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SUMMARY
We consider a Markov structure for partially unobserved time-varying compliance classes in the
Imbens-Rubin (1997) compliance model framework. The context is a longitudinal randomized
intervention study where subjects are randomized once at baseline, outcomes and patient adherence
are measured at multiple follow-ups, and patient adherence to their randomized treatment could vary
over time. We propose a nested latent compliance class model where we use time-invariant subject-
specific compliance principal strata to summarize longitudinal trends of subject-specific time-
varying compliance patterns. The principal strata are formed using Markov models that relate current
compliance behavior to compliance history. Treatment effects are estimated as intent-to-treat effects
within the compliance principal strata.
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1. Introduction
In randomized intervention studies where interventions are administered repeatedly, subject
adherence to the randomized treatment may vary over time. In addition, the effect of the
treatment from previous time points on the outcome may be non-transient. We propose a
longitudinal compliance class model with decay parameters for treatment effects that uses a
nested principal stratification structure to characterize longitudinal compliance patterns over
time within which intent-to-treat effects are estimated. We consider a Markov structure for the
time-varying subject adherence to randomized treatment. We illustrate the model with analysis
of the “Prevention of Suicide in Primary Care Elderly: Collaborative Trial” (PROSPECT;
Bruce et al., 2004).

SUPPLEMENTARY MATERIALS Web Appendix referenced in Section 2.5 are available under the Paper Information link at the
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The PROSPECT study was a randomized intervention study targeted at elderly patients with
depression in primary care practices. There were two treatment groups: usual care and the
intervention. In the usual care group, patients received standard care. In the intervention group,
patients were assigned to meet with health specialists who educated patients, their families,
and physicians about depression, treatment, and monitored adherence to treatment. Primary
care practices were randomized to the treatments rather than individual patients to prevent
contamination of treatments between patients within the same practice and for practicality.
Patients were followed for two years from the initial randomization. Clinical depression
outcome and adherence to randomized treatment were measured at 4, 8, 12, 18, and 24 months.
There were 598 patients in the study. The clinical outcome of interest is the severity of
depression measured by the Hamilton Depression Score (HAMD). We consider an all-or-none
treatment adherence measured by whether patients met with the health specialists at least once
since the previous follow-up period. We are interested in investigating the effect of the
intervention on depression severity accounting for treatment adherence over time.

When subjects do not adhere to the treatment to which they are randomized, subject
noncompliance could confound the relationship between the treatment and the outcome.
Therefore, it is important to account for subject noncompliance when estimating the effect of
the treatment. One way to do that is by using principal stratification strategies (Frangakis and
Rubin, 1999,2002). Angrist, Imbens, and Rubin (1996) and Imbens and Rubin (1997) proposed
to use compliance classes to describe subject compliance behaviors within which intent-to-
treat (ITT) contrasts are made to estimate the causal effect of the treatment on the outcome.

Cross-sectional studies with two treatment arms, experimental treatment and control treatment,
have four possible compliance classes: compliers, always-takers, never-takers, and defiers.
Compliers are those that would adhere to the treatment to which they are assigned; always-
takers are those that would seek the experimental treatment regardless of their treatment
assignment; never-takers are those that would opt for the control treatment regardless of their
treatment assignment; and defiers are those that would refuse the treatment to which they are
assigned and choose to receive the other treatment.

In studies, such as the PROSPECT, where those assigned to the control treatment have no
access to the experimental treatment, there are only compliers and never-takers. Always-takers
and defiers cannot exist because those randomized to the control treatment cannot receive the
experimental treatment. The compliance classes for those assigned to the experimental
treatment in this study design are observed. Subjects assigned to and receiving the experimental
treatment are compliers; subjects assigned to the experimental treatment but receiving the
control treatment are never-takers. The compliance classes for those assigned to the control
treatment are unobserved.

We propose an extension of the cross-sectional model in Imbens and Rubin (1997) to
longitudinal settings. Yau and Little (2001) proposed an extension where outcome was
measured repeatedly over time, however, adherence to intervention was only recorded once
and did not vary. Our proposed model allows treatment adherence to vary over time. In
Frangakis et al. (2004), outcome was repeatedly measured over time, and subject compliance
could vary over time. This model differs from our proposed model in two ways: 1) we restrict
our method to study designs where randomization status do not change over time; 2) we propose
a nested model structure that uses subject-specific time-invariant principal strata to summarize
subject-specific time-varying compliance behavior. The subject-level time-invariant strata
allows us to classify subjects based on their longitudinal compliance, and relate longitudinal
compliance to outcomes.
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In the presence of time-varying compliance behaviors, it may be useful to consider patterns of
longitudinal compliance behavior when examining longitudinal outcomes. Subjects with
different compliance trajectories may differ in treatment outcomes. We may make inferences
on different longitudinal compliance patterns and the longitudinal outcomes associated with
those patterns. In a study like the PROSPECT where there are two possible compliance classes
and 5 follow-up visits, we have 32 (25) possible compliance patterns. It may be impractical
and not clinically meaningful to look at the longitudinal outcomes in all of the 32 patterns.
Hence, it may be more helpful to have summary measures of the longitudinal compliance
patterns in the data, and look at longitudinal outcomes within broader latent classes.

We use the nested latent class model framework proposed by Lin, Ten Have, and Elliott (in
press) to accommodate time-varying latent compliance classes by specifying broader principal
strata that summarize the compliance classes. The nested latent class model involves two levels
of compliance class models. The first level uses subject-specific time-varying compliance
classes to describe the time-varying treatment adherence; the second level uses subject-specific
time-invariant compliance “superclasses” to summarize the longitudinal patterns of
compliance classes. The superclass defined here is a principal stratum in the sense that the
superclass is a function of compliance classes, and the compliance classes describe the
relationship between treatment received and treatment randomization, and that the function
itself is not affected by the actual treatment randomization. Treatment received is a function
of the compliance classes and the treatment randomization. It is consistent with the definition
of principal stratum in Frangakis and Rubin (2002), and similar to the principal stratum in
Frangakis et al. (2004). The superclass is a “coarser” principal stratum. The ITT effect of the
intervention stratified on compliance superclass, or principal effect (Frangakis and Rubin,
2002), is estimated to control for longitudinal subject treatment noncompliance.

Lin et al. (in press) makes the conditional independence assumption that compliance classes
at each time point within an individual are independent from each other given the individual’s
compliance superclass and baseline covariates. In other words, knowing the compliance
superclass and subject baseline characteristics, the history of compliance behaviors does not
provide any more information on the current compliance behavior. This may be a strong
assumption which we now propose to assess with a Markov model for the time-varying
compliance classes. We fit a latent transitional model (Collins and Wugalter, 1992)
incorporating covariates in estimating transitional probabilities (Reboussin et al., 1999). We
assume a first-order Markov structure for the compliance classes given superclass and baseline
covariates where compliance behaviors are assumed to depend on the compliance class in the
previous time point. Modelling the Markov structure of the time-varying compliance classes
will allow us to: 1) utilize information from history of compliance to predict compliance
behaviors; and 2) examine how history of compliance relates to compliance behavior.

As another extension of Lin et al. (in press), this paper considers the non-transient effect of
treatment over time. In the PROSPECT we may consider the decay of the ITT effect of the
treatment on the outcome. It is conceivable that information ascertained in meetings with health
specialists may have lasting effects on the subjects and their treatment outcomes.

We will define notation, discuss assumptions, principal effect, the parametric model, parameter
estimation, the handling of missing outcomes, and assessment of model fit in Section 2. Then
we will proceed to discuss the analysis results in Section 3, and make concluding remarks in
Section 4.
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2. Nested Compliance Class Model
2.1 Notation

Let Zi denote the randomization status for subject i where i = (1, … ,N), and Zi ∈ (0, 1) for
usual care and the intervention, respectively. Similarly, let Dij denote the time-varying
treatment received for subject i at time j where j = (1, 2, 3, 4, 5) for 4, 8, 12, 18, and 24 months,
respectively, and Dij ∈ (0, 1) for usual care and intervention, respectively. Note that Zi does
not have the subscript j because we are restricting to designs where randomization does not
change over time. Let Yij denote the observed outcome for subject i at time j. We use Z, D,
Y to denote vectors of Zi, Dij, and Yij.

Following Little and Rubin (2000), we use Yij(Z) to denote the partially latent potential
outcome, outcome that would have been observed, for subject i at time j if randomized to
treatment Z. Let Cij denote membership of the partially latent compliance classes for subject
i at time j. In the PROSPECT, since those randomized to the usual care group have no access
to the intervention, there are only two possible compliance classes: compliers and never-takers;
therefore, Cij ∈ (c, n). We use C to denote the vector of Cij. The proposed principal stratification
strategy uses compliance “superclasses” to summarize the longitudinal compliance patterns in
the data within which we can stratify on and compare potential outcomes. It precludes the
confounding when stratifying on observed post-randomization compliance patterns. Let Ui
denote membership of the latent superclass for subject i, where Ui = (1, … ,K) for assumed
K numbers of latent superclasses. We use U to denote the vector of Ui.

Subject-level baseline covariates Ai and Qi are used in modelling the outcome and compliance
probabilities, respectively. We use A and Q to denote vectors of Ai and Qi.

We use upper case letter to denote random variables or indices of potential outcomes (e.g.
Yij(Z)), and lower case letter to denote realized or observed values of random variables or
indices (e.g. Zi = z).

2.2 Assumptions
We make the randomization (Rubin, 1978), stable unit-treatment value (SUTVA; Rubin,
1986), and model assumptions to identify causal model parameters. We assume that potential
outcomes, latent compliance classes, and latent compliance superclasses (which are assumed
to be baseline characteristics) are independent of the randomization assignment status. We
make the no interference assumption of the SUTVA and assume that the potential outcomes
of an individual is not influenced by the treatment assignment of another individual. We also
make the consistency assumption of the SUTVA which assumes that the potential outcome of
a certain treatment will be the same regardless of the treatment assignment mechanism. It
implies that the observed outcome is a function of the potential outcomes and treatment
assignment: Yij = Zi * Yij(1)+(1—Zi) * Yij(0). The SUTVA assumption is violated when there
is interference between subjects or when there are versions of treatments not represented by
the treatment indicator variable.

2.3 Principal Effects
We utilize the compliance superclasses to summarize the longitudinal compliance patterns and
estimate the ITT effects stratified on these superclasses. A compliance superclass is a latent
subject-level principal stratum that is time-invariant, and is considered to be a pre-
randomization characteristic which allows us to model potential outcomes conditional on
prospective post-randomization behavior.
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Our effect of interest is the principal effect of treatment assignment on the outcome within a
compliance superclass at time j:

(1)

It is an ITT contrast stratified on the compliance superclass. Since the superclasses defined
here create baseline principal strata summarizing longitudinal compliance behaviors and do
not represent specific longitudinal compliance patterns, the principal effect may sacrifice
straightforward causal interpretation. The interpretation of the principal effects relies on the
interpretation of the superclasses. Nonetheless, it allows us to consider the effect of treatment
randomization controlling for longitudinal compliance.

The principal effect can be defined by observed outcomes under the randomization and the
SUTVA consistency assumption:

(2)

The first equal sign follows from the randomization assumption, which says that randomization
is independent of baseline characteristics (e.g. potential outcomes) conditional on baseline
covariates (e.g. compliance superclass). The second equal sign follows from the SUTVA
consistency assumption which implies that the observed outcome given treatment assignment
z is the potential outcome for treatment assignment Z = z.

2.4 Parametric Model
The conditional independence (CI) model proposed in Lin et al. (in press) assumes that
longitudinal compliance classes within an individual are independent given compliance
superclass and baseline covariates. Under the current proposed model we relax the CI
assumption. We assume compliance classes are dependent on the compliance classes at one or
more previous time points, the compliance superclass, and baseline covariates. As one reviewer
pointed out, this model is a hidden Markov model similar to those used in “mover-stayer”
applications (Langeheine and Van de Pol, 2002).

Following the CI model, we assume outcomes within individuals are independent given
randomization, time-varying compliance class, baseline covariates, and subject-level random
effect.

(3)

The conditional mean of the outcome has three components: compliance class-specific effect
of randomization, the effect of baseline covariates, and the subject-specific random effects to
account for within-subject correlation in the outcomes. The compliance class-specific effect

of randomization on the outcome is represented by 
where λtη’z for t ≤ j describes the compliance-class specific ITT effect of the treatment on the
outcome, λ denotes the vector of λtη’z and ζ(t, j) modifies that ITT effect at time t on the outcome
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at time j. The effect of the baseline covariates on the outcome is represented by  where
Ai denotes the vector of baseline covariates of subject i, and the column vector γ denotes the
corresponding coeffcients. The random effects φi is used to account for within-subject
correlation in the outcomes, where Wi denotes the random effect design matrix for subject i.
In our preliminary analysis we found small within-practice correlation (0.075); hence,
clustering by primary care practice was ignored, as in Bruce et al. (2004) and Small et al.
(2006). We consider a random subject-level intercept model.

To model the non-transient effect of the treatment on subsequent outcomes, we use the
parameter ζ(t, j) to modify the impact of the ITT effect at time t on the outcome at time j. We
can assume a transient relationship where the outcome at time j is not dependent on the ITT
effect at time t (i.e. ζ(t, j) = I(t = j)); assume a non-transient relationship where the outcome at
time j is dependent on the cumulative ITT effect of current and all prior time periods (i.e. ζ(t,
j) = I(t ≤ j)); or assume a decaying relationship where the outcome at time j is dependent on
the cumulative ITT effect of current and all prior time periods, but the influence of past
treatment effects diminish as time lag increases (i.e. ζ(t, j) = e-τ(j—t) where τ > 0). Preliminary
analysis of the data using a decay model suggested τ → ∞, or a transient relationship. Hence,
we consider the transient model:

(4)

To relax the CI assumption of the time-varying compliance classes of the CI model, we propose
a Markov compliance class (MCC) model where the compliance classes are dependent on past
compliance behavior. Similar to the CI model, we assume that compliance superclass is an
underlying factor that drives subject compliance over time. We model the compliance class at
the first time point conditional on the compliance superclass and baseline covariates Qi using
logit models: P(Ci1 = η|Ui = k, Qi) = ωkη(Qi) and ωkη(Qi) = exp(α0kη + α1ηQi)/[∑η’ exp(α0kη’
+ α1η’Qi)] where ∑η ωkη(Qi) = 1 ∀k. We constrain α0kη and α1η for one of the compliance class
η to be 0 for identifiability. In the presence of more than 2 compliance classes, we can use
multinomial logit models instead of logistic models to model the compliance probabilities.

We assume subject compliance superclass (Ui = k) ∼ Multinomial(1, pk), where ∑k pk = 1.
Compliance superclass between subjects are assumed to be independent:

 for k = 1, … ,K where f(.) denotes the distribution function.

We utilize latent transition models (Collins and Wugalter, 1992) to characterize the Markov
process of compliance classes across time. In this paper we consider a non-stationary first-
order Markov compliance model. The number of model parameters in multiple-order Markov
models increases exponentially without additional constraints such as stationarity. Because of
the lack of good predictors of compliance transitions, we assume that there are no associated
covariates influencing the transitional probabilities. Covariates can be incorporated using logit
models as in Reboussin et al. (1999). We assume the compliance class transitions (Cij = η|
Ci,j—1 = η’, Ui = k) ∼ Multinomial(1, πkjη’η), where ∑η πkjη’η = 1 ∀k, j, η’. The joint distribution
of the compliance classes given compliance superclass then becomes:

(5)
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If compliance class and compliance superclass memberships, and missing outcomes are known,
the joint distribution of the complete data for subject i given the model specifications is as
follows:

(6)

where θ = (λ, γ, σ2, ∑φ).

Knowing the time-varying compliance classes, the superclass does not provide additional
information on the longitudinal compliance behavior. Therefore, we assume that the potential
outcomes are conditionally independent of the superclasses given compliance classes.
However, since superclasses are functions of the compliance classes, we can use estimated
effects associated with the compliance classes to estimate effects associated with the
superclasses.

Under these model specifications, the principal ITT effect of the intervention on the outcome
stratified on compliance superclass defined in equation (1) becomes

(7)

2.5 Estimation
We use Bayesian Markov Chain Monte Carlo (MCMC) methods to estimate model parameters.
For details of the priors and the conditional draws of the Gibbs sampler, please refer to the web
appendix.

2.6 Missing Outcome Imputation
To deal with missing outcomes we assume a latent ignorable missing data mechanism (LIMD;
Peng, Little, and Raghunathan, 2004), which assumes missing at random given latent
compliance class and covariates. At each iteration of the MCMC procedure, we impute the
missing outcomes conditional on compliance classes, treatment randomization, baseline

covariates, and subject-level random effects. We draw the missing outcome  for subject i
at time j from its predictive distribution given current values of parameters Cij, λjηz, γ, φi, σ2,
and vector of observed outcomes Yobs.

(8)

2.7 Model Fit Assessment
We compare the fits of the MCC model and the CI model by comparing the posterior predictive
distributions (PPD; Gelman et al., 2004) of the time-varying compliance classes. Let Gm denote
the number of individuals in the mth of the 32 possible longitudinal compliance patterns and
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let κm be the estimated probability of exhibiting the mth longitudinal compliance pattern. We
consider the χ2-type statistics:

(9)

where  is the observed statistics and  is the repeated statistic obtained from draws of
the parameters generated by the Gibbs sampler. The PPD p-value is then given by:  where
(Sobs)l ( and (Srep)l denote the Sobs and Srep from the lth Gibbs draw. A PPD p-value close to
0.50 indicates a good fit of the model to the data.

3. Results
We demonstrate the MCC model with analysis of the PROSPECT data and compare the results
to the analysis under the CI model. In the PROSPECT, those randomized to the usual care
group do not have access to the intervention; therefore, there are only two compliance classes:
compliers and never-takers. Goodman (1974) suggests that we can only identify at most 3 latent
compliance superclasses given 5 dichotomous compliance classes; hence we consider a
maximum of three superclasses.

Unrecorded treatment received (Dij) are assumed to be 0, indicating no visits with health
specialists. In this analysis we let Ai be the baseline HAMD score and baseline suicidal ideation.
We adjust for the baseline HAMD because we are interested in the change in HAMD scores
from baseline. Treatment randomization failed to balance the proportion of subjects with
suicidal ideation at baseline between the treatment groups; therefore, we adjust for it in
modelling the outcome. We let Qi be the baseline HAMD score in estimating the compliance
probabilities in the CI model and in estimating the initial compliance probabilities in the MCC
model.

We use relatively flat priors in the Bayesian MCMC estimation of the model parameters since
we do not have strong prior inclinations. Following Garrett and Zeger (2000) and Ten Have
et al. (2004) we assume α ∼ MV N(0, ∑α = diag(50, 4)). The difference in variance component
in the priors reflect the different scaling of the covariates. A larger variance is used for binary
covariates (i.e. intercept) and a smaller variance is used for continuous covariates (i.e. baseline
HAMD score). The identifiability of the α parameter is checked by comparing the prior and
the posterior distributions (Garrett and Zeger, 2000). We assume the prior (πkjη’c, πkjη’n) ∼
Dirichlet(0.01, 0.01)∀k, j, η’ for the transitional probabilities. This is equivalent to adding 0.01
subject to each of the (Ci,j—1 = η’, Cij = η|Ui = k) groups. Let β = [λ1c0, … ,λ5n1, γ], and we
assume β ∼ MV N(μβ = 0, ∑β = 1000 × I) and σ2 ∼ Inv — χ2(νσ = 1,ψ = 1/10). For the random
effect variance parameter we assume ∑φ ∼ Inv — χ2(νφ = 1, Γ = 1/10). We assume the prior
(p1, … ,pK) ∼ Dirichlet(1, …, 1), assigning a priori 1 subject to each of the K superclasses.

To assess the convergence of the MCMC chains we used the Gelman-Rubin  statistic (Gelman
et al., 2004, pp.296-297), and  < 1.1 is accepted as evidence of convergence. We ran 3 chains
of the CI model for 10,000 iterations each with the first 1,000 iterations discarded as burn-in,
and ran 3 chains of the MCC model for 150,000 iterations each with the first 75,000 iterations
discarded as burn-in. The maximum  was 1.05 and 1.08 for the CI and the MCC models,
respectively.

We present the results under the CI model as specified in Lin et al. (in press), then the results
under the MCC model, followed by comparison of the two models. We can assess the
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conditional independence assumption made under the CI model by comparing the fit of the CI
model to the fit of the MCC model to the data.

3.1 Conditional Independence Model
In Lin et al. (in press) we found that the three-class CI model has a better fit to the data than
the two-class CI model. Hence, we compare the three-superclass CI model to the MCC model.
Table 1 shows the time- and superclass-varying compliance probabilities under the CI model
assuming the average baseline HAMD of 18.1, and Table 2 shows the ITT effect of
randomization on the outcome within each compliance superclass adjusting for the baseline
HAMD and baseline suicidal ideation.

Table 1 shows that the first superclass under the CI model consists of subjects who are
noncompliant at the 4-month follow-up and become even more noncompliant for the remainder
of the study (low compliers). The second superclass consists of subjects who are highly
compliant for the first 8 months and become increasingly noncompliant (decreasing compliers).
The third superclass consists of subjects who are highly compliant but become less compliant
at the last follow-up visit (high compliers). More than half of the subjects are high compliers
and about a quarter of subjects are low compliers, leaving decreasing compliers as the smallest
superclass.

The log odds of compliance for every unit increase in the baseline HAMD and its 95% credible
interval is 0.003(-0.04,0.05) suggesting those with more severe depression at baseline (higher
baseline HAMD) may be slightly more likely to comply with treatment assignment than those
with less severe depression at baseline.

The within-superclass ITT contrasts of equation (7) are shown in Table 2. The contrasts suggest
strong direct effect of randomization at the 4-month follow-up in the low complier superclass,
which consists of largely never-takers unlikely to meet with health specialists regardless of the
treatment assigned. After the first year, only the high compliers randomized to the intervention
group, who are still highly likely to meet with their health specialists, showed greater reduction
in the HAMD than high compliers in usual care. None of the superclasses show strong ITT
effects on depression after two years.

3.2 Markov Compliance Class Model
The MCC model relaxes the conditional independence assumption of the time-varying
compliance classes given compliance superclass and baseline covariates, and instead, assumes
a first-order Markov structure for the time-varying compliance classes given compliance
superclass. We present results under the three compliance superclass model.

The log odds of compliance at 4 months adjusting for baseline HAMD are -0.52(-1.87,0.81),
-3.61(-15.56,4.37), and 4.99(1.11,13.69) for the first, second, and third superclass,
respectively. This suggests that those in the first and second superclasses are less likely to
comply with their treatment assignment while those in the third superclass are more likely to
comply with their treatment assignment. Our model assumes that the association between the
baseline HAMD and compliance at 4 months is the same across all three superclasses. The log
odds of 4-month compliance for a unit increase in the baseline HAMD is 0.07(0.01,0.13)
suggesting that those with more severe depression are more likely to comply with treatment
assignment.

Table 3 shows the time-varying compliance probabilities when we assume the average baseline
HAMD score of 18.1. The first superclass consists of subjects who are likely to comply with
assigned treatment at 4-month then compliance decreased over time (increasing noncompliers).
The second superclass consists of subjects who exhibit erratic compliance behavior with abrupt
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increases and decreases in compliance probabilities (erratic compliers). The third superclass
consists of subjects who are highly compliant then compliance decreased slightly during the
last 6 months (high compliers). More than half of the subjects are high compliers, less than
half are increasing noncompliers, and only a small portion are erratic compliers.

The transitional probabilities of the time-varying compliance classes within each superclass in
Table 4 shows that increasing noncompliers and high compliers are more likely to stay in the
complier class if they are in the complier class in the previous time point than if they are in the
never-taker class then switch to the complier class. Subjects in the high complier superclass
are more likely to transition to the complier class than subjects in the increasing noncomplier
superclass. We do not see any clear patterns in the transitional probabilities of the erratic
compliers.

The posterior means and credible intervals of equation (7), the within-compliance superclass
ITT contrasts, in Table 5 show strong ITT effect at 4 months in the erratic compliers, which
consists of mostly never-takers unlikely to meet with health specialists, suggesting direct effect
of randomization. This direct effect seems to dissipate over time. We also see an ITT effect at
4-month in the high compliers, which consists of almost entirely compliers who are likely to
meet with health specialists if assigned to the intervention, suggesting an effect of the
intervention. Consistent with the results under the CI model, at the end of the first year we see
greater decrease in HAMD in the high compliers assigned to the intervention than high
compliers assigned to the usual care. It suggests that meeting with health specialists help
improve depression, although none of the 95% credible intervals exclude 0 at the end of two
years.

3.3 Model Comparison
Under the CI and the MCC compliance class structures we identified a superclass of high
compliers, who are highly compliant with slight decrease in compliance at the last follow-up.
We also identified a superclass with decreasing compliance, although the compliance
probability under the CI model starts out much higher at 4-month and decreases at a faster rate
over subsequent follow-ups than under the MCC model. Under the CI model we identified a
superclass of subject who are noncompliant, with no clear compliance trajectory. Under the
MCC model we identified a superclass of subjects exhibiting erratic compliance behavior with
fluctuating compliance probabilities and no clear trend in their compliance class transitions.

We saw similar within-compliance superclass ITT effects under both the CI and the MCC
models. The ITT effects were larger in noncompliant subjects than compliant subjects at the
4-month follow-up suggesting a direct effect of randomization early on. This is most evident
in the low compliers under the CI model and the erratic compliers under the MCC model, both
of which consist of mostly never-takers at 4 months. However, this direct effect seems to
dissipate over time. At the end of two years we see the largest ITT effect in the high compliers
under both the CI and the MCC models, which consist of mostly compliers.

Assessment of the fits of the posterior predictive distributions to the data using the χ2-type
statistics in equation (9) yields a PPD p-value of 0.0057 under the three-superclass CI model
and 0.1549 under the MCC model, suggesting a better fit of the MCC model. The three-class
MCC model also has a better fit than the two-class MCC model (PPD p-value = 0.0089).

4. Discussion
Lin et al. (in press) proposed a conditional independence model of the time-varying compliance
classes that assumes the compliance classes within an individual are independent given
compliance superclass and baseline covariates. In this paper, we proposed a Markov model
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that assumes the compliance classes at each time point are dependent on the previous
compliance behaviors, compliance superclass, and baseline covariates. The model also
accommodates possible non-transient ITT effects of previous treatment on the outcome using
a decay parameter.

Under the MCC model we found those who are more depressed at baseline are more likely to
comply with their assigned treatment at 4 months. The same trend was also found under the
CI model. More depressed patients may be more eager to treat their depression and more likely
to adhere to their prescribed treatment. Physicians may also monitor more depressed patients
more closely, thus increasing treatment compliance.

The proposed MCC model provides information on how history of compliance relates to
compliance behavior that was not considered in the CI model. People are creatures of habit —
those that complied with the assigned treatment in the previous follow-up period were more
likely to comply again than those who were noncompliant in the previous follow-up period.

We saw evidence of direct effect of randomization during the first 4 months; though in the long
run, compliant subjects who were meeting with health specialists showed greater improvement
in their depression than noncompliant subjects. The presence or availability of the health
specialists may have had a positive impact on the patients’ depression outcome initially
regardless of whether they actually met, but to benefit from the intervention longitudinally, the
patients had to have met the health specialists.

In our model, we assumed the potential outcomes are conditionally independent of the
superclasses given compliance classes. The reviewers pointed out that a more parsimonious
alternative would assume that the potential outcomes are conditionally independent of the
compliance classes given the superclasses. However, from an interpretive point of view, it is
easier to interpret compliance class-specific ITT estimates than to interpret superclass-specific
ITT estimates. Additionally, the ITT effects within each of the compliance classes correspond
to better estimators than do the ITT effects within the broader superclasses given that
compliance classes at each time point provide more information than superclass alone.

Comparing the posterior predictive distributions to the data showed that the MCC model has
a better fit than the CI model. In our future research, we plan to explore covariates that relate
to compliance superclasses and time-varying compliance classes to further improve the fit of
the MCC model.

Although the outcome model helps to identify the ITT effects within compliance classes under
the normality and constant variance assumptions, if we have a) only compliers and never-
takers, and b) good pre-treatment predictors of compliance, then a parametric outcome model
is not necessary for identifiability of the ITT effects. In our application, we satisfy the first
condition, but only weakly satisfy the second condition, hence our results may be sensitive to
the normality assumption. See Rubin (2006) for more discussion on identifiability of principal
strata with parametric assumptions and covariates.

In a simulation study in Gallop et al. (under review) we found that results are sensitive to the
violation of the homogeneous variance assumption when the sample size is small. Additional
assumptions, such as the exclusion restriction (ER) assumption, may be needed to relax the
homogeneous variance assumption. However, making the ER assumption may be unreasonable
in the PROSPECT given we found possible direct effect of randomization. In our future work,
we would like to explore alternative models to relax the homogeneous variance assumption.

Cheng and Small (2006) proposed a principal stratification method for a cross-sectional 3-
treatment arm trial. Following their strategy, with possible additional assumptions, such as the
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ER and the monotonicity assumptions, we can extend our proposed method to accommodate
studies with more than two treatment arms. The number of possible compliance patterns
increases exponentially with increasing numbers of active treatment arms and time points.
Utilizing the superclasses may provide even greater benefit under these types of settings.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table1
Posterior Means and 95% Credible Intervals (in parentheses) for the Time- and Compliance Superclass-Varying
Compliance Probabilities Assuming the Average Baseline HAMD of 18.1 and Superclass Probabilities Under the CI
Model.

Time Low
Compliers

Decreasing
Compliers

High
Compliers

4-months 0.43(0.33,0.53) 0.99(0.96,1.00) 1.00(0.98,1.00)

8-months 0.01(0.00,0.07) 0.99(0.94,1.00) 1.00(0.99,1.00)

12-months 0.01(0.00,0.04) 0.51(0.36,0.66) 1.00(0.98,1.00)

18-months 0.06(0.02,0.12) 0.11(0.00,0.28) 0.99(0.98,1.00)

24-months 0.04(0.01,0.09) 0.01(0.00,0.07) 0.83(0.77,0.90)

P(Ui) 0.28(0.23,0.33) 0.16(0.12,0.22) 0.56(0.50,0.62)
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Table 2
Posterior Means and 95% Credible Intervals (in parentheses) for the ITT Contrasts of the Outcome Within Compliance
Superclasses Under the CI Model.

Time Low
Compliers

Decreasing
Compliers

High
Compliers

4-months -7.54(-10.05,-2.00) -1.35(-3.23,0.10) -1.32(-3.20, 0.09)

8-months -3.39(- 7.24, 0.81) -0.93(-2.78,0.83) -0.92(-2.78, 0.86)

12-months 0.84(- 2.21, 3.95) -0.61(-2.11,1.05) -2.03(-3.86,-0.14)

18-months 1.44(- 1.40, 4.07) 1.28(-1.35,3.85) -1.34(-3.33, 0.64)

24-months 0.04(- 2.58, 2.69) 0.10(-2.61,2.85) -1.50(-3.72, 0.63)
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Table 3
Posterior Means and 95% Credible Intervals (in parentheses) for the Time- and Compliance Superclass-Varying
Compliance Probabilities Assuming the Average Baseline HAMD of 18.1 and Superclass Probabilities Under the MCC
Model.

Time Increasing
Noncompliers

Erratic
Compliers

High
Compliers

4-months 0.66(0.53,0.80) 0.38(0.00,1.00) 0.99(0.88,1.00)

8-months 0.38(0.20,0.56) 0.83(0.07,1.00) 0.98(0.86,1.00)

12-months 0.19(0.00,0.40) 0.32(0.00,1.00) 0.99(0.86,1.00)

18-months 0.10(0.02,0.31) 0.93(0.12,1.00) 0.96(0.76,1.00)

24-months 0.02(0.00,0.07) 0.66(0.00,1.00) 0.88(0.65,1.00)

P(Ui) 0.42(0.25,0.56) 0.04(0.00.0.15) 0.54(0.42,0.72)
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Table 4
Posterior Means and 95% Credible Intervals (in parentheses) of the Transitional Probabilities Under the MCC model.

Superclass j P(Ci,j = c|Ci,j—1 = c, Ui) P(Ci,j = c|Ci,j—1 = n, Ui)

Increasing 2 0.57(0.34,0.77) 0.01(0.00,0.06)

Noncomplier 3 0.45(0.00,0.77) 0.01(0.00,0.03)

4 0.27(0.00,1.00) 0.06(0.02,0.12)

5 0.10(0.00,0.51) 0.02(0.00,0.05)

Erratic 2 0.67(0.00,1.00) 0.56(0.00,1.00)

Complier 3 0.31(0.00,1.00) 0.48(0.00,1.00)

4 0.64(0.00,1.00) 0.78(0.00,1.00)

5 0.68(0.00,1.00) 0.54(0.00,1.00)

High 2 1.00(0.99,1.00) 0.15(0.00,1.00)

Complier 3 1.00(1.00,1.00) 0.44(0.00,1.00)

4 0.97(0.84,1.00) 0.54(0.00,1.00)

5 0.91(0.76,1.00) 0.46(0.00,1.00)
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Table 5
Posterior Means and 95% Credible Intervals (in parentheses) for the ITT Contrasts of the Outcome Within Compliance
Superclasses Under the MCC model.

Time Increasing
Noncompliers

Erratic
Compliers

High
Compliers

4-months -5.19(-7.33,-3.04) -8.32(-15.33,-0.76) -1.46(-3.05,-0.04)

8-months -2.70(-5.21,-0.34) -1.39(- 4.71, 0.58) -0.89(-2.57, 0.77)

12-months 0.52(-1.92, 3.13) -0.01(- 3.41, 3.75) -2.10(-3.81,-0.37)

18-months 1.55(-1.05, 4.23) -1.28(- 3.29, 1.48) -1.38(-3.23, 0.50)

24-months 0.48(-2.12, 2.95) -1.31(- 4.57, 2.35) -2.02(-4.53, 0.11)
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