaction

with SOS2

To uncover the biological function of SOS2 phosphorylation of

SCaBP8, we determined whether phosphorylation affected the

Figure 6. SCaBP8 Phosphorylation Affects Its Interaction with SOS2.

(A) The SCaBP8S237Amutation reduces SCaBP8 interaction with SOS2 in

yeast. Yeast strain AH109 harboring SOS2 in the pGADT7 vector was

transformed with SCaBP8, SCaBP8S237D, or SCaBP8S237A in the

pGBKT7 vector. Growth of the transformed yeast was assayed on media

minus Trp and Leu (top panel), minus Trp, Leu, and His (middle panel), or

minus Trp, Leu, and His with 2.5 mM 3-amino-1,2,4-triazole (bottom

panel).

(B) The SCaBP8S237A mutation reduces SCaBP8 interaction with SOS2

in Arabidopsis. Flag-SCaBP8, flag-SCaBP8S237D, and flag-SCaBP8S237A

were expressed in protoplasts from myc-SOS2 transgenic plants. Total

protein was analyzed using anti-myc and anti-flag antibodies (Input).

After immunoprecipitation with anti-myc conjugated agarose, the com-

ponents in the pellet were detected via immunoblot analysis (Output).

SC8, SCaBP8; SD, SCaBP8S237D; SA, SCaBP8S237A.
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ability of SCaBP8 to bind calcium and to interact with, activate, or

recruit SOS2 to the plasmamembrane. In vitro, we did not detect

a significant difference between SCaBP8 and SCaBP8S237A in

calcium binding assays or the activation of SOS2. In yeast, both

SCaBP8 and SCaBP8S237A recruited SOS2 to the plasma

membrane (see Supplemental Figure 4 online). However, in

yeast two-hybrid assays, mutation of Ser to Ala in SCaBP8S237A

significantly decreased the interaction between the mutant pro-

tein and SOS2 when compared with wild-type SCaBP8 (Figure

6A). By contrast, the SCaBP8S237D mutation, which mimics a

phosphorylated Ser residue, enhanced the interactionwith SOS2

(Figure 6A). These interaction differences were not due to differ-

ences in levels of SCaBP8, SCaBP8S237A, or SCaBP8S237D

expression (see Supplemental Figure 6 online). To examine this

Figure 7. The Phosphorylation of SCaBP8 Affects Plasma Membrane Na+/H+ Antiport Activity.

(A) SCaBP8S237A cannot activate the SOS pathway in yeast. Yeast AXT3K cells lack the Na+ efflux proteins ENA1-4 and NHA1 and the vacuolar Na+/H+

antiporter NHX1. Expression of SOS1 activated by SOS2-SOS3/SCaBP8 complex can fully restore the NaCl tolerance. Yeast AXT3K cells expressing

Arabidopsis SOS1 and transformed with the indicated combinations of Arabidopsis genes were grown overnight in liquid medium with 1 mM KCl. Five

microliters of serial decimal dilutions were spotted onto plates of the same medium or media supplemented with 200 or 300 mM NaCl. Each plate has

two replicates. Plates were incubated at 288C for 4 d. AP, Arg phosphate.

(B) to (G) Plasma membrane–enriched vesicles were isolated from NaCl-treated wild-type (Col-0) and scabp8 plants. The Na+ transport assay was

initiated by the addition of ATP, and formation of DpH was measured at excitation and emission wavelengths of 430 and 500 nm, respectively. When the

pH gradient (DpH) reached steady state, NaCl was added over a range of final NaCl concentrations from 0 to 100 mM, and initial rates of Na+-induced

dissipation of DpH were measured.

(B) and (C) Plasma membrane Na+/H+ antiport activity is reduced in the scabp8mutant. Wild-type (Col-0) (B) and scabp8 (C) plasmamembrane Na+/H+

antiport activity as a function of NaCl concentration.

(D) to (F) Recombinant SCaBP8 (D) and SCaBP8S237D (E) proteins stimulate plasma membrane Na+/H+ antiport activity in the scabp8 mutant, while

SCaBP8S237A (F) does not.

(G) Na+/H+ antiport activity is reduced in the scabp8 mutant compared with the wild type over a range of NaCl concentrations. The units of Na+/H+

antiport activity are D%F/min/mg protein.

For (B) to (F), one representative experiment of three replicates is shown. For (G), data represent means 6 SE of at least three replicate experiments.

Each replicate experiment was performed using independent membrane preparations. SC8, SCaBP8 protein; SC8SD, SCaBP8S237D protein; SC8SA,

SCaBP8S237A protein; CCCP, m-chlorophenylhydrazone; PM, plasma membrane.
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interaction in planta, we generated 35S:6myc-SOS2 transgenic

plants and transformed 35S:3flag-SCaBP8, 35S:3flag-SCaB-

P8S237A, or 35S:3flag-SCaBP8S237D into protoplasts of a T3

homozygous line expressing 35S:6myc-SOS2 (Sheen, 2001).

Protein extracts were sonicated, myc-SOS2 was immunopreci-

pitated, and flag-SCaBP8 was detected via immunoblot analy-

sis. In comparison to SCaBP8 and SCaBP8S237D, the amount of

SCaBP8S237A protein pulled down by SOS2 was substantially

reduced (Figure 6B).

SCaBP8S237 Phosphorylation Is Required for Activation of

SOS1, the PlasmaMembrane Na+/H+ Antiporter

SCaBP8 recruits SOS2 to the plasma membrane, and this

complex activates SOS1 in yeast (Quan et al., 2007). To deter-

mine if phosphorylation of SCaBP8 affects the capacity of

the SCaBP8-SOS2 complex to activate SOS1, yeast cells

expressing SOS1 andSOS2were transformedwith empty vector

or the SCaBP8, SCaBP8S237A, or SCaBP8S237D construct. The

transformed yeast strains were incubated on AP media contain-

ing 200 or 300 mM NaCl for 3 d (Figure 7A). SCaBP8S237D in

combination with SOS2 activated SOS1 to levels similar to what

has been seen for the wild-type SCaBP8-SOS2 complex. How-

ever, the activity of SOS1, measured as yeast growth in NaCl,

was significantly reduced when SCaBP8S237A mutant protein

was used (Figure 7A). These results suggest that full activation of

SOS1 by SCaBP8-SOS2 requires the phosphorylation of

SCaBP8.

To determine whether SCaBP8 affects the activity of SOS1 in

Arabidopsis, Na+-induced dissipation of a pH gradient (DpH),

which is monitored by a Na+-induced increase in quinacrine

fluorescence that is positively related to Na+/H+ exchange ac-

tivity, was examined. Plasma membrane vesicles were isolated

from 5-week-old plants of the wild type and the scabp8 mutant

treated with 250 mM NaCl for 3 d. As shown in Figures 7B and

7C, plasma membrane Na+/H+ antiport activity was reduced in

scabp8 plants compared with the wild type. The initial rate of

dissipation of DpH by 100mMNaCl was 75 units/min/mg protein

in wild-type plants compared with 55 units/min/mg protein in

scabp8. Over a range of NaCl concentrations between 0 and 100

mM, plasmamembraneNa+/H+ antiport activity was consistently

lower in scabp8 than in the wild type. Together with our yeast

data, reduced Na+/H+ transport activity in scabp8 plants demon-

strates that SCaBP8 is involved in the regulation of SOS1 activity.

Next, we analyzed whether the phosphorylation of SCaBP8

also affects SOS1 activity. Plasma membrane vesicles were

isolated from the scabp8 mutant, and purified SCaBP8,

SCaBP8S237D, or SCaBP8S237A protein was added to the Na+/H+

antiport assays. In the presence of 250 ng/mL SCaBP8, Na+/H+

antiport activity in scabp8 plants was slightly higher than activity

in wild-type plants (Figure 7). Stimulation of Na+/H+ antiport

activity in scabp8 mutant vesicles by SCaBP8S237D was greater

than of SCaBP8; however, little effect of SCaBP8S237A was

observed. Boiled recombinant SCaBP8, SCaBP8S237D, or

SCaBP8S237A proteins did not have any effect on antiport activ-

ity. These data demonstrate that the phosphorylation of SCaBP8

is critical for the regulation of plasma membrane Na+/H+ antiport

activity.

DISCUSSION

SCaBP calcium sensor activation of its interacting SOS2-like

protein kinase is critical for its function in regulating ion transport

in Arabidopsis (Qiu et al., 2002; Shi et al., 2002; Xu et al., 2006,

Fuglsang et al., 2007, Quan et al., 2007). While SCaBP proteins

do not have predicted transmembrane domains, some family

members locate at and recruit PKS kinases to cellular mem-

branes to perform their function. Lipid modifications of the

SCaBP proteins have been shown to be essential for their

function or membrane localization in planta (Ishitani et al.,

2000; Batistic et al., 2008). N-terminal myristoylation of SOS3

is important for its function in salt tolerance, and, in yeast, it is

required to recruit SOS2 to the plasma membrane (J.M. Pardo,

unpublished results). Whether myristoylation is required for

SOS3 plasma membrane localization in Arabidopsis remains to

be determined. Like SOS3, SCaBP8 activates SOS2 kinase

activity and recruits SOS2 to the plasmamembrane, but it lacks a

myristoylation signature sequence (MGXXXS/K). SCaBP8 pro-

tein associates with the plasma membrane due to an N-terminal

hydrophobic domain (Quan et al., 2007). This association is very

stable because high concentrations of KCl or Triton X-100 do not

remove it from the plasma membrane (Quan et al., 2007). In this

study, we determined that, in Arabidopsis, SCaBP8 is phos-

phorylated by SOS2 and that this modification stabilizes the

SOS2-SCaBP8 complex at the membrane by enhancing the

interaction of these two proteins. This finding identifies a post-

translational modification and an additional level of regulation

within the SCaBP family.

It is believed that once the calcium signal is induced by

stress stimuli, calcium binds to and activates SCaBP proteins

(Harper et al., 2004). Some of the SCaBP proteins in turn

Figure 8. A Working Model of Activation of SOS2 by SCaBP8 in Shoots

and by SOS3 in Roots.

(A) In shoot tissue, SCaBP8 recruits SOS2 to the plasma membrane and

then the salt-induced phosphorylation strengthens the SCaBP8-SOS2

complex at the plasma membrane. SOS2 then phosphorylates and

activates SOS1.

(B) In root tissue, the N-terminal myristoylation of SOS3 recruits SOS2 to

the plasma membrane. SOS2 phosphorylates and activates SOS1.

SC8, SCaBP8; M, myristoylation; P, phosphorylation.
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interact with, activate, and recruit PKS protein kinases to

cellular membranes and regulate their target activities. Both

SOS3 and SCaBP8 function in Arabidopsis salt tolerance by

activating SOS2 in the plasma membrane (Liu et al., 2000;

Quan et al., 2007). However, different modifications are re-

quired for their full function in vivo. It is likely that myristoylation

of SOS3 targets the SOS3-SOS2 complex to the plasma

membrane in roots, phosphorylation of SCaBP8 by SOS2

stabilizes SOS2 at the membrane in shoots, and SOS3/

SCaBP8-SOS2 phosphorylates SOS1 and enhances the activ-

ity of this plasma membrane Na+/H+ antiporter (Figure 8).

The SOS2 FISL motif is essential for the interaction of SOS2

with either SOS3 or SCaBP8 (Guo et al., 2001; Quan et al., 2007).

The FISL motif inserts into a crevice of SOS3 that is surrounded

by four EF-hands (Sanchez-Barrena et al., 2007). SOS3 and

SCaBP8 share high sequence similarity in their EF-hand domains

and but have distinct N- and C-terminal domains. In studies of

SOS3 crystals, the C-terminal peptide was disordered and could

not be detected in the structure (Sanchez-Barrena et al., 2005).

Although the three-dimensional structure of SCaBP8 is not yet

available, its C terminus shares higher sequence similarity with

SCaBP1/CBL2 than SOS3. In SCaBP1, the C-terminal peptide

spans and covers the crevice generated by the EF-hand domains

(Nagae et al., 2003; Akaboshi et al., 2008). By analogy, a similar

mechanism in SCaBP8 might obstruct the interaction between

SOS2 and SCaBP8. Upon phosphorylation by SOS2 under salt

stress, the C terminus of SCaBP8 might be displaced to allow a

better fit for the FISL motif of SOS2 into the crevice. This is

consistent with our data indicating that the phosphorylation

affects, above all, the strength of the interaction between SOS2

and SCaBP8.

The finding that SCaBP8 protein is present in both soluble and

membrane fractions (Figure 4; Quan et al., 2007) while the

phosphorylated form of SCaBP8 is found exclusively in the

membrane fraction is intriguing. Because the truncated, cyto-

solic mutant SCaBP8DN protein was phosphorylated in vitro by

SOS2 but not in vivo (Figure 4B) and mutation of Ser-237 did not

compromise the targeting of SCaBP8 to the plasma membrane

(see Supplemental Figure 4 online), we conclude that phosphor-

ylation of SCaBP8 is not a prerequisite for its targeting to the

plasma membrane. Rather, phosphorylation appears to take

place only after SCaBP8 reaches the membrane. This would, in

turn, suggest that the phosphorylation event is triggered by

additional input(s) beyond the interaction between SCaBP8 and

SOS2 which could, theoretically, also take place in the cyto-

plasm. We speculate that it is the interaction of the SCaBP8-

SOS2 complex with its downstream target that brings about

the phosphorylation of SCaBP8 and stabilization of the

ternary complex. This model is consistent with the fact that

SCaBP8S237A, which cannot be phosphorylated, was still

targeted to the plasma membrane but was incompetent to

mediate full activation of SOS1 in yeast cells and plasma mem-

brane–enriched vesicles from Arabidopsis (Figure 7) or to confer

salt tolerance in planta (Figure 5). Inmammalian cells, calcineurin

B homologous proteins regulate Na+/H+ exchange activity by

interacting with the cytoplasmic domain of the transporter (Pang

et al., 2001). We cannot exclude the possibility that SCaBP8

directly associates with the SOS1 and that the phosphorylation

of SCaBP8 by SOS2 strengthens this interaction. It is worth

noting that SOS2 has been shown to activate CAX1, the vacuolar

Ca2+/H+ exchanger, through protein–protein interaction that is

independent of protein phosphorylation (Cheng et al., 2004). It is

tempting to speculate that phosphorylation of the SCaBP sub-

unit is an alternative way to regulate the activity of the target

protein rather than by phosphorylation of the target. If this is

indeed the case, it might offer a reasonable explanation to the

puzzling observation thatSCaBP8andSOS3cannot replaceeach

other in reciprocal mutant complementation assays (Quan et al.,

2007). While the SOS3-SOS2 complex regulates its target protein

by phosphorylation of the target (Quintero et al., 2002; Fujii and

Zhu, 2009), the SCaBP8-SOS2 complex may do so by stabiliza-

tion of the ternary complex after phosphorylation of SCaBP8.

Kim et al. (2007) reported that the CBL10 (SCaBP8)-CIPK24

(SOS2) complex is also associated with the vacuolar membrane

(tonoplast) and regulates vacuolar sequestration of Na+. In

addition, SOS2 has been shown indirectly to regulate Na+/H+

antiport activity in tonoplast-enriched vesicles from Arabidopsis

(Qiu et al., 2004). SOS2 is known to physically interact with two

ion transporters at the tonoplast, the vacuolar H+-ATPase reg-

ulatory subunits B1 and B2 and CAX1 (Cheng et al., 2004; Batelli

et al., 2007). H+ transport activity in tonoplast vesicles isolated

from sos2-2 mutant cells was reduced relative to vesicles from

wild-type cells. However, whether SCaBP8 is required for these

transport processes occurring at the tonoplast was not deter-

mined. Our unpublished results (J.M. Pardo) indicate that Na+/H+

exchange in tonoplast vesicles is not altered in the scabp8

mutant. By contrast, we provide compelling evidence that

Na+/H+ exchange at the plasma membrane of Arabidopsis is

severely reduced in the scabp8 mutant (Figure 7). SOS1 is the

only known protein responsible for Na+/H+ exchange at the

plasma membrane (Qiu et al., 2002), in keeping with our data

showing that SOS1 is a primary target of the SCaBP8-SOS2

kinase complex (Figure 7; Quan et al., 2007).

METHODS

Plasmid Construction

To produce SCaBP8L, SCaBP81-201, SCaBP81-213, SCaBP81-234,

SCaBP8S237A, SCaBP8T242A, and SCaBP8S237AT242AGST fusion proteins,

the DNA fragmentswere amplifiedwith the primers listed in Supplemental

Table 1 online. The SOS2 FISL motif was amplified from the pGEX-2TK-

SOS2 plasmid using the primer pairs 59-CGGGATCCATGAT

GAATGCCTTTGAGATG-39 and 59-AGCGTCGACTCAGTCAAATAGTG

CAGATAAA-39. These PCR products were cloned into the pGEX-6P-1

vector at the BamHI and SalI sites. All primers and plasmid constructs

used in these studies are listed in Supplemental Table 1 online.

Protein Purification and Kinase Assays

All constructs were transformed into Escherichia coli strain BL21 (DE3).

The recombinant proteins (including SCaBP8, SOS3, and SOS2) were

purified with glutathione sepharose (Amersham Pharmacia) according to

the manufacturer’s protocol.

Kinase buffer included 20 mM Tris-HCl, pH 8.0, 5 mM MgCl2, 10 mM

ATP, and 1 mM DTT. Kinase assays (total volume of 20 mL) were started

by adding 1 mg protein and 0.5 mL of [g-32P]ATP (5 mCi), and the mixtures

were incubated at 308C for 30 min (Quan et al., 2007). Reactions were

1616 The Plant Cell



terminated by the addition of 63 SDS loading buffer and were incubated

at 958C for 5 min. The proteins were separated using 12% (w/v) SDS-

PAGE and stained with Coomassie Brilliant Blue R 250 followed by

exposure to a phosphor screen (Amersham Biosciences). Signals were

captured by a Typhoon 9410 phosphor imager (Amersham Biosciences),

and signals were quantified by ImageQuant 5.0 software.

Preparation of Anti-Phosphoserine237 SCaBP8

Polyclonal Antibodies

Anti-phosphoserine237 polyclonal antibodies were made by AbMart (www.

ab-mart.com.cn). Two 9–amino acid peptides (corresponding to amino

acids 232 to 243 of SCaBP8) with N-terminal Cys residues,

C-TAFPpSFIFNTE-NH2 (phosphorylated form) and C-TAFPSFIFNTE-NH2

(nonphosphorylated form),were also synthesizedbyAbMart. TheSer-237

phosphospecific peptide (C-TAFPpSFIFNTE-NH2) was used to produce

polyclonal phosphospecific antibodies, and the nonphosphorylated pep-

tide (C-TAFPSFIFNTE-NH2) was used for screening and purification.

SCaBP8Ser237 Phosphorylation in Planta

35S:6myc-SCaBP8, 35S:6myc-SCaBP8S237A, 35S:6myc-SCaBP8S237D,

and 35S:6myc-SCaBP8DN plasmids were constructed by excising

the DNA fragments with BamHI and SalI from GST-SCaBP8, GST-

SCaBP8S237A, GST-SCaBP8S237D, and GST-SCaBP8DN plasmids and

cloning them into the pCAMBIA1307-6myc binary vector downstream of

the myc tag. The resulting constructs were introduced into Agrobacte-

rium tumefaciens GV3101 and transformed into Arabidopsis thaliana

Col-0, scabp8, or the sos2 mutant. T3 homozygous lines were treated

with different concentrations of NaCl for the times indicated or with 100

mM KCl or 100 mM mannitol for 12 h. Plant protein was extracted using

23 cold extraction buffer containing 10mM Tris-Cl, 150mMNaCl, 2 mM

EDTA, 0.5% (v/v) Nonidet P-40, 23 protease inhibitor (Roche), and 23

phosphatase inhibitor (Roche). The resulting samples were then

analyzed by SDS-PAGE and blotted onto a polyvinylidene difluoride

membrane (Millipore). The blots were probed with primary anti-SCaBP8-

phosphoserine237 or anti-cmyc (Sigma-Aldrich; M4439) antibodies, and

chemiluminescence signals were detected by film.

Isolation of Soluble and Membrane Fractions

Transgenic plants were homogenized with extraction buffer. Total crude

homogenate was centrifuged at 48C for 10 min at 10,000g, and the

resulting supernatant was centrifuged at 48C for 60 min at 140,000g to

generate microsomal membrane (a mixture of small membrane vesicles

and fragments arising from the plasma membrane, tonoplast, endoplas-

mic reticulum, and Golgi apparatus) and soluble protein fractions.

Salt Sensitivity Assays

Seeds ofwild-typeArabidopsis, transgenic plants, and the scabp8mutant

were sterilized in a solution containing 20% (v/v) sodium hypochlorite and

0.1% (v/v) Triton X-100 for 10 min, washed five times with sterile water,

and sown on MS medium with 0.6% (w/v) Phytagel agar (Sigma-Aldrich).

The plateswere placed at 48C for 2 d, and then the seedswere germinated

vertically at 238C under continual illumination. Four-day-old seedlings

were transferred onto MS medium with salts added as described.

Yeast Two-Hybrid Assays

SOS2 coding sequence was amplified with the following primers:

59-TGGAATTCATGACAAAGAAAATGAGAAG-39 and 59-CGGGATCCT

CAAAACGTGATTGTTCTGAG-39. The PCR product was digested with

EcoRI and BamHI and then cloned into pGADT7. SCaBP8, SCaBP8S237A,

and SCaBP8S237D were amplified from the GST-SCaBP8, GST-SCaB-

P8S237A, and GST-SCaBP8S237D plasmids with the primer pairs

59-TGGAATTCATGGAACAAGTTTCCTCTAG-39 and 59-AGCGTCGACT-

CAGTCTTCAACCTCAGTGTT-39 and cloned into pGBKT7with EcoRI and

SalI. Yeast strain AH109 expressing pGADT7-SOS2 (prey) was trans-

formed with pGBKT7-SCaBP8, pGBKT7-SCaBP8S237A, or pGBKT7-

SCaBP8S237D (baits). Transformed yeast cells were selected on synthetic

complete medium lacking Trp and Leu. Empty prey or bait vector was

transformedwith SOS2 or different SCaBP8 proteins as negative controls.

Interaction was determined on synthetic complete medium lacking Trp,

Leu, and His and supplemented with 2.5 mM 3-amino-1,2,4-triazole

(Sigma-Aldrich). All bait proteins were tested for self-activation; none

were found to activate the two reporter genes His3 or LacZ.

Coimmunoprecipitation Assays

The coding sequences of SOS2, SCaBP8, SCaBP8S237A, and

SCaBP8S237D were translationally fused downstream of the c-myc or

flag tags and cloned into the pCAMBIA1205 vector. The plasmids were

purified by CsCl gradient centrifugation and transformed intoArabidopsis

mesophyll protoplasts. After overnight incubation, the protoplasts were

lysed, sonicated, and centrifuged. Ten microliters of anti-myc agarose

conjugate (Sigma-Aldrich) was incubated with the extract supernatant

overnight at 48C. After washing five times in 1 mL of extraction buffer, the

coimmunoprecipitation products were detected via immunoblot analysis.

Both anti-myc (Sigma-Aldrich) and anti-flag (Sigma-Aldrich) antibodies

were used at 1:5000 dilutions, and chemiluminescence signals were

detected by film.

PlasmaMembrane Isolation

Plasma membrane–enriched vesicles were isolated from 5-week-old

plants using aqueous two-phase partitioning as described by Qiu et al.

(2002). All steps were performed at 48C or on ice. Plants were homog-

enized in isolation buffer containing 0.33 M sucrose, 10% (w/v) glycerol,

0.2% (w/v) BSA, 5 mM EDTA, 5 mM DTT, 5 mM ascorbate, 0.2% (w/v)

casein, 0.6% (w/v) polyvinylpyrrolidone, 1 mM PMSF, 13 protease

inhibitor, and 50 mM HEPES-KOH, pH 7.5. Two to four milliliters of

homogenization buffer were used per gram of tissue. The homogenate

was filtered through one layer of miracloth and centrifuged at 13,000g for

10 min. The supernatant then was centrifuged for 50 min at 80,000g to

obtain a microsomal pellet that was resuspended in a buffer containing

0.33 M sucrose, 3 mM KCl, 0.1 mM EDTA, 1 mM DTT, 1 mM PMSF, 13

protease inhibitor, and 5 mM potassium phosphate, pH 7.8. The sus-

pension was added to a phase mixture to obtain a phase system

consisting of 6.2% (w/w) Dextran T-500 and 6.2% (w/w) polyethylene

glycol 3350 in 5 mM potassium phosphate, pH 7.8, buffer containing 0.33

M sucrose and 3 mM KCl. The final upper phases were collected, diluted

with resuspension buffer containing 0.33 M sucrose, 10% (w/v) glycerol,

0.1% (w/v) BSA, 0.1 mM EDTA, 2 mM DTT, 13 protease inhibitor, and 20

mM HEPES-KOH, pH 7.5, and centrifuged for 50 min at 100,000g. The

resulting pellet was collected and resuspendedwith the above-described

resuspension buffer containing 1 mM EDTA.

PlasmaMembrane Na+/H+ Antiport Assays

Na+/H+ antiport activity was measured as a Na+-induced dissipation of

the pH gradient (DpH; i.e., a Na+-induced increase in quinacrine fluores-

cence) as described by Qiu et al. (2002). Recombinant SCaBP8,

SCaBP8S237D, or SCaBP8S237A protein (250 ng/mL) was preincubated

for 10 min at room temperature with plasma membrane vesicles isolated

from scabp8 mutant plants. An inside-acid DpH was formed in the
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vesicles by the activity of the H+-ATPase and measured as a decrease

(quench) in the fluorescence of quinacrine (a pH-sensitive fluorescent

probe). Assays (2 mL) contained 5 mMquinacrine, 3 mMMgSO4, 100 mM

KCl, 25 mM 1,3-bis[Tris(hydroxylmethyl)methylamino]propane-HEPES,

pH 6.5, 250 mM mannitol, and 50 mg/mL of plasma membrane protein.

Reactions were mixed by inversion several times and then placed in a

dark chamber in a fluorescence spectrophotometer (Hitachi F-4500).

Reactions were equilibrated in the dark with stirring for 5 min before

beginning fluorescence readings. The assaywas initiated by the addition of

ATP to a final concentration of 3 mM, and formation of DpHwas measured

at excitation and emission wavelengths of 430 and 500 nm, respectively.

When the maximum DpH was formed (reached steady state), NaCl was

added to initiate Na+ transport. At the end of each reaction, 10 mM (final

concentration) of the protonophorem-chlorophenylhydrazone (CCCP) was

added to dissipate any remaining DpH. Specific activity was calculated by

dividing the initial rate by the mass of plasma membrane protein in the

reaction (D%F/min per mg of protein). Unless indicated, all data represent

means 6 SE of at least three replicate experiments.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome

Initiative or GenBank/EMBL databases under accession numbers

At5g24270 (SOS3) and At4g33000 (SCaBP8).
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