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Summary
Shrinkage-type variable selection procedures have recently seen increasing applications in
biomedical research. However, their performance can be adversely influenced by outliers in either
the response or the covariate space. This paper proposes a weighted Wilcoxon-type smoothly clipped
absolute deviation (WW-SCAD) method, which deals with robust variable selection and robust
estimation simultaneously. The new procedure can be conveniently implemented with the statistical
software R. We establish that the WW-SCAD correctly identifies the set of zero coefficients with
probability approaching one and estimates the nonzero coefficients with the rate n−1/2. Moreover,
with appropriately chosen weights the WW-SCAD is robust with respect to outliers in both the x and
y directions. The important special case with constant weights yields an oracle-type estimator with
high efficiency at the presence of heavier-tailed random errors. The robustness of the WW-SCAD
is partly justified by its asymptotic performance under local shrinking contamination. We propose a
BIC-type tuning parameter selector for the WW-SCAD. The performance of the WW-SCAD is
demonstrated via simulations and by an application to a study that investigates the effects of personal
characteristics and dietary factors on plasma beta-carotene level.
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1. Introduction
In biomedical research, statisticians often need to analyze data sets with a non-normally
distributed response variable and/or many covariates that potentially contain multiple high
leverage points. This often imposes serious problems for variable selection and the subsequent
inference. Existing work on robust variable selection are mostly robust best-subset procedures,
such as robust AIC or BIC, see Ronchetti (1985), Hurvich and Tsai (1990), Burman and Nolan
(1995), Ronchetti and Staudte (1994), Ronchetti, Field and Blanchard (1997), Wisnowski et
al. (2003) and Müller and Welsh (2005), among others. The best-subset type procedures are
computationally intensive even for moderately large number of covariates; and are known to
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have inherent instability (Brieman, 1996) due to their discrete nature. Moreover, these
approaches in general are only robust against outliers in the response space but are still sensitive
to high-leverage points. This paper introduces a novel unified framework called the weighted
Wilcoxon-type smoothly clipped absolute deviation method (WW-SCAD, for short) for
automatic robust variable selection and robust estimation that can effectively handle the above
concerns.

In Section 4, we analyzed a data set from a study investigating the effects of personal
characteristics and dietary factors on plasma beta-carotene level. It has been observed that low
plasma concentrations of beta-carotene might be associated with increased risk of developing
certain types of cancer. Due to the nature of the study, many patients have rather low plasma
beta-carotene levels. This results in a long-tailed and highly skewed distribution for the
response variable (plasma beta-carotene level, ng/ml), see the histogram depicted in Figure 1
(a). Also, two of the ten covariates: x8 (number of alcoholic drinks consumed per week) and
x9 (cholesterol consumed per day) clearly contain multiple outliers, some are even quite
extreme, as revealed by their boxplots in Figure 1(b). This leads us to propose a procedure that
is robust on both the covariate and response spaces to analyze this data set. Some covariates
may not have effects on the plasma beta-carotene level. Thus, it is of great interest to further
develop variable selection procedure in robust statistical modeling. From the analysis in section
4.2, the newly proposed robust variable selection procedure reduces the median prediction
error on the validation data to about 68% of that given by its nonrobust alternative.

The WW-SCAD procedure is motivated by recent developments in shrinkage-type variable
selection procedures such as LASSO (Tibshirani, 1996) and SCAD (Fan and Li, 2001).
Distinguished from the robust subset-type procedures, the WW-SCAD simultaneously selects
covariates and estimates parameters by minimizing an objective function which is the sum of
the weighted Wilcoxon-type dispersion function and the smoothly clipped absolute deviation
(SCAD) penalty function, see Section 2.2. The penalty term shrinks the estimated small
coefficients to zero, thus serves the purpose of variable selection.

The WW-SCAD is robust against outliers in both the x and y directions with appropriately
chosen weights. This is different from the LAD-LASSO procedure based on the least absolute
deviation regression (Wang, Li and Jiang, 2007) and the penalized composite quantile
regression (Zou and Yuan, 2007), which provide a certain degree of protection against outliers
in the response space but are vulnerable to high leverage points. We provide theoretical
justification for the robustness of the WW-SCAD by studying its performance under shrinking
local contamination. Under the local contamination, we reveal that the WW-SCAD still
identifies zero coefficients with probability approaching one and estimates nonzero
coefficients with a bias bounded in (x, y) when the weights are appropriately chosen.

The WW-SCAD with constant weights leads to an important special case that is closely related
to the classical Wilcoxon inference based on Jaeckel’s (1972) dispersion function with
Wilcoxon scores. In this case, with a proper tuning parameter the resulted estimator possesses
the oracle property (Fan and Li, 2001) and often significantly improves the efficiency of the
LS-SCAD (least-squared procedure with SCAD penalty) in the presence of heavy-tailed errors.
The tuning parameter in the WW-SCAD controls the model complexity and plays an important
role in the variable selection procedure. In practice, it is desirable to select the tuning parameter
using a data-driven method. We propose a BIC-type tuning parameter selector and show that
with probability tending to one, the WW-SCAD with the BIC-selector can identify the most
parsimonious correct model.

Rank-based statistical procedures have wide applications in biomedical research due to their
robustness and high efficiency; see Jin et al. (2003), Jung and Ying (2003), Mahfoud and
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Randles (2005), Rosner, Glynn and Lee (2006a, 2006b), Heller (2007), Datta and Satten
(2008), Wang and Zhao (2008) and the references therein. However, the aforementioned work
mainly focuses on estimation and hypothesis testing. Our proposal therefore extends rank-
based nonparametric analysis to the important area of variable selection.

The rest of the paper is structured as follows. In the next section, we introduce the WW-SCAD
procedure and discuss its implementation via the software package R. In Section 3, we establish
the asymptotic normality and consistency of selection, and provide justification for robustness
by considering the asymptotic distribution under local contamination. Furthermore, we
introduce a BIC-type procedure for selecting the tuning parameter. In Section 4, we
demonstrate the performance of the WW-SCAD by Monte Carlo studies and apply it to analyze
the plasma beta-carotene level data set. Section 5 summarizes the paper.

2. Weighted Wilcoxon-type Smoothly Clipped Absolute Deviation Method
Consider a linear regression model

where Y = (Y1,…, Yn)′ is an n×1 vector of responses, α is the intercept, 1n is an n×1 vector of
ones, X is an n × d matrix of covariates which without loss of generality is assumed to be
centered, β is a d×1 vector of unknown parameters, and ε is an n×1 vector of independent,
identically distributed random errors with probability density function f(·). We assume that
some components of β are zero in the true model. The goal of our work is to identify the zero
coefficients consistently and robustly, and to estimate the nonzero coefficients efficiently and
robustly.

2.1 The WW-SCAD
The penalized weighted Wilcoxon method estimates β by minimizing

where the bij’s are positive and symmetric weights,  with xi being the ith row of
X, pλ(·) is a penalty function and λ is a tuning parameter controlling the complexity of the
model. In Section 3.4, we propose a data-driven method to select λ. In our asymptotic analysis,
we write λ as λn to emphasize its dependence on the sample size n.

Directly minimizing n−2 Σi<j bij|ei − ej|, a weighted version of Gini’s mean difference measure
of variability, yields the generalized rank estimator (GR estimator), see Sievers (1983), Naranjo
and Hettmansperger (1994), Chang, McKean, Naranjo, and Sheather (1999), Terpstra, McKean
and Naranjo (2001), among others. When bij are constant, minimizing n−2 Σi<j bij|ei − ej| is
equivalent to minimizing Jaeckel’s (1972) Wilcoxon-type dispersion function

, where  denotes the rank of  among
.
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Fan and Li (2001) provided deep insights into the principles of choosing an appropriate penalty
function. They proposed the smoothly clipped absolute deviation (SCAD) penalty function,
which satisfies pλ(0) = 0 and has the first-order derivative

(1)

for some a > 2 and θ > 0. Following Fan and Li (2001), we will use a = 3.7 throughout this
paper. Recently, Zou and Li (2007) proposed a local linear approximation to the SCAD penalty,
which retains the same asymptotic properties and at the same time significantly improves the
computational efficiency of Fan and Li’s LS-SCAD. Adopting this idea, we propose a WW-
SCAD procedure for robust simultaneous variable selection and estimation. Formally, the
WW-SCAD method estimates β by minimizing

(2)

where  is defined in (1),  is the linearized SCAD penalty (Zou and Li,
2007) and β0 is an initial estimator, which we set to be the unpenalized weighted Wilcoxon
estimator. Unlike the objective function for the LS-SCAD, the objective function defined in
(2) is convex in β.

We complete this subsection with a brief discussion of estimating the intercept parameter α.
Since (2) is invariant to a location change, α cannot be estimated simultaneously with β. Instead,
α is estimated based on , i = 1,…, n. A common practice is to estimate α by the
median of the ei(β ̂)’s, see for example Section 3.5.2 of Hettmansperger and McKean (1998).

2.2 Computation
An appealing feature of the WW-SCAD is that its computation can be conveniently carried
out using the statistical software R. Our algorithm is similar to that of the LAD-LASSO (Wang,
Li and Jiang, 2007). The key observation is that minimizing (2) can be achieved by fitting an
L1 regression model based on the pseudo observations . The first n(n −
1)/2 pseudo observations correspond to (bij(xj − xi), bij(Yj− Yi)), for 1 ≤ i < j ≤ n, and the last

d pseudo observations correspond to ( ), where ψj is the d-dimensional vector with
the jth component being one and all other components being zeros.

The unpenalized weighted Wilcoxon estimator  can obtained using the function wwfit in the
R software developed by Terpstra and McKean (2005) for rank regression (downloadable from
http://www.stat.wmich.edu/mckean/HMC/Rcode). And the L1 regression model can be fitted
using the R package quantreg by Roger Koenker for quantile regression.

Remark—It is worth emphasizing that in order to achieve practical robustness it is not
sufficient to merely have a robust objective function. The algorithm itself is also of critical
importance. For shrinkage-type procedures, special algorithms are often used for the
implementation and most of these algorithms are sensitive to outlier contamination. As an
example, if we approximate the WW-SCAD objective function quadratically and then apply
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the LARS algorithm (Efron et al., 2004), the resulting procedure is likely to be still sensitive
to outliers.

3. Asymptotic Properties
3.1 Notations and assumptions

We consider Mallows-type weights bij that possibly depend on the covariates in the form bij =
b(xi, xj). In the simulations and data analysis, we adopt the GR weights (Chang, et al., 1999,
Terpstra and McKean, 2005): bij = h(xi)h(xj), where

with (μ̂, S) being the robust minimum volume ellipsoid (MVE) estimator of the location and
scatter (Rousseeuw and van Zomeren, 1990), and b being the 95th percentile of χ2(d).

Following the notations in Naranjo and Hettmansperger (1994), let W be an n × n matrix of
elements wij, where

Assume  and , where C, V and Σ are positive
definite matrices:

and M(x) denotes the cumulative distribution function of x.

We denote the true value of β by . Without loss of generality, we
assume that β20 = 0 and that the elements of β10 are all nonzero. We also assume the dimension
of β10 is s (1 ≤ s ≤d). Let X1 be the first s columns of X that correspond to β10, and write

In addition to the above, we assume that the error density function f(·) is absolutely continuous
with finite Fisher information, i.e., ∫{f(x)}−1 f′(x)2dx < ∞. And X and WX both satisfy Huber’s
condition, a sufficient and necessary condition for the least-squares estimator to have an
asymptotic normal distribution; see condition (D.2) of Hettmansperger and McKean (1998).
Under these conditions, the unpenalized WW estimator is -consistent for β0 and
asymptotically normal.
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3.2 Asymptotic properties of the WW-SCAD
Theorem 1 below presents the asymptotic property of the WW-SCAD as a simultaneous model
selection and parameter estimation tool, and its proof is given in the Web Appendix.

Theorem 1—Assume the regularity conditions in Section 3.1. If λn → 0 and  as n
→ ∞, then the WW-SCAD estimator  must satisfy that P(β̂20 = 0) = 1, and

where .

The case with constant weight bij ≡ 1 is particularly important due to its simplicity and its close
connection with the familiar Wilcoxon inference. In this case, we have

, thus we have the following corollary.

Corollary 1—Assume the conditions in Theorem 3.1, then when bij ≡ 1, β̂ satisfies: P(β̂20 =

0) = 1 and .

Corollary 1 suggests that the Wilcoxon-SCAD, with bij ≡ 1 and a properly chosen tuning
parameter, possesses the oracle property (Fan and Li, 2001). That is, with probability approach
one, the WW-SCAD can correctly identify the nonzero coefficients, and estimate them as
efficiently as the unpenalized WW rank regression does as if the true model were known in
advance. Moreover, the WW-SCAD can be more efficient than the LS-SCAD for estimating
β10 in the presence of heavier-tailed errors. It is easy to show that the asymptotic relative
efficiency is ARE = 12σ2 [∫ f2(u)du]2.

Remark 1: This asymptotic relative efficiency is the same as that of the one-sample Wilcoxon
test with respect to the t-test. It is well known in the literature of rank analysis that the ARE is
as high as 0.955 for normal error distribution, and can be significantly higher than 1 for many
heavier-tailed distributions. For instance, ARE = 1:5 for the double exponential distribution,
and ARE = 1:9 for the t distribution with 3 degrees of freedom. For symmetric error distributions
with finite Fisher information, this asymptotic relative efficiency is known to have a lower
bound equal to 0.864.

Remark 2: The asymptotic covariance matrix of β ̂10 in Corollary 1 can be shown to be
equivalent to that in Theorem 2.1 of Zou and Yuan (2007) for composite quantile regression
when K, the number of quantiles, goes to infinity. The composite quantile regression, however,
is more computationally involved. Its objective function involves a mixture of quantile
objective functions at different quantiles (the suggested value of K for practical use is 19). As
a result, besides the regression parameters one also needs to estimate K additional parameters
corresponding to K different quantiles of the error distribution.

With nonconstant weights bij, the WW-SCAD still consistently selects the correct model;
however the asymptotic covariance matrix of  is slightly different from what one
would obtain if the true model were known in advance. This can be seen by observing that in

 (and similarly V11), the matrix W involves all d covariates; while if the true model
were known then W would only use s covariates. Indeed, for the WW-SCAD to work as a

Wang and Li Page 6

Biometrics. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



model selection criterion, it is necessary to allow the weights to depend on all candidate
covariates.

3.3 Asymptotics under local shrinking contamination
Now we study the robustness property of the WW-SCAD. For robust estimation and hypothesis
testing, the influence function approach offers a convenient and essential way to investigate
the local robustness (Hampel, 1974, Hampel et al., 1986). This approach, however, is not
adequate in the current setting as we perform variable selection and parameter estimation
simultaneously.

Following the spirit of influence function approach, we directly study the performance of the
WW-SCAD under infinitesimal contamination. Specifically, we consider the following local
shrinking contamination as in Heritier and Ronchetti (1994):

(3)

where H(x, y) is the joint cumulative distribution function of the underlying distribution without
contamination, Δ(x*,y*) represents the point mass at (x*,y*) and δ is a constant.

Theorem 2—Assume the regularity conditions in Section 3.1. If λn → 0 and  as n
→ ∞, then under local shrinking contamination (3), the WW-SCAD estimator 
must satisfy that P(β̂20 = 0) = 1, and

where η = δ[2F (y* − x*β0) − 1] ∫ b(x*, x)(x* − x)dM(x).

The proof of Theorem 2 is given in the Web Appendix. Theorem 2 indicates that under the
local contamination (3), the WW-SCAD can still correctly identifies the set of zero coefficients
with probability tending to one; but the contamination introduces a bias η in estimating the
nonzero coefficients. Note that [2F(y* − x*β0) − 1] ∫ b(x*, x)(x* − x)dM(x) is also the core part
of the influence function of the unpenalized weighted Wilcoxon estimator. The bias η is
bounded in y*. With proper choice of weights bij, such as the GR weights introduced in Section
3.1, η is also bounded in x* (Naranjo and Hettmansperger, 1994,Chang, et al. 1999).

3.4 Data-driven tuning parameter selection
The tuning parameter λ controls the model complexity and plays a critical role in the WW-
SCAD procedure. It is desirable to select λ automatically by a data-driven method. Here we
propose to select λ for the WW-SCAD by minimizing

(4)

over an interval [0, λmax], where β ̂λ is the WW-SCAD estimator with tuning parameter λ, and
dfλ is the number of nonzero components in β ̂λ. It is assumed that λmax → 0 as n → ∞. We refer
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to this approach as the BIC-selector, and denote the selected λ by λ ̂BIC. It is worth noting that
the BIC-selector is different from the traditional BIC best subset variable selection procedure.

To introduce the property of the BIC tuning parameter selector, we next define some notations.
We use S = {j1,…,jd*}, the set of the indices of the covariates in the model, to denote a given
candidate model. Let ST denote the true model, let SF denote the full model, and let Sλ denote
the set of the indices of the covariates selected by WW-SCAD with tuning parameter λ.

For a given candidate model S, let βS be the vector of parameters. The i-th coordinate of βS is

set to be zero if i ∉ 2 S. Further, define , where β ̂s is
the unpenalized weighted Wilcoxon estimator for model S. To demonstrate that the BIC-
selector can identify the true model consistently, we assume

1. for any S ⊂ SF,  for some LS > 0, where  means converges in probability;

2. for any S ⊅ ST, we have LS > LST.

Note that  is the objective function to obtain the weighted Wilcoxon estimator when model
S is used. Conditions (1) and (2) are standard for investigating parameter estimation under
model misspecification, see White (1981). Let

. Then for the true model ST,
LST = R(β0) where β0 is the true parameter and minimizes R(β) under the full model; and for
a general model S, LS = R(β0s) where β0s minimizes R(β) under model S.

Theorem 3—Assume the conditions above and the regularity conditions in Section 3.1, then
P(Sλ̂BIC= ST) → 1:

The proof of Theorem 3 is given in the Web Appendix. Theorem 3 indicates that λ ̂BIC leads to
a WW-SCAD estimator which consistently yields the true model. The verification of this
theorem is similar to that in Wang, Li and Tsai (2007), in which the authors proposed a novel
BIC-selector for the SCAD penalized least squares procedures.

4. Numerical Examples
4.1 Simulation study

In the literature, the LS-SCAD has been compared with the nonnegative garrote (Breiman,
1995), the LASSO, and the best subset variable selection procedures such as AIC or BIC, see
for example, Fan and Li (2001) and Zou and Li (2007). Our simulations are designed to
demonstrate the robustness and the efficiency of the WW-SCAD, compared with the LS-SCAD
which is computed with the BIC tuning parameter selector of Wang, Li and Tsai (2007). We
also compare with the benchmark oracle procedure, which sets the estimate of zero coefficients
to be zero and estimates the nonzero coefficients by excluding the covariates of zero
coefficients.

We focus on examining the performance of the WW-SCAD in terms of model complexity and
model errors (ME) defined by

(5)

Example 1—As in Tibshirani (1996) and Fan and Li (2001), data are generated from
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(6)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0) and xi = (x1,…, x8)′ ~ N8(0, Ω), in which the (i, j)th element
of Ω equals 0.5|i−j| for 1 ≤ i, j ≤ 8. We consider three different error distributions: the standard
normal distribution, the t distribution with 3 degrees of freedom, and a contaminated standard
normal distribution with 10% outliers from the standard Cauchy distribution. For each case,
we conduct 500 simulations.

Simulation results are summarized in Table 1, in which we report the average number of correct
0’s (the average number of the five true zero coefficients that are correctly estimated to be
zero) and the average number of incorrect 0’s (the average number of the three true zero
coefficients that are incorrectly estimated to be zero). We also report the proportion of correctly
fitted models. To evaluate the lack-of-fit of the selected model, we report the relative model
error RME=ME/MEWilFull, where MEWilFull is the ME for fitting the full model with
unpenalized Wilcoxon rank regression.

From Table 1, we can see that the median of the RME of the WW-SCAD is close to that of the
WWoracle, the weighted Wilcoxon estimator from the oracle procedure. In terms of model error,
the performance of the WW-SCAD is similar to the LS-SCAD for normal error, but much
better than the LS-SCAD for both t3 error and contaminated normal error in terms of model
error. And the WW-SCAD gives significantly higher percentage of correctly fitted 0’s
compared to the LS-SCAD.

Example 2—We now investigate the effect of outliers in the x direction on model selection.
For this purpose, we consider the same regression model (6) with the standard normal random
errors. We consider a contamination of the covariate x by replacing a random 5% of x with x
+ e, where e = (e1,…,e8)′, with e3 having a N (0, 5) distribution and all the other ei’s having
independent N(0, 1) distributions. For the WW-SCAD procedure, we consider both the
Wilcoxon weights and the GR weights.

In this example, the relative model error is defined as RME=ME/MEGRFull, where MEGRFull
is the model error obtained by fitting the full model with the unpenalized weighted Wilcoxon
procedure and the GR weights. We use the weighted Wilcoxon procedure with the GR weights
under the true mode as the benchmark here. The simulation results are summarized in Table
2, from which we observe that the GR weights lead to model selection procedures robust to
outliers in the x direction; in contrast the performance of the LS-SCAD is adversely affected.
We also note that the WW-SCAD with the Wilcoxon weights is not as seriously affected as
the LS-SCAD but does not perform as well as the WW-SCAD with the GR weights.

4.2 Analysis of plasma beta-carotene level data
Observational studies have suggested that low plasma concentration of beta-carotene might be
associated with increased risk of developing certain types of cancer. We consider a data set
from a cross-sectional study that consists of 273 female patients who had an elective surgical
procedure during a three-year period to biopsy or remove a lesion of the lung, colon, breast,
skin, ovary or uterus that was found to be non-cancerous (Nierenberg et al., 1989). The response
variable y is the plasma beta-carotene level (ng/ml) and there are ten covariates: x1 is age, x2
is smoking status (1=never, 2=former smoker, 3=current smoker), x3 is quetelet (weight/
height2), x4 denotes vitamin use (1=yes, fairly often, 2=yes, not often, 3=no), x5 is the number
of calories consumed per day, x6 is grams of fat consumed per day, x7 is grams of fiber
consumed per day, x8 is number of alcoholic drinks consumed per week, x9 is cholesterol
consumed (mg per day) and x10 is dietary beta-carotene consumed (mcg per day).
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As revealed by Figure 1, the distribution of y is highly skewed, while x8 and x9 contain some
obvious outliers. One may suggest log transform the response variable. However, our
preliminary analysis indicates that the log transformed y is still nonnormal. And it becomes
even harder to find an appropriate transformation for x8, which is on ordinal scale. Since the
transformation may not remove the outliers and often brings additional issues for
interpretability, we choose to analyze the variables on their original scale.

We use the first 200 observations as a training data set to select and fit the model, and use the
rest as a validation data set to evaluate the prediction ability (measured by the median absolute
prediction error) of the selected model. The λ values selected by the BIC criterion are 1.249,
2.834 and 3.028 for the LS-SCAD, the WW-SCAD with the Wilcoxon score, and the WW-
SCAD with the GR score, respectively. The resulting estimated models are displayed in Table
3. The LS-SCAD does not exclude any of the ten candidate covariates from the selected model.
The WW-SCAD with either the Wilcoxon score or the GR score fits a much more succinct
model that includes x5 and x10, and suggests that increased plasma beta-carotene level is
associated with increased dietary intake of beta-carotene and reduced number of calories
consumed per day. The WW-SCAD with the Wilcoxon score also includes x9.

In terms of the prediction performance on the validation data, the WW-SCAD with either the
Wilcoxon score or the GR score yields a much smaller median absolute prediction error. The
median absolute prediction error of the WW-SCAD with the GR score is only 68% of that
given by the LS-SCAD.

5. Summary
We propose a novel robust framework called WW-SCAD for simultaneous variable selection
and parameter estimation. This new procedure can be conveniently implemented using the
statistical software R. It is much less computationally intensive compared with the best subset
type procedures. With appropriately chosen weights, the WW-SCAD procedure can effectively
handle outliers in both the x and y directions. Moreover, it loses very little efficiency with
normal data and can be much more efficient than the LS-SCAD at the presence of heavier-
tailed random errors. Although we have focused on studying the SCAD penalty, without any
difficulty our method can be extended with other penalty functions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plasma beta-carotene level data: (a) histogram of y, (b) boxplots of x8 (number of alcoholic
drinks consumed per week) and x9 (cholesterol consumed per day)

Wang and Li Page 13

Biometrics. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang and Li Page 14
Ta

bl
e 

1
Th

e 
si

m
ul

at
io

n 
re

su
lts

 a
re

 b
as

ed
 o

n 
50

0 
ru

ns
. C

 is
 th

e 
av

er
ag

e 
nu

m
be

r o
f c

or
re

ct
 z

er
os

; I
C

 is
 th

e 
av

er
ag

e 
nu

m
be

r o
f i

nc
or

re
ct

 z
er

os
;

C
or

re
ct

 F
it 

(%
) i

s t
he

 p
ro

po
rti

on
 o

f t
im

es
 th

e 
co

rr
ec

t m
od

el
 is

 se
le

ct
ed

; a
nd

 M
R

M
E 

is
 th

e 
m

ed
ia

n 
of

 re
la

tiv
e 

m
od

el
 e

rr
or

.

N
o.

 o
f Z

er
os

E
rr

or
 D

is
tr

ib
ut

io
n

M
et

ho
d

C
IC

C
or

re
ct

 F
it 

(%
)

M
R

M
E

 (%
)

no
rm

al
W

W
-S

C
A

D
4.

42
0

68
.5

43
.8

LS
-S

C
A

D
4.

32
0

60
.0

40
.6

W
W

O
ra

cl
e

5
0

10
0

39
.8

t 3
W

W
-S

C
A

D
4.

46
0

73
.0

40
.5

LS
-S

C
A

D
4.

33
0

63
.5

64
.6

W
W

O
ra

cl
e

5
0

10
0

35
.9

co
nt

am
in

at
ed

 n
or

m
al

W
W

-S
C

A
D

4.
48

0
67

.5
40

.6

LS
-S

C
A

D
4.

10
0

49
.5

92
.7

W
W

O
ra

cl
e

5
0

10
0

37
.0

Biometrics. Author manuscript; available in PMC 2010 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang and Li Page 15

Table 2
The simulation results are based on 500 runs. C is the average number of correct zeros; IC is the average number of
incorrect zeros; Correct Fit (%) is the proportion of times the correct model is selected; and MRME is the median of
relative model error.

No. of Zeros

Method C IC Correct Fit (%) MRME (%)

WW-SCAD (GR) 4.58 0 78.0 39.4

WW-SCAD (Wil) 4.51 0 73.0 44.4

LS-SCAD 3.61 0 39.5 100.3

WWOracle (GR) 5 0 100 37.0
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Table 3
Analysis of plasma beta-carotene level data. Note: The median absolute prediction error is calculated from the validation
data set: median APE=median {|yi − ŷi|,i = 1,…,73}, where yi is the ith response in the validation data set and ŷi is the
prediction of response at xi using the model chosen and fitted by the training data set.

LSSCAD WWSCAD (Wil) WWSCAD (GR)

age 2.489

smoking status 2.561

quetelet −1.127

vitamin use −22.804

calories 0.070 −0.009 −0.008

fat −1.232

fiber 4.960

alcohol 10.353

cholesterol −0.110 −0.015

dietary beta-carotene 0.026 0.021 0.022

median APE 97.902 66.742 66.609
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