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Abstract
We focus on estimation of the causal effect of treatment on the functional status of individuals at a
fixed point in time t* after they have experienced a catastrophic event, from observational data with
the following features: (1) treatment is imposed shortly after the event and is non-randomized, (2)
individuals who survive to t* are scheduled to be interviewed, (3) there is interview non-response,
(4) individuals who die prior to t* are missing information on pre-event confounders, (5) medical
records are abstracted on all individuals to obtain information on post-event, pre-treatment
confounding factors. To address the issue of survivor bias, we seek to estimate the survivor average
causal effect (SACE), the effect of treatment on functional status among the cohort of individuals
who would survive to t* regardless of whether or not assigned to treatment. To estimate this effect
from observational data, we need to impose untestable assumptions, which depend on the collection
of all confounding factors. Since pre-event information is missing on those who die prior to t*, it is
unlikely that these data are missing at random (MAR). We introduce a sensitivity analysis
methodology to evaluate the robustness of SACE inferences to deviations from the MAR assumption.
We apply our methodology to the evaluation of the effect of trauma center care on vitality outcomes
using data from the National Study on Costs and Outcomes of Trauma Care.

1 Introduction
Consider an observational study of individuals who have experienced a catastrophic event and
are non-randomly assigned to a treatment or control condition shortly after the event. The study
design calls for the collection of information on functional outcomes based on interviews
among survivors at a fixed point in time t* after the event, collection of information on pre-
injury covariate data on all survivors, and abstraction of medical records on all individuals to
obtain post-event, pre-injury covariate data. The scientific objective is to draw inferences about
the effect of treatment on functional outcomes at time t*.

Inference about functional outcomes is complicated due mortality. A traditional analysis which
compares treatment-specific outcomes among observed survivors can be misleading, even after
adjusting for measured covariates. This follows since the analysis is conditioned on an
intermediate outcome (i.e., survival) which may be affected by treatment (Rosenbaum,
1984). To see this, suppose some individuals would survive regardless of their treatment
assignment and possess moderate functional outcomes under the control condition and high
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functional outcomes under treatment; some who would die regardless of their treatment
assignment; and the remaining would die under the control condition, but survive under the
treatment condition with low functional outcomes. Thus, treatment has a positive effect on
survival and a positive impact on functional outcomes among those who would survive
regardless of treatment assignment. The untreated survivors will have moderate functional
outcomes. In contrast, the treated survivors are a mixture of those who would live regardless
of treatment assignment and those who live under treatment only and accordingly, the observed
functional outcomes would be mixture of high and low scores. Depending on the mixture, the
traditional analysis could suggest that treatment has a null or negative impact on functioning,
even though treatment is obviously beneficial both in terms of survival and functioning.

To address this issue, Rubin (2000) and Robins and Greenland (2000) recommended that
inference should focus on the effect of the treatment on functional outcomes among the cohort
of individuals who would survive to time t* regardless of whether or not they are assigned to
treatment. The effect has been termed the “Survivor Average Causal Effect” (SACE; Hayden
et al., 2005).

Egleston et al., (2007) proposed a sensitivity analysis methodology for identifying and
estimating SACE with complete information on confounders and missing outcome data among
survivors. Their assumptions do not identify SACE when there are confounding factors that
are missing exclusively on those who die. This paper demonstrates how the method of
sensitivity analysis can be used to identify and estimate SACE when confounders and outcomes
are missing. Frangakis et al. (2007) also tackled the issue of missing factors due to death;
however their approach does not identify SACE.

This paper is organized as follows. Section 2 introduces the data structure and notation. Section
3 defines the SACE estimand. Section 4 provides a review of the identification and estimation
of SACE when there is complete information on confounders. Sections 5 and 6 discuss
identification and estimation of SACE in the presence of missing confounder data. Section 7
provides an analysis of data from the National Study on the Costs and Outcomes of Trauma
Care (NSCOT; MacKenzie et al., 2006), in which moderately to severly injured individuals
were assigned to received trauma or non-trauma center care. Section 8 discusses the results of
a simulation study. The final section is devoted to a discussion.

2 Data Structure and Notation
Let Z denote treatment indicator, where Z = 1 (Z = 0) denotes that the individual has been
assigned to treatment (control). Let D(z) be the indicator of death prior to time t* had the
individual been assigned to treatment Z = z. If D(z) = 0, then define Y (z) to be the functional
outcome (continuous) at time t* had the individual been assigned to treatment Z = z. The
outcomes {D(0), (Y(0) : D(0) = 0), D(1), (Y(1) : D(1) = 0)} are referred to as potential outcomes,
as they are only partially observable. The notation “:” represents belonging to the relevant
subgroup. Let D = D(Z) be the observed mortality outcome. If D = 0, then define Y = Y(Z) as
the functional outcome under the treatment actually received. Also, let X = {X1, X2} denote a
set of confounding covariates, where X1 is observed and X2 is observed if D = 0. If D = 0, let
R be an indicator of whether the functional outcome is observed. The observed data for an
individual is O = {Z, R, D, X1, (X2 : D = 0), (Y : D = 0, R = 1)}

3 Causal Estimand
For continuous outcomes, SACE has been defined as the mean of the difference in the potential
functional outcomes under treatment and control, among the cohort of individuals who would
survive regardless of whether or not assigned to treatment. That is,
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4 Assumptions
Egleston et al. (2007) proposed a number of non-verifiable assumptions, similar in spirit to
Hayden et al.’s (2005) assumptions, to identify SACE when there were completely observed
confounder data. These assumptions are as follows:

Assumption 1
The stable unit treatment value assumption (SUTVA)

SUTVA (Rubin, 1980) states that an individual’s potential outcomes under treatment z (i.e.,
{D(z), (Y(z) : D(z) = 0)}) remain the same regardless of the mechanism used to assign the
individual to treatment z and regardless of the treatment assignments of other individuals. This
assumption would be violated if there is interference between individuals or if there exist
unrepresented versions of treatments.

Assumption 2
D(1) ≤ D(0) (Monotonicity)

Monotonicity states that treatment does not harm survival. If an individual were to live under
the control condition then she would also live under the treatment condition.

Assumption 3
Z⊥{D(0), Y(0) : D(0) = 0, D(1), Y(1) : D(1) = 0} | X (No unmeasured confounders)

This assumption is the observational study equivalent of randomization in a randomized trial.
It states that within levels of the confounding covariates X, treatment assignment is randomized.
This implies that, within levels of X, the distribution of potential outcomes is the same for those
assigned to treatment as those assigned to control.

Assumption 4
E[Y(1)|D(0) = 0, D(1) = 0, X] = E[Y(1)|D(0) = 1, D(1) = 0, X]

This is consistent with one component of the “explainable non-random survival” assumption
of Hayden et al. (2005). It states that, given survival under treatment and the full set of
confounding factors, the mean functional outcome under treatment is unrelated to mortality
experience under control. Hayden et al. (2005) and Egleston et al. (2007) propose sensitivity
analyses related to this assumption.

Assumption 5
R⊥Y|D = 0, X, Z (Missing at random)

This assumption states that missingness of the functional outcomes among survivors is not
related to the outcome given the covariates and exposure.

We will discuss each of these assumptions in the context of NSCOT study in Section 7.
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5 Identification, Bias, and Sensitivity Analysis
5.1 Identifiability

Egleston et al. (2007) demonstrated that, under the above assumptions,

(5.1)

where μ(z, X) = E[Y|D = 0, R = 1, X, Z = z] and ρ(z, X) = P[D = 0|X, Z = z]. When X is fully
observed on all subjects, μ(X, z), ρ(z, X), and the marginal distribution of X are identifiable.
When X2 is missing on subjects who die, μ(z, X) remains identifiable since it represents the
expected outcomes of those who survive to one year and respond to the interview, and hence
have observable Y and X. However, ρ(z, X) and the marginal distribution of X are not identified
since they do not condition on survival and hence X2 is not observable on those who die.

The key to identification of SACE when X2 is missing is the following key identity:

(5.2)

where k(Z, X) is any function of Z and X. In light of Equation (5.1), this identity implies that,
if we could establish conditions for identifying ρ(z, x), then SACE would be identifiable since
we would only need to take expectations with respect to the distribution of Z and X among
survivors, which is identifiable. Specifically,

(5.3)

To identify ρ(z, x), we introduce a class of assumptions indexed by sensitivity analysis
parameters.

Assumption 6—logit {1-ρ(z, x)} = h(z, x1) + α’x2 + τ’ z·x2, where h(z, x1) is an unknown
function of z and x1, z · x2 is a vector where each component of x2 is multiplied by z, and α and
τ are fixed non-identifiable sensitivity analysis vectors of the same dimension as x2.

Here, we assume no interaction between x1 and x2. However, additional sensitivity analysis
parameters could be added to the model to account for interactions between x1 and x2. We also
assume that ρ(z, x) > 0 for all z and x. Under assumption 6 with α and τ fixed, it can be shown
that ρ(z, x) is identifiable from the observed data. Identification of ρ(z, x) is tantamount to
showing that h(z, x1) is identified from the observed data. It can be shown that

where each of the conditional expectations on the right hand side above are identifiable from
the distribution of the observed data. This result tells us that SACE is identifiable.
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When α = τ = 0, Assumption 6 implies that X2 is independent of D(z) given X1, for z = 0, 1. In
some circumstances, this assumption might be reasonable. For example, when X2 records
sociodemographic factors, then one might be able to argue that these factors are not related to
the potential mortality outcomes, after conditioning on health status factors recorded in X1.

5.2 Bias
What is the implication of falsely assuming that α = τ = 0? To answer this question, consider
a stratum of X1, say x1. Define Px1 [A|B] and Ex1 [A|B] as the conditional probability and
expectation of event A given X1 = x1 and event B, respectively. Now, suppose that X2 is
dichotomous, where subjects with X2 = 1 are sicker than those with X2 = 0. Thus, Px1[D(0) =
0|X2 = 1] < Px1[D(0) = 0|X2 = 0]. In general, we can write the x1-specific SACE estimand,
SACEx1, as

(5.4)

When α = τ = 0, the above expression reduces to

(5.5)

The right hand sides of (5.4) and (5.5) will be unequal since Px1[D(0) = 0|X2 = 1] < Px1[D(0)
= 0|X2 = 0]. If 0 < P[X2 = 1] < 1 and Ex1[Y(1) - Y(0)|D(0) = 0, X2 = 1] > (<)Ex1[Y(1) - Y(0)|D
(0) = 0, X2 = 0], then falsely assuming α = τ = 0 will lead to an over(under)-estimate of the
stratum-specific estimand. If Px1[D(0) = 0|X2 = 1] < Px1[D(0) = 0|X2 = 0] for all x1 (i.e., α >
0) and Ex1[Y(1) - Y(0)|D(0) = 0, X2 = 1] is larger (smaller) than Ex1[Y(1) - Y(0)|D(0) = 0, X2 =
0] for all x1, then there will be over(under)-estimation of SACE when α = τ = 0 is falsely
assumed.

5.3 Sensitivity Analysis
Since α and τ are not identifiable, we recommend conducting inference about SACE over
plausible ranges of these sensitivity analysis vectors. A major limitation of this approach is
that when α and τ have collectively greater than, say 4, components, it becomes difficult to
display and synthesize the results of the sensitivity analysis. Thus, we recommend that (1)
components of X2 be replaced by a low-dimensional summary and/or (2) additional conditional
independence assumptions be imposed by setting some components of α and τ equal to zero.

Specifically, we partition X2, α and τ so that , , ,
where the Dep and Ind subscripts refer to the components of X2 that are conditionally dependent
and independent, respectively.

6 Estimation
In order to estimate SACE from a dataset of size N, we need to estimate μ(z, x) and h(z, x1).
When X1 and X are high-dimensional (i.e., multiple discrete or continuous components), we
cannot estimate these quantities non-parametrically at rates fast enough to guarantee that the
resulting estimator of SACE will be consistent at -rates. This is called the curse of
dimensionality (Robins and Ritov, 1997). Thus, we need to impose modeling restrictions on μ
(z, x) and h(z, x1). In particular, we assume that h(z, x1) = h(z, x1; γ*) and g(μ(z, x)) = b(z, x;
β*). where h(z, x1; γ) is a specified function of z, x1 and γ, g(·) is a specified link function, b
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(z, x; β) is a specified function of z, x, and β, and γ* and β* denote the true values of γ and β,
respectively.

Throughout, we suppress dependence of our estimation procedure on α and τ. We define a(Z,
X; γ) = h(Z, X1; γ) + α’X2 + τ’Z · X2, ρ(Z, X; γ) = 1 - expit{a(Z, X; γ)}, and μ(Z, X; β) = g-1{b
(Z, X; β)}.

6.1 Estimating Functions
To estimate γ* and β*, we develop unbiased estimating functions. Our estimating function for
γ* is motivated by the fact that

has mean zero when evaluated at γ*, where a’(Z, X; γ) is the derivative of h(Z, X1; γ) with
respect to γ. Our estimating function for β* is motivated by the fact that

has mean zero when evaluated at β*, where b’ (Z, X; β) is the derivative of b(Z, X1; β) with
respect to β. Further, we can set up an unbiased estimating function for

. Notice that

has mean zero at , γ*, and β*.

In some observational studies (e.g., NSCOT), individuals are probabilistically sampled. Let
S denote the sampling indicator. Then, O is only observed if S = 1. An individual can be sampled
with probability depending on a subset of O. Let p(O) denote the known, sampling probability.
Then the estimating functions above will remain unbiased when they are multiplied by S/p
(O). We will refer to O† as the sampled data (i.e., O and p(O) for those individuals with S = 1)
plus S. Let Uγ (O†; γ) = SUγ(O; γ)/p(O), Uβ(O†; β) = SUβ(O; β)/p(O), Uνz(O

†; νz, γ, β) =
SUνz(O; νz, γ, β)/p(O).

Let ψ = (γ’, β’, ν0, ν1)’ and ψ* denote the true value of ψ. Further, define U (O†; ψ) =
(Uγ(O†; γ)’, Uβ(O†; β)’, Uν0(O†; γ, β, ν0), Uν1(O†; γ, β, ν1). Then, ψ* is estimated by , as the

solution to , where N denotes the size of the population from which
individuals were probabilistically drawn. Since SACE is a function of  and , we can then
estimate SACE, by .

6.2 Large Sample Theory
Using M-estimation theory (Huber, 1964), under mild regularity conditions, we can show
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where . We can use the empirical

operator and substitute  for ψ* to obtain an estimate of Σ*. Specifically, 
where

Since SACE is a differentiable function of ψ*, we can use the delta method to obtain an
approximation to the distribution of .

7 NSCOT Study
7.1 Features

Eligible patients in the NSCOT study were all trauma patients ages 18-84 who were treated at
one of 18 trauma centers and 51 non-trauma centers for a moderately severe to severe injury
between July 2001 and November 2002, and met certain criteria. Medical records were
scheduled to be collected on all hospital deaths and a stratified sample of those discharged
alive, with stratum-specific sampling probabilities. The strata were defined by hospital, age,
injury severity score and principal body region injured. For those identified, not all medical
records could be ascertained and for those that were ascertained, some patients were deemed
ineligible. The sampling weights reflect the initial sampling scheme, the lack of ascertainment
of records, and the ineligibility of ascertained records.

Medical records were ascertained on 1,391 of 1,438 hospital deaths. Of these 1,104 were
identified as being eligible. Of the 16,760 individuals discharged alive from the hospital and
initially identified as eligible, 8,021 were selected, and medical records were abstracted for
4,866 of these individuals. Of these, 4,087 were considered eligible. Of 5,191 total eligible
with abstracted medical records, 148 were further excluded because they were either transferred
to an NSCOT hospital greater than 24 hours post injury or had a length of stay prior to transfer
from an NSCOT center of less than 24 hours, leaving a total of 5,043 eligibles. Three month
post-injury interview data was collected on all 3,794 eligible individuals who were discharged
alive and alive at the time of interview. A further 86 individuals died between 3 and 12 months,
at which time a follow-up interview was planned. Of 3,708 alive at that time, 3,031 responded
to the interview and had SF-36 vitality data.

In our analysis, t* is 12 months, Z is indicator of trauma center care, Y is vitality status, and
D is indicator of death by 12 months. Vitality, as defined by the vitality perceptions subscale
of the SF-36 (Ware et al., 1993), is a mental health measure of energy, pep, and tiredness that
instrument developers have found to be correlated with both physical and mental function
(McHorney et al., 1993). High vitality scores indicate better outcomes.

The medical records include extensive information on pre-treatment potential confounders
(X1) such as age, race/ethnicity, gender, insurance type, number of pre-existing medical
conditions, injury type and injury severity. These factors, discussed in detail in MacKenzie et
al. (2006), include, for example, the continuous New Injury Severity Score (NISS) and injury
subgroup (categorized into three groups: head, lower extremity, or abdominal/thoracic, spinal
cord, upper extremity). The three month interview contains information on additional pre-
injury confounders (X2) including education, poverty status, self reported health status,
difficulty with activities of daily living (ADL) and difficulty with instrumental activities of
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daily living (IADL). ADL measures an individual’s physical ability to perform tasks such as
eating, dressing, and bathing. IADL measures an individual’s ability to care for oneself, such
as being able to manage finances, prepare meals, and shop for oneself. Since these pre-injury
factors are missing on those who died prior to a three month interview and are likely related
to treatment, survival, and post-injury functioning, study investigators felt that, to prevent
biased inferences, it was important to properly control for these factors. They were particularly
concerned about pre-injury self rated health and difficulty with ADL and IADL; they were
relatively less concerned about education and poverty status, as these factors were partially
captured by race/ethnicity and insurance status from the medical records. With this in mind
and with an eye toward a low-dimensional sensitivity analysis, we defined X2,Dep to be the
indicator of fair or poor self-reported pre-injury health status or one or more pre-injury ADL
or IADL difficulties, and X2,Ind to include income (low - reference, middle, high) and education
(less than high school-reference, high school, some college or more).

7.2 Assumptions
Before proceeding further, it is important to discuss the reasonableness of the identification
assumptions. If we define Z = 1 (Z = 0) to be treatment at the closest, available trauma (non-
trauma) center, then SUTVA (Assumption 1) is reasonable. One would not expect interference
between individuals and the emphasis on closest, available facility-type rules out multiple
versions of treatment. Monotonicity (Assumption 2) is reasonable since those treated in trauma
centers have been shown to have similar or better mortality outcomes compared to those treated
in non-trauma centers, as discussed by MacKenzie et al. (2006). This assumption could be
violated if travel time and mode of transport to the nearest, available trauma and non-trauma
centers are very different. However, investigators believe that there are likely few people for
whom specialized care is harmful.

After controlling for medical and interview information, investigators are confident that they
have controlled for the major confounding factors for evaluating the treatment effect on
functioning. While it always possible that there are unmeasured confounders, they feel that the
residual bias will be relatively negligible. While Assumption 4 (explainable non-random
survival) seemed relatively plausible to the investigators, we will evaluate the robustness of
inferences to deviations from this assumption below. Missing at random (Assumption 5) also
seemed relatively reasonable to investigators, although one can imagine that, even after
adjusting for X, those with poorer functioning might be less likely to respond to the interview.
One can conduct sensitivity analysis to this assumption using inverse-weighting techniques
described in Rotnitzky et al. (1998).

7.3 Models
In our model for death, h(Z, X1; γ) was taken to be additive in X1 with smooth functions
(restricted cubic splines with 2 interior knots) of age and NISS, interactions of the main effects
with Z, and interactions of the splines terms for age with injury subgroup. In our model for
vitality status among survivors, b(Z, X; β) was taken to have similar functional dependence on
X1 and Z as in the death model, with the exception that NISS was not included (since NISS has
never been validated as an instrument for functional outcomes). Further, b(Z, X; β) was taken
to be additive in X2 and include interactions with Z. To account for hospital-level clustering in
the estimation of SACE, we used the robust standard error technique as described by Williams
(2000). For data missing for reasons other than death, multiple imputation was used as
described in MacKenzie et al. (2006, 2008).

In our analysis, we hypothesize that the sensitivity parameters αDep and τDep lie between 0 and
2.7 and between -2.7 and 2.7, respectively, subject to the constraint that 0 ≤ αDep + αDep ≤ 2.7.
These constraints imply that, within levels of X1, the odds of dying under trauma (non-trauma)
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center care is the same or at most 15 times greater for patients with pre-injury health/function
problems that those who do not. This incorporates an extreme assumption about the magnitude
of the effects.

For comparison, we fit a naive linear model of SF-36 Vitality outcomes using X1 and X2 as
covariates to obtain a naive estimate of the treatment effect among observed survivors.

7.4 Results
In the sample, 60% of individuals were treated in trauma centers. From here on, we discuss
weighted results. 28% and 16% of those interviewed at 3 months and treated in non-trauma
and trauma centers, respectively, reported having fair or poor pre-injury health/functioning
(X2,Dep = 1). 12% and 10% of those treated in non-trauma and trauma centers, respectively,
died by one year post-injury. Among those alive at one year who responded to the interview,
the average SF-36 Vitality score was 50.02 and 52.08 for those treated in non-trauma and
trauma centers, respectively.

Figure 1 presents the SACE analysis. The contour lines represent estimates of SACE as a
function of αDep and τDep. The shading in the figure represent the associated p-values. When
αDep and τDep are both equal to 0, mean vitality score among those who would survive to one-
year regardless of whether or not assigned to treatment is 51.94 (95% CI 50.57, 53.33) under
trauma center care and 48.90 (95% CI 47.25, 50.56) when under non-trauma center care. This
gives an estimate of SACE of 3.04 (95% CI 0.92, 5.17; p=0.005), suggesting that trauma center
care improves vitality outcomes. As the figure demonstrates, the results are highly insensitive
to choice of αDep and τDep.

In comparison, the estimate of the treatment effect from the naive regression analysis is 2.04
(95% CI -0.44, 4.52; p=0.11). It is not surprising that the naive estimate is attenuated. Such
attenuation would occur when trauma centers tend to save the lives of individuals who would
otherwise die in non-trauma centers and these individuals are destined to have lower vitality
scores. SACE removes these individuals from the analysis by focusing only on the people who
would live to one year regardless of the care received.

7.5 Sensitivity Analysis for Assumption 4
In this subsection, we consider a sensitivity analysis with respect to Assumption 4. Specially,
we assume that

(7.1)

where κ(x) is a specified function of x. Here, we assume that this function is constant in x, i.e.,
κ(x) = κ, so that Assumption 4 is equivalent to κ = 1; κ > (<)1 implies that individuals who
would die under non-trauma care but live under trauma care have higher (lower) mean
functional outcomes under treatment than those who would survive regardless of whether or
not assigned to treatment. In the NSCOT setting, it is likely that κ ≤ 1.

The identification formula for E[Y (0)|D(0) = 0, D(1) = 0] remains the same. For given κ, we
have the following new identification formula for E[Y (1)|D(0) = 0, D(1) = 0]:

(7.2)
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The estimating functions remain the same, except we re-define

When we performed sensitivity analysis with respect to κ (κ = 0.25, 0.50, 0.75) for selected
combinations of αDep and τDep, we found that inferences about SACE were generally similar
to those reported in Figure 1. For example, when αDep = 0 and τDep = 2, the estimated value of
SACE is 2.97 at κ = 0.75 and 3.10 at κ = 0.50 and the results are statistically significant. Only
when αDep is highly positive and τDep highly negative did the results become marginally
statistically significant. For example, when αDep = 2.7, τDep = -2.7, and κ = 0.50, then the
estimated value of SACE is 2.22 (p = 0.06).

7.6 Summary
Overall, our analysis indicates that trauma centers have a statistically significant impact on
vitality as measured by the SF-36 score. The magnitude of the effect is modest as changes in
SF-36 scores of 5 or more have been cited as clinically relevant (Kahn et al., 2005).

8 Simulation Study
We evaluated the finite sample behavior of our estimation procedure when a key confounder
was missing among those who die. We considered a case with two confounding covariates,
X1 (continuous; fully observed) and X2 (binary; missing on those who die). For our simulation,
we generated data (under Assumptions 1-6) for an individual according to the following
scheme: (1) generate X1 as Normal with mean 0 and variance 1; (2) generate X2 as Bernoulli
with P[X2 = 1|X1] = expit(0.5 + 0.25X1); (3) generate Z as Bernoulli with P[Z = 1|X1,X2] =
expit(-2 + 2.5X1 + 3.5X2); (4) generate D(0) as Bernoulli with P[D(0) = 1|X1,X2] = expit(-0.5
+ 2.5X1 + 3X2); (5) if D(0) = 0 set D(1) = 0; otherwise, generate D(1) as Bernoulli with P[D
(1) = 1|D(0) = 1, X1, X2] = expit(-2.25 + X1 + 1.75X2); (6) if D(0) = 0, generate Y (0) as Normal
with E[Y (0)|D(0) = 0, X1,X2] = 40 + 5X1 + 40X2 and variance 1; (7) if D(1) = 0 generate Y (1)
as Normal with E[Y(1)|D(1) = 0,X1,X2] = 33 + X1 + 20X2, and variance 1; (8) set D = D(Z) and
Y = Y (Z) if D = 0.

Using the analysis model logitP[D = 1|Z,X1,X2] = β0 + β1Z + β2X1 + β3X1Z + αX2 + τX2Z, the
true values of α and τ are approximately 3.0 and -1.0. Since these values are unknown when
X2 is missing on those who die, we conducted a sensitivity analysis, where we considered
combinations of these parameters in a 4 × 4 square, centered at the truth. We used a linear
(analysis) model for the conditional (on Z, X1, and X2) mean of Y among observed survivors,
where the functional form of the linear predictor was the same as that used in death model
above. For fixed α and τ, we estimated SACE and derived confidence intervals using the large
sample theory approximation for the variance as described in Section 6. We evaluated the
proportion of confidence intervals that contained the true value of SACE = -10.4.

In our data generation scheme, higher values of Y (0) and Y (1) were considered worse outcomes
and higher values of X1 and X2 were indicative of poorer health and worse outcomes. Those
with poorer health were more likely to be assigned to the treatment group. The probability of
being assigned to treatment was approximately 53%. The parameters resulted in approximately
53% of the sample being assigned to Z = 1, and 62% having X2 = 1. In Table 1, we present
treatment-specific distributional summaries of key variables.

The unadjusted naive effect of the intervention indicates that the intervention is harmful (E
[Y|D = 0, Z = 1] - E[Y|D = 0, Z = 0] = 2.8). Adjusting for X1 and X2 using an analysis model
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for E[Y|D = 0,Z,X1,X2] which is linear in Z, X1, and X2 and includes no interactions between
Z and (X1, X2), yields an overly optimistic treatment effect of -16.7. The effect among the
survivors under each treatment (E[Y (1)|D(1) = 0] - E[Y (0)|D(0) = 0]) is -5.99, a more modest
effect. This example demonstrates the importance of estimating SACE even when observed
death rates between the treatment arms are relatively similar (38% vs. 43%).

For each of three sample sizes, 500, 1000, and 2000, we generated 1000 simulated datasets.
Figure 2 displays the results. Coverage of the 95% confidence intervals was good when α and
τ are fixed at their true values: 94.9%, 93.4%, and 93.7% for the three respective sample sizes.
The coverage worsened when α and τ were fixed at values different than the truth. Coverage
was particularly poor when α was assumed to be smaller than the truth. In terms of bias, the
trends were very similar: there was no evidence of bias when the sensitivity analysis parameters
were correctly specified and absolute bias increases substantially when α was assumed to be
smaller than the truth.

The top left corner of the figures depicts the region in which α and τ are incorrectly assumed
to equal zero. It is in this region where the bias and empirical coverage are worst. Specifically,
the results are biased towards a more beneficial treatment benefit. The reason that the treatment
estimates are more beneficial as α decreases is that such an assumption reduces the probability
that those with high values of X2 will die. Since higher values of X2 are associated with a greater
treatment effect, the point estimates of the intervention become stronger as more individuals
with higher values of X2 are assumed to survive.

Our analysis model for the conditional probability of death, logitP[D = 1|Z,X1,X2], might be
incorrectly specified in this simulation. The true values of α and τ are those that minimize the
Kullback-Leibler distance between the true and (possibly) misspecified model. They are found
by simulating a massive dataset and estimating the value of these parameters via maximum
likelihood. The coverage probabilities and bias at these values of α and τ suggest that our
analysis model works well. Further, when we performed simulations using a more flexible
analysis model that entered X1 into the model using restricted cubic splines, our results did not
substantively change. This suggests that misspecification of the analysis model did not affect
our simulation inferences.

Overall, the simulations suggest the utility of the sensitivity analysis approach. There is little
bias and good coverage when the sensitivity parameters are correctly specified. Since the true
value of the sensitivity parameters are not identifiable without additional assumptions and/or
data, it is important to present inferences over a range of these parameters.

9 Discussion
This paper has presented a sensitivity analysis methodology for estimating SACE in
observational studies, where key confounders are missing due to death. Our analysis of the
NSCOT study demonstrated that our estimate of SACE is larger than a naive regression analysis
that conditions on observed survivors. Further, our analysis was insensitive to the choices of
the sensitivity analysis parameters. As our bias analysis and simulation study demonstrated,
such insensitivity is by no means guaranteed.

MacKenzie et al. (2008) utilized our methodology to investigate the effect of trauma center
care on health status outcomes of NSCOT patients with major lower limb trauma.

In our analyses of the NSCOT data, we did not utilize 3 month interview information (i.e.,
X2) on the 86 individuals who died between the 3 and 12 month interviews. Since the number
of individuals is small, the influence on our analysis is likely to be negligible. It is
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straightforward to generalize our methodology to utilize this extra information by appropriately
enriching the data structure, models, and estimating functions.
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Figure 1.
Estimates of SACE for the SF-36 Vitality subscale as a difference in expectations over ranges
of the sensitivity parameters αDep and τDep which describe the model main and trauma center
interaction effect of the pre-injury health/functional difficulty indicator on the log odds of 1-
year mortality. The contour lines represent SACE, the shaded regions represent the p-values.
The region between the heavy lines is the region in which the truth is hypothesized to reside.
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Figure 2.
Results of simulations with the 95% coverage indicated using contour lines and the absolute
bias of the point estimates represented by shading. The figures are centered at the true values
of the sensitivity parameters, denoted α* and τ*. The true SACE as a difference in expectations
equals -10.4.
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Table 1
Distributional summaries of simulated variables, stratified by treatment assignment

Intervention (53%) Control (47%)

E[X1 | Z = z] 0.55 -0.61

P[X2 = 1 | Z = z] 0.84 0.37

P[D(1) = 1 | Z = z] 0.43 0.08

P[D(0) = 1 | Z = z] 0.90 0.38

P[D(0) = D(1) = 0 | Z = z] 0.10 0.62

P[D = 0 | Z = z] 0.57 0.62

E[Y(0) | D(0) = 0, Z = z] 65.2 46.2

E[Y(0) | D(0) = D(1) = 0, Z = z] 65.2 46.2

E[Y(1) | D(1) = 0, Z = z] 49.0 39.2

E[Y(1) | D(0) = D(1) = 0, Z = z] 46.0 37.4

E[Y | D = 0, Z = z] 49.0 46.2
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