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Cadmium is a highly toxic environmental contaminant that has
been implicated in various disorders. A major mechanism for
cadmium detoxification in the yeast Saccharomyces cerevisiae
relies on extrusion via Pca1, a P-type ATPase. While an N-terminal
degron targets Pca1 for degradation before its secretion to the
plasma membrane, cadmium in the growth media rapidly up-
regulates Pca1 by preventing its turnover. Here we show that the
endoplasmic reticulum-associated degradation (ERAD) system,
known for its role in quality control of secretory proteins, is
unexpectedly responsible for the regulation of Pca1 expression by
cadmium. Direct cadmium sensing at the ER by a degron in Pca1
leads to an escape of Pca1 from ERAD. This regulated conversion of
an ERAD substrate to a secretory competent state in response to a
cellular need illustrates a mechanism for expressional control of a
plasma membrane protein. Yeast has likely evolved this mode of
regulation for a rapid response against cadmium toxicity at the
expense of constant synthesis and degradation of Pca1. ERAD of a
portion of secretory proteins might occur via signal-dependent
regulatory mechanisms as demonstrated for Pca1.

ERAD � degron � P-type ATPase � Pca1 yeast

Metal ions are highly toxic, although several metals such as
iron, copper, and zinc are essential micronutrients. Or-

ganisms possess delicate systems for detoxification and excretion
of nonphysiological metals and homeostatic metabolism of
nutritional yet toxic metals (1, 2). Pca1 in S. cerevisiae is a
multi-spanning transmembrane protein that belongs to the fam-
ily of P1B-type ATPase heavy-metal transporters widely distrib-
uted from bacteria to humans (3). Pca1 functions in the efflux
of cadmium across the plasma membrane (4), an extremely toxic
environmental pollutant that causes various human diseases,
such as cancer, kidney disease, and endocrine disruption (5).

We have previously demonstrated that Pca1 is a short-lived
protein that is targeted for ubiquitination and proteasomal
degradation via its cytosolic N-terminal domain (amino acids
1-392) before reaching the cell surface (6). However, in the
presence of cadmium, Pca1 is rapidly up-regulated due to the
prevention of its degradation (6). An autonomous degron en-
compassing amino acid residues 250-350 within the N-terminal
cytosolic domain is necessary and sufficient for both degradation
and metal sensing (6). Given that the cell surface expression of
several plasma membrane proteins is regulated by ubiquitin-
mediated endocytosis followed by vacuolar degradation, Pca1
turnover and cadmium-responsive degradation represents an
interesting mode of expressional control in which subcellular
trafficking and stability are determined by its substrate during
secretion.

To uncover molecular factors involved in the expressional
control of Pca1, we have devised a genetic screen to identify
mutants that are defective in Pca1 degradation in the absence of
cadmium. Unexpectedly, our data presented herein demonstrate
that components of the ER-associated degradation (ERAD)
system target Pca1 for proteasomal degradation. Secretory
proteins in eukaryotes are inserted into the ER lumen or
membrane where correct folding and maturation occurs. Nu-
merous factors, such as molecular chaperones, glycosylation

enzymes, and protein disulfide isomerases, are involved in this
process. Genetic mutations and environmental stresses (e.g.,
heat, oxidative stress) increase the probability of failure of
protein folding and maturation. The unfolded protein response
(UPR) pathway enhances the capability of protein folding when
cells are challenged by these stresses (7). The ERAD system
eliminates terminally misfolded or unassembled proteins, which
is critical for the prevention of toxic accumulation of aberrant
proteins (8, 9). Several mutant proteins, unassembled subunits of
secretory proteins, and heterologously expressed proteins have
all been identified as ERAD substrates (8, 9). However, Pca1 is
a naturally expressed and functional protein and there is no
evidence of multimer assembly for Pca1.

Cadmium is extremely toxic and its levels f luctuate in the
environment. Thus, transcriptional and/or translational control
of defense factors may not be fast enough for cell protection. Our
results suggest that yeast cells have evolved to harness the ERAD
system for rapid up-regulation of Pca1 cell surface expression by
direct sensing of intracellular cadmium at the ER.

Results
Pca1 Is Targeted for ER-associated Degradation in the Absence of
Cadmium. To identify molecular factors involved in Pca1 turn-
over, we selected yeast mutants exhibiting defects in Pca1
degradation. An expression construct of a fully functional Pca1
fused with green fluorescent protein (GFP-Pca1) was trans-
formed into a collection of mutant yeast strains (Table S1), each
lacking a single nonessential gene (10). Cells emitting a strong
GFP signal (as a consequence of a defect in degradation of the
GFP-Pca1 fusion) were selected using a flow cytometer, and
gene deletions resulting in high Pca1 expression were identified
[supporting information (SI) Fig. S1 A].

Unexpectedly, Pca1 is stabilized and highly expressed in cells
with deletions of the CUE1 gene (Fig. S1 B–D). CUE1 encodes
an ER membrane-bound protein that recruits Ubc7, a cytosolic
ubiquitin-conjugating enzyme, to the ER surface (11). Given
that Cue1 is a crucial factor involved in ERAD, we further
examined Pca1 stabilization in yeast strains bearing deletions in
factors required for ERAD, including Ubc7 (12) and Ubc6
ubiquitin-conjugating enzymes (13), and ER resident Doa10
(14) and Hrd1 (15) ubiquitin ligases. In yeast, the recognition of
integral membrane ERAD substrates is governed by the location
of the misfolded domain. Lesions in soluble domains on the
cytosolic face of the ER belong to the ERAD-C (cytoplasmic
pathway) in which their ubiquitination and degradation are
largely dependent on Doa10 (8, 9). On the other hand, Hrd1 is
involved in ubiquitination and degradation of substrates with
misfolded regions in soluble luminal domains (ERAD-L) or
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within transmembrane domains (ERAD-M) (8, 9). Pca1 stabi-
lization was evident in �ubc7 or �doa10 but not �hrd1 strains
(Fig. 1A). Cycloheximide chase of Pca1 further confirmed no
significant role for Hrd1 in Pca1 turnover (Fig. 1B), indicating
the specificity of Doa10 in Pca1 turnover. Consistent with
ubiquitination by this E3 ligase, Pca1 ubiquitination was dra-
matically reduced in the �doa10 strain (Fig. 1C). Pca1 turnover
was also decelerated in �ubc6 strain, but to a lesser extent than
in the �ubc7 strain (Fig. S2). Collectively, these data suggest that
in the absence of its cadmium substrate, Pca1 is rapidly degraded
through the ERAD pathway. Given that our screening method
selected only CUE1-null mutants more than 10 times despite the
dependence of other ERAD components in Pca1 degradation,
our screen was not saturated. It would be expected that more
comprehensive screening would identify other factors (e.g.,
Doa10 and Ubc7) involved in Pca1 turnover.

Degradation of Pca1 and Cadmium Sensing Occur at the ER. Given
that Pca1 degradation and ubiquitination required Doa10, an
ER-resident ubiquitin ligase, we reasoned that Pca1 degradation
occurs before its secretion from the ER. To demonstrate this
hypothesis, we first examined the fate of Pca1 turnover in a
sec23-1 mutant, which exhibits a temperature sensitive defect in
COPII vesicle-dependent ER to Golgi trafficking (16). As shown
in Fig. 2A, trapping Pca1 in the ER had no significant effect on
turnover rate, demonstrating that Pca1 degradation does not
require its exit from the ER. Second, we determined the stability
of Pca1 in a temperature-sensitive mutant of the Cdc48/Np14p/
Ufd1 AAA-type ATPase, which is required for efficient ER
extraction and degradation of ERAD substrates such as Ste6*,
a mutant plasma membrane protein (17). Consistent with a role

for Cdc48 in Pca1 turnover, stabilization of Pca1 is apparent in
the cdc48-3 strain compared to its isogenic, wild-type strain at
restrictive temperature (Fig. 2B). Since Pca1 degradation occurs
at the ER, it would be intuitive that cadmium sensing which
blocks degradation would also occur at the ER. As expected,
addition of cadmium to cell cultures prevented Pca1 degradation
when ER exit is blocked (Fig. 2C).

Inhibition of Pca1 ERAD by Cadmium Is Specific. To confirm if the
inhibitory effect of cadmium on ERAD is specific to Pca1, we
addressed possible toxic effects of cadmium on ER functions,
such as inhibition of ERAD machinery, or saturation of ERAD
capacity by excess accumulation of damaged and/or misfolded
proteins. Accumulation of misfolded proteins in the ER gener-
ally leads to induction of the unfolded protein response (UPR)
(7, 18). The overall status of ER function was monitored with a
UPR reporter construct (UPRE-LacZ) (19). Despite being an
ERAD substrate, constitutive expression of Pca1 did not lead to
any significant increase in reporter gene expression over basal
levels (Fig. 3A). Cadmium concentrations that induce robust
expression of Pca1 (Fig. 3B) led to a minimal UPR response (Fig.
3A), whereas DTT strongly enhanced reporter levels (Fig. 3A)
without affecting Pca1 expression (Fig. 3B). Furthermore, cad-
mium did not stabilize Ste6*, a well-studied Doa10 substrate
(Fig. 3C). Collectively, these data indicated that the cadmium
dependent stabilization of Pca1 is specific and was not due to
over-accumulation of misfolded protein intermediates or the
inactivation of ERAD machinery.

The N Terminus of Pca1 Contains a Targeting Signal for ERAD.
Aberrant secretory proteins typically engage quality control
checkpoints, which prevents their exit from the ER. For instance,
when the ERAD pathway is inactivated, some substrates are
trapped in the ER rather than being secreted to the plasma
membrane (17, 20). We took advantage of the ability of the Yor1

Fig. 1. Pca1 is degraded through the ERAD pathway. (A) Confocal micros-
copy of GFP-fused Pca1 expressed in wild-type (WT), �cue1, �ubc7, �doa10, or
�hrd1 strains. (B) Cycloheximide chase and immunoblotting of HA epitope-
tagged Pca1 (HA-Pca1) expressed in wild-type (WT), �hrd1, �doa10, or �doa10
�hrd1 strains at the indicated time points. Each blot was probed for phos-
phoglycerate kinase (PGK) to determine equal loading. For quantification,
pixel densities of HA-Pca1 were normalized to those of PGK. Average � SD of
3 independent experiments is graphed (Lower). (C) Detection of ubiquitin-
conjugated Pca1. Immunoprecipitation of HA-Pca1 in wild-type (WT) or
�doa10 cells followed by western blot with anti-Ub or HA antibodies. Arrow
indicates expected migration of HA-Pca1.

Fig. 2. Pca1 degradation and cadmium sensing occur at the ER. (A) HA-
tagged Pca1 was expressed in SEC23 and a sec23-1 temperature-sensitive
mutant. To block ER to Golgi transport, cells were cultured at restrictive
temperature (37 °C for 30 min). After cycloheximide addition to culture
media, cells were collected at the indicated time points. Pca1 was detected by
western blotting using anti-HA antibodies. (B) Cycloheximide chase and west-
ern blotting of HA-Pca1 expressed in CDC48 and a cdc48-3 temperature-
sensitive mutant cultured at restrictive temperature (37 °C for 30 min). (C)
Cadmium stabilizes Pca1 when ER to Golgi transport is blocked. A sec23-1
strain expressing HA-Pca1 was cultured at restrictive temperature (37 °C for 30
min) before the addition of cycloheximide with (�) or without (-) cadmium
(Cd) (50 �M CdCl2). Cells were collected for immunoblotting at the indicated
time points. Each blot was probed for PGK to determine equal loading.
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ATP-binding cassette (ABC) transporter to extrude oligomycin,
a mitochondrial toxin (21). If the Pca1 degron prevents ER exit,
then Yor1 fused with this degron would be retained in the ER
and no oligomycin resistance would be conferred. Fusion of Pca1
(1-392) with Yor1 leads to rapid turnover of Yor1, which is
prevented by cadmium in culture media or deletion of DOA10
(Fig. S3). Consistent with its rapid proteolysis, in the absence of
cadmium the Pca1 (1-392)-Yor1-GFP fusion did not confer
resistance to oligomycin (Fig. 4A, third row, Middle). However,
upon supplementation of cadmium (Fig. 4A, third row, Right) or
expression in a �doa10 strain (Fig. 4A, fourth row, Middle), the
fusion protein confers oligomycin resistance. These results dem-

onstrate that the Pca1 (1-392)-Yor1-GFP fusion reaches the cell
surface for oligomycin efflux when its degradation is prevented.
Oligomycin resistance in the �doa10 strain expressing the Pca1
(1-392)-Yor1-GFP fusion without cadmium suggests that metal
sensing is not a prerequisite for ER exit. This is also in agreement
with our previous observation where deletion of residues 1-392
did not perturb Pca1 trafficking or function (6).

We next examined whether the Pca1 degron can target a
cytosolic protein for ERAD. Expression of a soluble GFP
reporter C-terminally fused to Pca1 residues 250-350 [GFP-Pca1
(250-350)] was regulated in a cadmium and Doa10-dependent
manner (Fig. 4B). However, cadmium did not prevent Doa10-
dependent turnover of GFP fused with a CL1 degron (22) (Fig.
4B). These data indicate that the Pca1 degron can also target a
cytosolic protein for ERAD. We conclude that the Pca1 degron
does not function as either an ER exit or retention signal but
rather serves as a targeting signal for Doa10 dependent ERAD.

Physical Interaction Between Pca1 and Doa10 via the N-Terminal
Degron. We hypothesized that the N terminus of Pca1 functions
as a Doa10-recognition motif. Pca1 and Doa10 interaction was
determined by chemical crosslinking. Microsomes were pre-
pared from cells expressing thirteen c-myc epitope-tagged
Doa10 (Doa10-myc) (23) and a fully functional HA-tagged Pca1
(HA-Pca1), or with deletion of the N-terminal regulatory do-
main (HA-Pca1�392) (6). Ste6* served as a positive control for
physical interaction between an ERAD substrate and Doa10
(23). Microsomes were treated with dimethyl dithiobispropion-
imidate (DTBP), a thiol reversible and membrane-permeable
cross-linker, and HA-tagged proteins were immunoprecipitated
by anti-HA conjugated Sepharose beads. Doa10 was co-
precipitated from cells expressing Pca1 or Ste6* but not
Pca1�392 which lacks the N-terminal degron (Fig. 5, first panel).
This data demonstrated that the N terminus is required for either
direct or indirect interaction of Pca1 with Doa10.

Fig. 3. Cadmium-dependent inhibition of Pca1 ERAD is specific. (A) Unfolded
protein response (UPR) determined by a UPRE-LacZ reporter construct (19).
Empty vector (-) or an expression construct of HA epitope tagged Pca1 (�) was
co-transformed with a UPRE-LacZ reporter construct in a wild-type (WT) yeast
strain. Cells were cultured in SC selective media with (�) or without (-)
supplementation of cadmium (Cd) (50 �M CdCl2, 1 h). As a positive control of
UPR response, cells were cultured with DTT (2 mM, 1 h) (19). Each bar
represents the average � SD of �-galactosidase activities of 4 different sam-
ples. (B) Western blot analysis of HA-Pca1 expressed in non-treated cells (NT)
or cells cultured in media supplemented with cadmium (Cd) (50 �M CdCl2) or
DTT (2 mM) for 1 h. (C) Western blot analysis of HA epitope-tagged Ste6* in
WT or �doa10 cells cultured without (-) or with (�) supplementation of
cadmium (Cd) (50 �M CdCl2, 1 h) to culture media. PGK was probed to
determine equal loading.

Fig. 4. The N-terminal regulatory domain does not function as an ER-
retention signal. (A) Oligomycin resistance of wild-type (WT) or �doa10 strains
expressing vector, Yor1-GFP or Pca1 (1-392)-Yor1-GFP. Cells (5 �L A600 � 0.1)
were spotted on YPEG solid media with (�) or without (-) the addition of
oligomycin (2.5 �g/mL) and/or cadmium (Cd) (10 �M CdCl2). Cell growth was
monitored after 3 days. (B) GFP without or with fusion of Pca1 (250-350) or a
CL1 artificial degron were expressed in wild-type (WT) and �doa10 strains.
Cells were cultured in media with (�) or without (-) supplementation of
cadmium (50 �M CdCl2, 1 h). GFP levels in total protein extracts were measured
by western blotting using anti-GFP antibodies. Each blot was probed for PGK
to determine equal loading.

Fig. 5. The N-terminal regulatory domain is required for physical interaction
between Pca1 and Doa10. Expression constructs of HA-Pca1, Pca1 deleted of
amino acid residues 1-392 (HA-Pca1�392), or Ste6* (HA-Ste6*) were expressed
in a strain containing a chromosomal integration of 13 c-myc epitope tagged
Doa10 (Doa10-myc). Chemical cross-linking was performed using microsomes
prepared from these cells (See Materials and Methods). HA tagged proteins
were immunoprecipitated (IP) and denatured under reducing conditions to
break crosslinking. Samples were subjected to SDS/PAGE and western blotting
(W) using anti-myc antibodies (IP:HA, W:myc), and then the same blot was
stripped and re-probed with anti-HA antibodies (IP:HA, W:HA). Total protein
extracts were resolved on SDS-PAGE and analyzed by western blotting using
anti-HA (W:HA) or anti-myc (W:myc) antibodies.
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Metal Binding and Conformational Change of the Pca1 Degron. Given
that cadmium or copper rescued Pca1 from degradation and that
the Pca1 N terminus contains potential metal binding residues
(6), we predicted that metal binding to this region would mask
a degradation signal. To determine metal binding, we used metal
blotting assays (24). HA-Pca1 (250-350) was immunoprecipi-
tated using anti-HA antibody conjugated beads and transferred
to a nitrocellulose membrane. Autoradiography of blots incu-
bated with 64Cu(II) showed specific binding of radioactive
copper to HA-Pca1 (250-350) as no signal was observed from
bands corresponding to the same peptide in which all 7 cysteine
residues were mutated to alanine (HA-Pca1 (250-350)�Cys)
(Fig. 6A). Cu(II) or Cd(II) but not Zn(II) effectively competed
for 64Cu(II) binding implying that copper and cadmium bind to
the same site(s) (Fig. 6B). Cd(II) appeared to compete more
effectively than copper at the same concentrations (Fig. 6B and
Fig. S4A) suggesting higher-binding affinity of cadmium. These
metal-binding specificities were in accordance with previously
observed cadmium- and copper-specific regulation of Pca1
stability (4).

We next used a limited trypsin proteolysis assay of HA-Pca1-
(250-350) to probe for cadmium-dependent conformational
changes, which could be visualized by different trypsin digestion
patterns. Yeast cell lysates prepared from cells cultured with or
without cadmium in the media were subjected to trypsin prote-
olysis followed by anti-HA immunoblotting. Indeed, this domain
is more resistant to proteolysis when cells were cultured with
cadmium (Fig. 6C Upper). No protection of trypsin proteolysis
was observed in the same peptide containing site-directed
mutations of cadmium-binding cysteine residues (6) (Fig. 6C
Lower). Cadmium-dependent protection of trypsin proteolysis
was confirmed in vitro using purified Pca1 (250-350) (Fig. S4B).
Collectively, these data suggest that cadmium-induced confor-
mational changes within the degron act as a molecular switch
allowing Pca1 to circumvent ERAD.

Discussion
Our data supports a model (Fig. 7) illustrating an unanticipated
regulatory mechanism by which cells control the expression of a

plasma membrane protein. In the absence of cadmium, newly
synthesized Pca1 is targeted for ERAD by an N-terminal degron
resulting in rapid turnover at the proteasome. Cadmium sensing
by this degron induces a conformational change, which prevents
the recognition of Pca1 by the ERAD machinery. Hence, cells
are able to rapidly elevate Pca1 expression in response to
cadmium.

Given that cadmium is an extremely toxic metal of which
environmental levels f luctuate, the constant synthesis of a
cadmium exporter would be advantageous for cell survival.
ERAD of Pca1 at the early step of synthesis keeps Pca1 levels at
a minimum, since expression is not necessary when cells are
growing without cadmium stress. It is also possible that Pca1
could play a role other than cadmium efflux, which would be
deleterious in the absence of cadmium. For instance, if Pca1
transports nutritional metal ions due to low substrate specificity
as shown for other P1B-type ATPases (25), the constant degra-
dation of Pca1 would prevent the loss of essential metals that are
limiting for growth.

ERAD eliminates misfolded or unassembled proteins, which
is necessary for the prevention of toxic accumulation of aberrant
proteins (8, 9). At least 30% of newly synthesized proteins are
rapidly degraded by proteasomes (26). It has been suggested that
this observation represents the degradation of misfolded pro-
teins and defective ribosomal products resulting from errors in
translation. This pool of peptides also provides both host and
viral antigenic peptides to be displayed by MHC class I molecules
(27). Our study presented herein suggests another unexplored
role for ERAD, which occurs in a degron-dependent manner
and would allow for fine tuning the expression of a plasma
membrane protein in response to cellular cues.

Regulation of Pca1 expression at the ER may represent a
conserved and largely uncharacterized system by which cells
control the expression levels of secretory proteins. Consistent
with this argument, molecular factors in the ERAD pathway are
involved in regulated destruction of proteins. Sterol metabolic
status regulates ERAD of ER-resident HMG-CoA reductase,
the rate-limiting enzyme of sterol synthesis (28). Co-
translational degradation of apolipoprotein B at the ER is
enhanced when lipid efflux from the liver is not favored (29). In
yeast, the Doa10 ubiquitin ligase also targets the cytoplasmic
MAT�2 repressor for degradation in the absence of its MATa1-
binding partner (14, 30). However, Pca1 is a plasma membrane
protein that is targeted to the ERAD pathway by a degron in a
substrate-dependent manner. There is accumulating evidence
for expressional regulation of other plasma membrane trans-
porters and ion channels in the secretory pathway, although the
implication of ERAD in this process has not been established.

Fig. 6. Metal binding and conformational changes within the Pca1 degron.
Pca1 amino acid residues 250-350 with N-terminal triple HA epitope tagging
[HA-Pca1 (250-350)] and HA-Pca1 (250-350)�Cys where all 7 cysteine residues
were substituted to alanine were expressed in a �doa10 strain. (A) Immuno-
precipitated HA-Pca1 (250-350) and HA-Pca1 (250-350)�Cys were subjected to
64Cu blotting (1 �M CuCl2, 10 �Ci) followed by autoradiography (See Material
and Methods). Asterisk indicates non-specifically precipitated bands. (B) 64Cu
blotting was performed in the presence of 5-fold excess non-radioactive
competitor ions. (C) Cell lysates prepared from cells cultured with (�) or
without (-) cadmium (CdCl2 50 �M, 1 h) were subjected to increasing concen-
trations of trypsin proteolysis followed by anti-HA immunoblotting.

Fig. 7. Model of cadmium-regulated expression of Pca1. Cadmium sensing
occurs at the ER by metal binding to the cytosolic N-terminal domain of Pca1
followed by conformational changes which prevents recognition for ubiquiti-
nation by ERAD factors, including Cue1, Ubc7, and Doa10. Pca1 extraction
from the ER is facilitated by Cdc48 after ubiquitination. Black squares indicate
Pca1 transmembrane domains. Black arrow indicates cadmium efflux via Pca1
at the plasma membrane.
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For instance, it was shown that ubiquitination and proteasome-
dependent degradation affects the expression of aquaporin (31),
acetylcholine receptor (32), ATP sensitive K� channels (33), and
opioid receptors (34). Intriguingly, under normal conditions only
40% of newly synthesized human delta opioid receptors ever
reach the cell surface; however membrane-permeable opioid
ligands facilitate maturation and ER export (35). It is of interest
to determine whether this opioid dependent degradation of its
receptor occurs by a similar mechanism that we have character-
ized for Pca1.

It is unknown whether Doa10 directly recognizes the Pca1
degron or whether other accessory factor(s) recruit Pca1 for
ubiquitination. The requirement of the Pca1 N terminus in the
co-precipitation of Doa10 suggests a physical interaction be-
tween the Pca1 degron and Doa10, although it is not certain yet
whether this interaction is mediated by other factor(s). In the
case of Ste6*, cytosolic Hsp70 chaperones aid in this process
(23). However, our data did not indicate a significant role for
cytosolic Hsp70 chaperones in Pca1 ERAD (Fig. S5A), although
expression levels of CL1 degron-fused GFP (36) were higher
when Hsp70 chaperones were inactivated (Fig. S5B).

The recognition determinants of the Pca1 degron and that of
other ERAD substrates remain unknown. The current hypoth-
esis is that misfolded proteins display normally buried hydro-
phobic residues to the cytosolic surface, which serves as a
targeting signal for degradation. The Deg1 degron of MAT�2
repressor is predicted to form an amphipathic helix of which
hydrophobic residues are crucial for its instability (30). However,
there is no obvious similarity in the primary sequence of Deg1
and the Pca1 degron. Structural characterization of the Pca1
metal-sensing degron in apo- and metal-bound forms would
define the features that attract the ERAD machinery. This study
would also provide useful information for the identification of
other proteins that may possess a similar type of degradation
signal. While the Pca1 degron does not have significant sequence
identity with known proteins, we could identify potential metal-
binding cysteine and histidine-rich extensions in predicted Pca1
family members of plants (25). We are currently determining
whether they are targeted to the ERAD pathway in a regulated
manner.

The identification of the molecular factors involved in Pca1
turnover reveals a regulatory mechanism by which yeast cells can
selectively control the expression of a plasma membrane protein
at an early step in its synthesis. Small molecules, including
substrates or metabolites, or signaling pathways may actively
regulate protein secretion at the ER in a target specific manner
as demonstrated for Pca1.

Materials and Methods
(For additional materials and methods see SI Materials and Methods.)

Selection of Yeast Mutants Constitutively Expressing Pca1. An expression
construct of functional Pca1 fused with green fluorescent protein (GFP) at the
N terminus was transformed into a yeast S. cerevisiae pool of 4,848 strains
containing individual deletions of all nonessential genes (Open Biosystems).
Approximately 400,000 transformed colonies were collected by re-suspending
in sterilized water and then diluted to A600 � 1. Highly fluorescent cells that
are defective in GFP-Pca1 turnover were sorted by flow cytometry and then
plated on SC media selecting the GFP-Pca1 expression plasmid. Strong GFP
signals in cells of growing colonies were confirmed by confocal microscopy,
and gene deletions were identified using a primer set for PCR amplification
and sequencing of a unique 20-base ‘‘tag’’ sequence (10).

Cycloheximide Chase Analysis. Protein synthesis was inhibited by the addition
of 100 �g/mL cycloheximide to logarithmically growing cultures. Cells (A600 �
15) were collected into equal volumes of ice-cold kill buffer (PBS containing 15
mM NaN3) at the indicated time points. At time 0, cells were collected before
addition of cycloheximide. Cells were collected by centrifugation and stored
at �80 °C until preparation of cell extracts for SDS/PAGE and immunoblotting
(6). Pca1 was detected by chemiluminescence using anti-HA antibodies and
horseradish peroxidase (HRP)-conjugated anti-rabbit IgG antibodies. Phos-
phoglycerate kinase (PGK) was probed as a loading control using anti-PGK
antibodies and HRP-conjugated anti-mouse IgG antibodies. Signals were
quantified using Total Lab TL100 software and then normalized to PGK.

64Cu Blotting and Autoradiography. Triple HA epitope-tagged Pca1 (250-350)
or Pca1 (250-350)�Cys where all cysteine residues were mutated to alanine
were immunoprecipitated from �doa10 cell lysates using anti-HA antibody-
conjugated beads (Pierce). Samples were subjected to SDS/PAGE and electro-
blotted onto a nitrocellulose membrane. Membranes were equilibrated in
metal binding buffer (24), probed with 10 �Ci 64Cu (�1 �M CuCl2) (Isotrace
Technique) for 1 h, and then washed extensively before autoradiography and
protein staining (MemCode) (Pierce). Competition with 64Cu binding was deter-
mined in the presence of 5-fold excess of non-radioactive competitor ions.

Limited Trypsin Proteolysis of Pca1 (250-350). Cytosolic fractions were obtained
from �doa10 cells expressing triple HA epitope-tagged Pca1 (250-350) or Pca1
(250-350)�Cys cultured with or without cadmium (50 �M CdCl2, 1 h). Lysates
were incubated with trypsin (Sigma) for 10 min on ice before addition of 0.2
�g/mL soybean trypsin inhibitor (Fluka BioChemika) for an additional 15 min
on ice. Proteolysis patterns were visualized by anti-HA immunoblotting.
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