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We explore how the genotype–phenotype map determines con-
vergent evolution in a simple model of spatial gene regulation
during development. Evolution is simulated via a Monte Carlo
scheme that incorporates mutation, selection, and genetic drift, by
using a bottom-up model of gene regulation with a fitness function
that is optimized by a switch-like response to a morphogen
gradient. We find that even for very simple regulation, the geno-
type–phenotype map gives rise to an emergent fitness landscape
of remarkable complexity. This leads to a richness of evolutionary
behavior as population size is increased that parallels the thermo-
dynamics of physical systems as temperature decreases. Conver-
gence is controlled by the existence of sufficiently dominant global
optima in ‘‘free fitness,’’ which is a quantity that is the balance of
mutational entropy and fitness. In independent simulations at low
population sizes, we find convergence to a phenotype of subop-
timal fitness due to the multiplicity or entropy of solutions. This
contrasts with convergence to the optimal fitness phenotype at
high population size. However, at sufficiently large population
sizes, we find convergence in only the phenotypes with greatest
effect on fitness, whereas noncritical phenotypes exhibit diver-
gence due to quenched disorder on a locally rough landscape. Our
results predict that for large populations, the evolution of even
simple gene regulatory circuits may be glassy-like, such that,
counter to the commonly accepted view that conservation implies
function, many conserved phenotypes are simply frozen accidents
of little consequence to the fitness of the organism.

fitness landscapes � gene regulation � genotype–phenotype map �
mutational entropy � population genetics

Over the past 150 years, much work has established natural
selection, mutation, and genetic drift as the basic processes of

evolution (1–5). However, there still remains much controversy
concerning how the complexity and diversity of biological form has
arisen from essentially random processes; does evolution play out in
an arena of weak constraints, or are there hidden limits to the
possibilities of biological form. This is epitomized in the debate
regarding the role of historical contingency in evolution; were we to
replay the tape of life, would, as Stephen Jay Gould (6) suggested,
historical accidents compound and amplify in time such that
biological organisms on Earth today would be unrecognizable, or is
evolution constrained to the extent that life forms would corre-
spond with those on earth today, as argued by Simon Conway
Morris (7). There are many examples in the natural world of
independent convergence that support the latter stance, a famous
example is the near-identical structure of the mammalian and
octopus camera eye (7), whereas empirical support for divergence
in evolution is rarer, because by its very nature, the demonstration
of different solutions under the same selective pressure is difficult.
At the heart of this debate is that, despite an understanding of the
basic mechanisms of evolution, questions of the genotype to
phenotype map and the underlying structure of evolutionary land-
scapes have attracted little attention to date.

However, there are exceptions, for example, the body of work
that has studied the genotype–phenotype map of the folding of

RNA sequences (8), which suggest that a single RNA shape
(phenotype) maps to large neutral networks in sequence (genotype)
space. Such redundancy is also seen in the context of the evolution
of transcription factor binding (9–11), where a single binding
constant of a protein to a regulatory region can be realized by a
number of different pairs of sequences, distinguished only by the
number of mismatches between them. The many-to-one nature of
the genotype–phenotype map naturally gives rise to the concept of
mutational entropy (9, 12, 13), which importantly, can bias the
course of evolution in a manner not predictable from studies based
on phenotypic landscapes (14).

In this article, we study the genotype–phenotype map for the
evolution of spatial patterning in development and examine the role
that mutational entropy and finite population size play in deter-
mining the independent convergence of evolutionary solutions. In
the regime of small population size, the most appropriate model of
evolution is described by a Wright–Fisher process (2, 3), where
populations are monomorphic at loci, aside from short periods
when a rare and ultimately successful mutation vies for fixation in
the population. Here, we introduce a Monte Carlo (MC) scheme
based on the probability of fixation � of a mutant of fitness �F
compared with the wild type, which we use to explore the fitness
landscape. As demonstrated by Sella and Hirsh (12) in the general
case, and Berg and Lässig (9), for the case of transcription factor
binding, there is an exact mathematical correspondence between
the Wright–Fisher process and the canonical ensemble of statistical
mechanics in steady state; the ratio of forward and reverse fixation
rates �(�F)/�(��F) � exp(��F), implying that the probability
distribution of the most recent common ancestor is a Boltzmann
distribution with an effective temperature ��1 � (2(N � 1))�1 for
haploid asexual populations, as is assumed in this article. As shown
by Sella and Hirsh (12), this means that in steady-state evolutionary
processes, there is a balance between mutational entropy S and
mean fitness �F�, where a quantity analogous to the Helmholtz free
energy, the free fitness � � �F� � 1

�
S is at maximum. We use this

analogy to show that from a simple model of the genotype–
phenotype map for gene regulation, an emergent and unexpected
complexity arises, which leads to a richness of behavior as popu-
lation size is varied that parallels that found in condensed-matter
physics as a function of temperature. This, in turn, gives rise to a
number of unexpected consequences for molecular evolution,
which we explore within the context of the question of convergence.

Model
There are 3 main elements to the model: (i) a model of spatial
patterning of an embryo, (ii) a model for the genotype–phenotype
map, and (iii) a means of determining fitness of a phenotype and
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subsequent evolution via Monte Carlo simulation. An overview of
the first 2 parts is given in Fig. 1.

Spatial Patterning. Spatial patterning is of profound importance in
developmental biology because it allows the organization of tran-
scription factors (TFs) into different spatial regions, which then
ultimately leads to differentiation of the embryo into a variety of cell
types and higher morphological forms (15). However, different
regions or cells must receive information on their relative position
within a developing embryo. A well-studied mechanism to achieve
this is the formation of a concentration gradient of a morphogen
that pervades the embryo (16); concentration then becomes a
function of position, which can then be ‘‘read-off’’ by downstream
targets. Many developmental processes have been shown to rely on
morphogens, such as bicoid (17) or decapentaplegic (Dpp) (18) and
wingless (Wg) (19), which pattern the anterior–posterior (A–P) axis
of the syncytial blastoderm and the wing imaginal disc, respectively,
in Drosophila.

Here, we choose a simplified patterning model, based on an
extracellular morphogen gradient acting on downstream targets in
a cellularized embryo of fixed length L. As shown in Fig. 1, we use
a minimal gene regulatory module that will be evolved to pattern
an embryo into 2 halves along a given developmental axis, such as
the A–P axis, forming a boundary of expression at its midpoint. The
minimal system consists of a morphogen M with an exponential
concentration gradient [see supporting information (SI)] with
steepness characterized by the inverse decay length �, a transcrip-
tion-initiator protein R (e.g., RNA polymerase) with fixed concen-
tration and a single TF T, whose concentration profile is the output
of the network, dependent on the concentration and cooperative
binding of M and R to the regulatory region of T. In this article, we
do not allow T to affect its own transcription in the interests of
keeping the evolutionary computations simple.

Genotype–Phenotype Map. The genotype–phenotype map repre-
sents how genomic sequences are mapped to organismal function
on which selection ultimately acts. In this article, a genotype is
expressed in terms of binary sequences, whereas we consider a
phenotype to be any function of those sequences. To study the
genotype–phenotype map, we use a binary genome G, following the
‘‘2-state’’ approximation (11, 20) for transcription factor binding.
This assumes that amino acid base pair hydrogen-binding energies
are approximately additive and that each ‘‘nonoptimal’’ interaction
increases the energy of binding by the same amount. As depicted in
Fig. 1, we assume each protein has a pair of binary sequences, 1 for
binding to DNA, as described above and 1 for ‘‘gluing’’ protein pairs
for cooperative DNA binding, where the cooperative glue energy

adds stability for each favorable hydrophobic interaction between
amino acids (21). The regulatory region that controls transcription
of the TF consists of adjacent nonoverlapping binding sites, each
with its own binary sequence. More complicated regulatory
schemes are possible, such as allowing overlapping binding sites
(22); however, we choose a nonoverlapping approximation to keep
our model of the genotype phenotype map simple. In this article,
we assume the length of binding sequences are lb � 10 and glue
sequences lg � 5, giving a total genome size,  G � 50. The binding
and cooperative energies are calculated by using the Hamming
distance or number of mismatches between a relevant pair of binary
sequences. To allow switch-like behavior with changing concentra-
tion (or chemical potential) for the occupation of binding sites
requires the background free energy (binding of other nontarget
sites in the genome) to be within kBT of the maximum TF binding
energy (20). Hence, in this article, all energies are measured relative
to the strongest binding TF or equivalently the genomic background
free energy.

In our minimal model of spatial gene regulation, there is only a
single regulatory region with 2 binding sites, so that the binding free
energy of the ith protein to the jth binding site, with sequences bi
and rj, respectively, is

Eij � �b��bi, rj� , [1]

where �(b, r) is the Hamming distance between sequences b and r,
�b is the cost in energy for each mismatch and the indices can take
values, i � {R, M} and j � {P, 1}, P being the promoter site and
1 being the adjacent binding site. We assume �b � 2kBT as a typical
value for the mismatch energy, which are found to be in the range
1 � 3kBT (11, 20). Similarly, the cooperative energy �Eii	 between
the ith and i	th proteins is

�Eii	 � �g�lg � ��gi, ği	�� , [2]

where gi is the glue sequence of the ith protein, and ğ represents the
binary sequence flipped about its center. This mimics the chirality
of real proteins and prevents the cooperative stability from always
being maximum for homodimers; maximum stability will be
achieved between proteins i and i	, when gi � ği	. The parameter �g
is the stability added for each favorable hydrophobic interaction
between amino acids, which we assume to be �g � �kBT. Given
lg � 5, this gives interactions consistent with typical literature
values of �2 to �7kBT for hydrophobic interactions between
proteins (23, 24).

The binding and glue energies represent 1 level of phenotype,
which are explicit functions of an underlying genotype G. The
morphogen steepness � is also a phenotype, because, in principle,

Fig. 1. An overview of the genotype–phenotype map. The gene regulatory module has input a morphogen gradient M(x) across a 1-dimensional embryo of
length L and outputs a transcription factor T(x). The specific equation shown for the morphogen profile arises from solving the reaction-diffusion equation with
reflecting boundary conditions and is valid for all � (SI). Gene regulation of T by using a morphogen and RNAP (R) is controlled in a bottom-up manner by binding
to its regulatory region consisting of a promoter P and adjacent binding site 1. Binding (E) and glue energies (�E) are determined by comparison of the relevant
sequences contained in G.
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it could also be resolved into a binary sequence, for example, related
to protease-specific binding that would target it for degradation.
However, because this sequence would not directly interact with the
binding process involved in regulation, we choose to ‘‘coarse-grain’’
its evolution as a continuous parameter while retaining a ‘‘fine-
grain’’ model of binding and glue sequences that determine
transcription.

Given an exponential morphogen concentration profile M(x,�)
as a function of the position of embryonic cells, x, and a fixed
concentration of RNAP, R, in each cell, we follow Shea and Ackers
(23) to calculate the TF concentration profile T(x), assuming
transcription is proportional to the probability of RNAP being
bound to the promoter pRP. This probability can be calculated by
using the canonical ensemble of statistical mechanics (details can be
found in SI). Because T cannot affect its own transcription, the
steady-state concentration profile is then simply proportional to
pRP(G, R, M (x, �)), where G � [bR, bM, rP, r1, gR, gM] is the genome
and is a function of all of the binding and glue sequences from
proteins and DNA. The proportionality constant will be given by
the ratio of the rate of transcription and translation to the rate of
degradation of T, which is not important in our study, because we
are only interested in the shape or contrast of T(x) that can be
achieved.

Monte Carlo Scheme. To determine the goodness of the spatial gene
regulation, the resulting concentration profile T(x) is then mapped
to a Malthusian fitness by use of a functional that promotes
expression of the TF in the anterior half while penalizing expression
in the posterior half,

F � F 
T�x�� �

�
0

L/2

T�x�dx � �
L/2

L

T�x�dx

L
2

maxx�T�x�
, [3]

where, importantly, the functional weighting is chosen so that F has
a maximum possible value of 1, obtained by a perfectly sharp
boundary at x � L/2 and so that only the contrast of the TF profile
affects fitness. As long as concentration levels of protein species per
cell are sufficiently large, so that relative fluctuations in copy
number are small (25), ignoring the magnitude of T should be
realistic in determining fitness. Eq. 3 was chosen for its simplicity,
and is just one of a number of possible fitness functionals that would
achieve localized protein expression; for example, Eq. 3 could also
include terms that select for a large negative gradient at the
boundary of expression x � L/2. In addition, F should be considered
as an indicator of fitness, because in practice, this phenotype along
with many others, will contribute in a complicated and nonlinear
way (epistasis) to the growth rate of the organism.

As indicated by Eq. 3, fitness is determined by both the genome
G and the morphogen gradient M(x), which is determined by the
effective production rate at the source J, and the gradient steepness
�. The quantity J will only affect the magnitude of M(x), so the
fitness as defined by Eq. 3 will be insensitive to it. In contrast, it is
clear that � will have a strong impact on fitness, so we allow
continuous ‘‘mutations’’ in this parameter, chosen from a Gaussian
distribution of standard deviation �� � 0.5. By using Eq. 3,
mutations in the genome between subsequent MC steps give rise to
a change in fitness �F. In the regime of small population size (	N ��
1), where N is the effective size of the haploid asexual population
of the idealized Wright–Fisher process (3), and 	 is the mutation
rate per base pair per organism, the probability of fixation of this
mutant with fitness difference �F compared with the current wild
type is given by ref. 5,

���F� �
1 � e�2�F

1 � e�2N�F . [4]

Eq. 4 is then the acceptance probability in a MC scheme that
simulates the stochastic success and failure of mutants fixing in the
population. The chosen MC scheme assumes that populations are
always monomorphic, such that the dynamics due to drift and
selection that give rise to fixation, can be neglected because they
occur on a much shorter time scale than the average time between
fixation of successive mutations (26). In the case of neutral muta-
tions (N�F �� 1), this is true as long as the average time between
successive fixation events (�1/	) is much larger than the average
time for genetic drift to affect fixation from the instant the mutation
arises in the population (�N), i.e., N	 �� 1, which is satisfied
by-definition for ‘‘small’’ populations. From Eq. 4, advantageous
mutations (N�F �� 1, �F �� 1) will fix at a rate 	N�F and take
approximately ln(N�F)/�F generations to fix (27), so here we
require 	Nln(N�F) �� 1. So for typical eukaryote mutation rates
of 	 � 10�9, we expect this formalism to be valid for most realistic
population sizes encountered in eukaryote species and even small
microbial colonies.

Results
To study evolutionary behavior in the simple model of spatial
patterning described above, we ran multiple independent simula-
tions each with a random initial genome G, but with the same initial
morphogen steepness �, for a total of 107 mutations (equivalently
MC steps). The first observation is that for sufficiently large
population sizes (N � 10), the simulated evolutionary process
always comes to an equilibrium that consists of an ensemble of
significantly fit solutions, in which it is clear from visual inspection
that T is expressed largely in the anterior only (Fig. 2). As the time
series in Fig. 3 show, in general, phenotypes of good fitness require
that some binding or glue energies are constrained, whereas others
can accommodate large fluctuations. In particular, a defining
characteristic of the ensemble of solutions found is that the mor-
phogen binds strongly to the first binding site (EM1 � 0), the glue
energy between M and R, �ERM, is large and negative and that the
binding energy of RNAP to the promoter is always greater than the
chemical potential of RNAP (ERP � 	R). After the discussion
above, the constraint on ERP is a basic requirement for switch-like
behavior. These facts indicate that the solution to the patterning
problem consists of the morphogen cooperatively binding with
RNAP to give a simple threshold mechanism, where the concen-
tration of T is a sigmoidal function of M (see SI). The time series
also show that there are certain energies, such as the binding energy
of the morphogen to the promoter, that can evolve a large range of
values with little consequence to fitness and so are essentially
noncritical or neutral in nature. In addition, from Fig. 2. we can see
that evolution also produces characteristic defects in the patterns,
which are inherent to this threshold mechanism, namely a nonzero
expression of T in the posterior, due to a background concentration

Fig. 2. Output concentration profiles T(x) at various time points for a typical
simulation run, for a population size of N � 50 and a total of 106 attempted
mutations (Monte Carlo steps) for a fitness functional that promotes expres-
sion of T in the anterior half of an embryo (Eq. 2).
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of R and a decrease in concentration at the far anterior of the
embryo, due to M–M complexes blocking R from binding to the
promoter. At low population size, it is evident that these defects are
not serious enough to be selected against.

Equilibrium Statistical Mechanics Determines Convergence for Small
Populations. Fig. 3 shows a typical set of time series data from a
simulation run at N � 50. The time series data of fitness F (Fig. 3A,
gray) show that adaptation occurs very quickly compared with the
duration of the simulation, followed by fluctuations from a maxi-
mum fitness state of F � 0.68. The fluctuations are changes in
fitness as a result of substituted mutations in the population and as
expected when genetic drift dominates, the size of these fluctua-
tions do not exceed more than a few times 1/� � 0.01, for N � 50.
However, it is clear that more structure appears when examining
the time series of the morphogen gradient � (Fig. 3A, red) and the
various energies {E,�E} (Fig. 3 B and C). We see there is stochastic
bistable switching between 2 values of the morphogen gradient,
�1 � 7 and �2 � 10, where the former is coincident with an increase
in the likelihood of substitutions in the sequences that code for
{E,�E}, as shown by the increased frequency of changes in these
energies. This suggests there is a difference in the local curvature
and/or roughness of the fitness landscape for these 2 values of the
morphogen gradient, a hypothesis we will test below. In addition, we
note that the solutions represented by �1 are suboptimal compared

with �2 with an average difference in fitness of �0.05, which is
consistent with a steeper morphogen gradient allowing a sharper
spatial boundary and thus greater fitness (see SI).

To further understand this behavior, we performed simulations
at a range of populations sizes between N � 20 and N � 110 with
the expectation that a change in the characteristic scale of fitness
1/�, would probe any difference in local curvature or roughness. In
Fig. 4 we plot the effective ‘‘free fitness’’ (the analogue of free
energy in statistical mechanics) ��(�) projected onto to the
morphogen gradient, which is calculated in similar fashion to the
potential of mean force of a thermodynamical system: � �(�) �
lnZ(�) � lnp(�). Here, Z(�) is the analogue of the partition
function and is a sum or integral over genotype degrees of freedom
for a fixed �. As shown by Sella and Hirsh (12), the free fitness is
an effective landscape that balances the fitness of a phenotype and
mutational entropic effects due to a multiplicity of genotypes that
may gives rise to a given phenotype. It is effectively an energy
function for the evolutionary dynamics: Maxima in free fitness
correspond to stationary evolutionary states for populations of
finite size. Furthermore, the contribution of mutational entropy to
the free fitness implies that its maxima will not, in general, coincide
with maxima in fitness of the phenotype. In order for the concepts
of free fitness and mutational entropy to be relevant, the system
should be in equilibrium; specifically, it should be ergodic, such that
the phase space of genotypes should be sampled uniformly. To
check that the system is ergodic, we repeated the simulations at each
populations size a number of times, for various initial values of �
and also calculated the free fitness by averaging over the end-state
from a large ensemble (�100) of simulations of shorter duration
(see SI) but long enough that adaptation has occurred. In both
cases, we find the same probability distributions of parameter values
indicating that the system is ergodic for this range of population
sizes. The bistability shown in Fig. 3 of the morphogen gradient �
singles this phenotype out for particular study; from Fig. 4, we see
that at low population size (N � 30), there is a single peak in free
fitness with a maximum at � � 7. As the population size increases,
we see a second peak that emerges at � � 10 and continues to
increase in free fitness tending toward convergence for N � 50.

The observation of a single-peaked free fitness landscape shows
that at sufficiently small populations sizes, there is convergence to
a suboptimal value of �. This suggests that there is an entropic
contribution to the free fitness that is dominating at small popu-
lation size. This is further supported by the emergence of the

Fig. 3. Time series data from a typical simulation run for a population size
of N � 50 and a total of 107 attempted mutations (only first 106 steps shown
for clarity) for evolution of solutions for the patterning problem. The param-
eter t represents the number of attempted mutations. Each mutation is
separated by an average of 1/N	 G generations. (A) Fitness F versus time
(gray) and steepness of morphogen gradient �L versus time (red). (B) Time
series of binding energies Eij of ith protein to jth binding site of regulatory
region of T. (C) Time series of glue energies �Eii	, between the ith and i	th
protein.

Fig. 4. Free fitness landscape projected onto the morphogen steepness � as
a function of populations size N, where each plot for a given value of N is offset
vertically for clarity. Analogous to the free energy, local maxima in free fitness
represent local equilibrium states; upon increasing the population size N, we
see a change in the dominance of the low �-phenotype to the high
�-phenotype.
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secondary peak at higher N, � � 10, which from Fig. 3, is known
to be of higher fitness and so indicates that the solutions of this
phenotype have lower mutational entropy compared with the � �
7 phenotype. In this case, where N � 50, by inspection, we can see
a difference in free fitness between maxima of �1/�, and so given
that the width of the 2 maxima are approximately equal, we expect
that the probability of evolution picking the high-fitness phenotype
(� � 10) is p � 1/(1 � e�1) � 0.73, which we also confirmed by direct
calculation from the time spent in each phenotype. As the popu-
lation size increases to n � 100, we see the difference in free fitness
increases to �� � 2, such that p � 0.9.

However, as N increases beyond N � 110, we find that indepen-
dent simulations result in different probability distributions of � and
the binding and glue energies, indicating that evolution is no longer
ergodic. It is possible that simulations of longer duration at these
population sizes may recover ergodicity, however, as we will see in
the next section, simulations at significantly larger population sizes
provide direct evidence of local fitness valleys, suggesting that at
N � 110, we begin to probe this local roughness in the fitness
landscape and the consequent slowing of dynamical degrees of
freedom.

The free fitness plots in Fig. 4, in general, give highly redundant
1-dimensional projections of the various phenotypic parameters,
which makes it difficult to infer correlations between parameters. In
Fig. 5, we show a scatter plot of fitness versus morphogen gradient
�, for N � 20, 50, and 500, where each point represents the fitness
of a mutation that has fixed in the population at some point during
the simulation. From Fig. 5, it is clear that the genotype-to-
phenotype map of even a simple regulatory system gives rise to a
highly complex and discrete structure to the fitness landscape. Each
of the numerous peaks is the fitness landscape for a fixed set of
binding and glue energies {Eij,�Eii	}, which will be shown empiri-
cally below and is supported by an analytical calculation of the
fitness landscape F(�) in SI. Given this picture of the fitness
landscape, we can write the partition function as Z(�) � ¥ne�Fn(�),
where the sum runs over all solutions for different genotypes, so it
is clear that the large entropic component of the free fitness at N �
20 is due to the very large number of solutions that are clustered
around � � 7, and are within a few times 1/� of the maximum
fitness, such that they contribute significantly to the partition sum.
As expected, as the population size is increased to N � 50, the
proportion of time the population adopts the more-fit phenotype
increases, as the effects of entropy become less important.

Divergent Evolution of Noncritical Phenotypes for Large Populations.
Also shown in Fig. 5 are scatter plots of fitness versus morphogen
gradient at a significantly higher population size of N � 500, where
now each isolated blue peak corresponds to a different independent
simulation. We see that ergodicity is lost at very high population
size, because each independent run is trapped to a single, but
different, solution of the patterning problem. We can see explicitly
that each of these curves is indeed 1 genotype with a fixed set of
{Eij,�Eii	} by plotting the time course of the evolving phenotypes for
a single simulation at N � 500. This is shown in Fig. 6A, where after
adaptation, the populations remains fixed to the same set of binding
and glue energies with no further substitutions.

The simplest explanation for such behavior is that the landscape
is locally rough with valleys in fitness that are in far in excess of the
characteristic scale of fitness for N � 500, 1/� � 0.001; once
adaptation has occurred to the closest local maxima, it will take an
exponentially long waiting time to escape. This can be seen more
directly by analyzing the free fitness landscape projected onto the
phenotypes EMP and ER1, which are largely unconstrained at low
population sizes (Fig. 3). In Fig. 6B, we show such a landscape for
each �-phenotype at N � 50; it is clear that the high-fitness
phenotype exhibits a pronounced ‘‘checkerboard effect,’’ whereas
the suboptimal phenotype is relatively smooth. Roughness in the
high-fitness phenotype can be inferred, because mutations in these
2 energies can only give rise to vertical or horizontal moves on the
landscape and because we see that single mutations can result in
large relative changes in fitness. The scale of roughness or typical
size of fitness valleys can be read off as �0.02, which is an order of
magnitude larger than the scale of fitness at N � 500 and so can
explain the trapping of these phenotypes on the time scale of the
simulations. In addition, the observation that the 2 �-phenotypes
appear to have different local properties, with the high-entropy
phenotype being smoother than the high-fitness phenotype is
consistent with their different substitution rates observed in Fig. 3.
To summarize at large populations sizes of N � 500, we see
divergence in the noncritical phenotypes for patterning due to local

Fig. 5. Fitness landscape projected onto the morphogen steepness �, for
populations sizes N � 20 (gray), N � 50 (red), and N � 500 (blue). For N � 20,
and N � 50, the plot is obtained from single simulations of 107 attempted
mutations, whereas for N � 500, each isolated blue trace is from a single
independent simulation, which total 6 in this plot. Each of the numerous single
peaks represents a fitness landscape of the patterning problem for a fixed
genotype but with � allowed to vary; vertical evolutionary transitions be-
tween curves arise from mutations in G, whereas evolution along each curve
is due to mutations in �.

Fig. 6. Local roughness of fitness landscape. (A) Typical time-series traces of
binding energies {Eij} versus time, for independent simulations at a large
population size of N � 500. The time series show that after an initial adapta-
tion period, evolution becomes trapped to a locally optimum set of binding
and glue energies (as shown in A for binding energies). Independent simula-
tions at N � 500 show the same behavior but trapped to a different set of
energies. (B) Free fitness landscape at N � 50, projected onto the binding
energies ER1 and EMP for low (A) and high (B) �-phenotype, respectively,
calculated by partitioning time-series data visually and excluding any transi-
tion regions. Fitness is represented by the shade of gray as indicated by the
color bar, where black is high fitness, and white is low fitness.

9568 � www.pnas.org�cgi�doi�10.1073�pnas.0812260106 Khatri et al.

http://www.pnas.org/cgi/content/full/0812260106/DCSupplemental


roughness. However, it should be noted that for the binding and
glue energies that are critical for the threshold mechanism, we still
observe convergent behavior.

Conclusions and Discussion
In this article, we have studied the evolution of a simple model of
spatial patterning, in the regime where mutations arise rarely and
fix sequentially in populations of fixed size. From a minimal
bottom-up model of gene regulation, we have demonstrated that a
strikingly rich behavior emerges from the complexity of the gen-
otype-to-phenotype map. In particular, we find evolution can be
biased toward certain phenotypes, simply as a result of being
mapped onto from a larger number of genotypes, even if these
phenotypes represent suboptimal solutions. Convergence requires
a global and sufficiently dominant optimum in free fitness as well
as population sizes smaller than the inverse of typical local fitness
valleys. Larger populations are trapped in local maxima, and we
find that the evolutionary simulations are no longer ergodic. It is
instructive that ergodicity can be achieved when only a small
fraction of phase space (10�8 of 250 � 1015 possible binary states)
can be visited with simulations of length 107 mutations. One
explanation is that viable solutions cover the whole of gene space,
but sparsely, similar to the neutral networks of RNA sequences that
map to tertiary structure (8), in that only a relatively small number
of mutations are needed to find this region from any given point in
gene space. Importantly, it may also point to a deep underlying
symmetry of genotype space, in which distant regions (large Ham-
ming distance) give rise to exactly the same set of binding and glue
energies.

What is the biological relevance of these findings? An important
conclusion of our results for evolution on locally rough landscapes
is that not all conserved phenotypes are indicative of functional
necessity for the organism. For populations of size greater than the
typical size of local valleys, there may be certain phenotypes that are
strongly conserved in a lineage, yet have little or no functional
relevance, because their values are effectively frozen by unpassable
valleys in genotype space. This behavior is analogous to that of
glassy materials which exhibit ‘‘quenched disorder’’; microscopic
degrees of freedom are frozen and take fixed random values as a
result of quenching of the temperature below some critical thresh-
old. If fitness landscapes are rough with respect to their ‘‘neutral’’

phenotypes, then our results make the prediction that we expect a
larger number of conserved phenotypes for organisms evolved at
sufficiently large population sizes or, conversely, more variation at
small population sizes. We would caution that it is possible that by
including other mutation operations such as insertions and dele-
tions, populations may be able to traverse local fitness valleys.
However, in the case of ‘‘indels,’’ it is likely that they will largely be
deleterious and that advantageous or neutral occurrences will fix
only very rarely. Importantly, we note that despite the divergence
or quenched disorder of the less-important binding free energies,
e.g., ER1 (Fig. 6A), we find that the binding free energy with the
largest effect on the fitness, EM1, still converges at larger population
sizes. This is strongly reminiscent of the evolution of the human and
octopus eye, where critical features such as the broad geometry are
convergent, whereas the presumably small fitness cost associated
with different positions of the optic nerve has allowed this pheno-
type to diverge in the 2 lineages.

It is striking that even for the minimal gene regulatory module
studied here, the genotype-to-phenotype map reveals a highly
nontrivial fitness landscape; for example, a priori, it would be
difficult to predict that 2 patterning phenotypes would emerge with
very different entropic contributions. This raises the open question
of the importance of entropic contributions to free fitness land-
scapes for organisms in nature; are most organisms suboptimally
adapted to their environments? It is anticipated that as more
complex and realistic coupled genotype–phenotype regulatory
schemes are studied, together with the inclusion of spatial or
geographic variation (28), time-varying environments and/or com-
petition between multiple species (29), that a very rich behavior will
be uncovered. For example, as the combinatorial complexity of
networks grows, we may expect very large and nontrivial entropic
contributions to different parts of the underlying fitness landscape.
Following the work of A. Wagner and coworkers (30) and the
importance of neutral spaces in gene networks, we speculate that
such contributions will have a strong bearing on understanding the
remarkable robustness and evolvability of biological systems found
in nature.
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