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We study inverse statistical mechanics: how can one design a
potential function so as to produce a specified ground state? In
this article, we show that unexpectedly simple potential functions
suffice for certain symmetrical configurations, and we apply tech-
niques from coding and information theory to provide mathemati-
cal proof that the ground state has been achieved. These potential
functions are required to be decreasing and convex, which rules
out the use of potential wells. Furthermore, we give an algorithm
for constructing a potential function with a desired ground state.
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H ow can one engineer conditions under which a desired struc-
ture will spontaneously self-assemble from simpler compo-

nents? This inverse problem arises naturally in many fields, such
as chemistry, materials science, biotechnology, or nanotechnol-
ogy (see for example ref. 1 and the references cited therein). A
full solution remains distant, but in this article we develop con-
nections with coding and information theory, and we apply these
connections to give a detailed mathematical analysis of several
fundamental cases.

Our work is inspired by a series of articles by Rechtsman, Still-
inger, and Torquato, in which they design potential functions that
can produce a honeycomb (2), square (3), cubic (4), or diamond
(5) lattice. In this article, we analyze finite analogues of these
structures, and we show similar results for much simpler classes
of potential functions.

For an initial example, suppose 20 identical point particles are
confined to the surface of a unit sphere (in the spirit of the Thom-
son problem of how classical electrons arrange themselves on a
spherical shell). We wish them to form a regular dodecahedron
with 12 pentagonal facets.

Suppose the only flexibility we have in designing the system
is that we can specify an isotropic pair potential V between
the points. In other words, the potential energy EV (C) of a
configuration (i.e., set of points) C is

EV (C) = 1
2

∑
x,y∈C, x �=y

V (|x − y|). [1]

In static equilibrium, the point configuration will assume a form
that at least locally minimizes EV (C). Can we arrange for the
energy-minimizing configuration to be a dodecahedron? Further-
more, can we arrange for it to have a large basin of attraction under
natural processes such as gradient descent? If so, then we can
truly say that the dodecahedron automatically self-assembles out
of randomly arranged points when the proper potential function
is imposed.

If we could choose V arbitrarily, then it would certainly be pos-
sible to make the dodecahedron the global minimum for energy by
using potential wells, as in the blue graph in Fig. 1. By contrast, this
cannot be done with familiar potential functions, such as inverse
power laws, because the dodecahedron’s pentagonal facets are
highly unstable and prone to collapse into a triangulation.

Unfortunately, the potential function shown in the blue graph
in Fig. 1 is quite elaborate. Actually implementing precisely spec-
ified potential wells in a physical system would be an enormous
challenge. Instead, one might ask for a simpler potential function,
for example, one that is decreasing and convex (corresponding to
a repulsive, decaying force).

In fact, V can be chosen to be both decreasing and convex. The
green graph in Fig. 1 shows such a potential function, which is
described and analyzed in Theorem 4. We prove that the regular
dodecahedron is the unique ground state for this system. We have
been unable to prove anything about the basin of attraction, but
computer simulations indicate that it is large (we performed 1,200
independent trials by using random starting configurations, and all
but 6 converged to the dodecahedron). For example, Fig. 2 shows
the paths of the particles in a typical case, with the passage of time
indicated by the transition from yellow to red.

Our approach to this problem makes extensive use of linear
programming. This enables us to give a probabilistic algorithm for
inverse statistical mechanics. Using it, we construct simple poten-
tial functions with counterintuitive ground states. These states are
analogues of those studied in refs. 2–5, but we use much simpler
potential functions. Finally, we make use of the linear program-
ming bounds from coding theory to give rigorous mathematical
proofs for some of our assertions. These bounds allow us to prove
that the desired configurations are the true ground states of our
potential functions. By contrast, previous results in this area were
purely experimental and could not be rigorously analyzed.

Assumptions and Model
To arrive at a tractable problem, we make four fundamental
assumptions. First, we will deal with only finitely many particles
confined to a bounded region of space. This is not an important
restriction in itself, because periodic boundary conditions could
create an effectively infinite number of particles.

Second, we will use classical physics, rather than quantum
mechanics. Our ideas are not intrinsically classical, but compu-
tational necessity forces our hand. Quantum systems are difficult
to simulate classically (otherwise the field of quantum computing
would not exist), and there is little point in attempting to design
systems computationally when we cannot even simulate them. For-
tunately, classical approximations are often of real-world as well
as theoretical value. For example, they are excellent models for
soft matter systems such as polymers and colloids (6, 7).

Third, we restrict our attention to a limited class of poten-
tial functions, namely isotropic pair potentials. These potentials
depend only on the pairwise distances between the particles, with
no directionality and no three-particle interactions; they are the
simplest potential functions worthy of analysis. For example, the
classical electric potential is of this sort. We expect that our meth-
ods will prove useful in more complex cases, but isotropic pair
potentials have received the most attention in the literature and
already present many challenges.

Finally, we assume all the particles are identical. This assump-
tion plays no algorithmic role and is made purely for the sake of
convenience. The prettiest structures are often the most symmet-
rical, and the use of identical particles facilitates such symmetry.
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Fig. 1. Two potential functions under which the regular dodecahedron min-
imizes energy: the blue one uses potential wells, and the green one is convex
and decreasing.

We must still specify the ambient space for the particles. Three
choices are particularly natural: we could study finite clusters of
particles in Euclidean space, configurations in a flat torus (i.e., a
region in space with periodic boundary conditions, so the number
of particles is effectively infinite), or configurations on a sphere.
Our algorithms apply to all three cases, but in this article we will
focus on spherical configurations. They are in many ways the most
symmetrical case, and they are commonly analyzed, for example,
in Thomson’s problem of arranging classical electrons on a sphere.

Thus, we will use the following model. Suppose we have N iden-
tical point particles confined to the surface of the unit sphere
Sn−1 = {x ∈ R

n : |x| = 1} in n-dimensional Euclidean space
R

n. (We choose to work in units in which the radius is 1, but of
course any other radius can be achieved by a simple rescaling.) We
use a potential function V : (0, 2] → R, for which we define the
energy of a configuration C ⊂ Sn−1 as in Eq. 1. We define V only
on (0, 2] because no other distances occur between distinct points
on the unit sphere.

Fig. 2. The paths of points converging to the regular dodecahedron under
the green potential function from Fig. 1. Only the front half of the sphere is
shown.

Note that we have formulated the problem in an arbitrary num-
ber n of dimensions. It might seem that n = 3 would be the most
relevant for the real world, but n = 4 is also a contender, because
the surface of the unit sphere in R

4 is itself a three-dimensional
manifold (merely embedded in four dimensions). We can think
of S3 as an idealized model of a curved three-dimensional space.
This curvature is important for the problem of “geometrical frus-
tration” (8): many beautiful local configurations of particles do
not extend to global configurations, but once the ambient space
is given a small amount of curvature they piece together cleanly.
As the curvature tends to zero (equivalently, as the radius of the
sphere or the number of particles tends to infinity), we recover
the Euclidean behavior. Although this may sound like an abstract
trick, it sometimes provides a strikingly appropriate model for
a real-world phenomenon; see, for example, figure 2.6 in ref. 8,
which compares the radial distribution function obtained by X-
ray diffraction on amorphous iron to that from a regular polytope
in S3 and finds an excellent match between the peaks.

The case of the ordinary sphere S2 in R
3 is also more closely

connected to actual applications than it might at first appear.
One scenario is a Pickering emulsion, in which colloidal parti-
cles adsorb onto small droplets in the emulsion. The particles are
essentially confined to the surface of the sphere and can interact
with each other, for example, via a screened Coulomb potential or
by more elaborate potentials. This approach has in fact been used
in practice to fabricate colloidosomes (9). See also the review arti-
cle (10), in particular section 1.2, and the references cited therein
for more examples of physics on curved, two-dimensional surfaces,
such as amphiphilic membranes or viral capsids.

Questions and Problems
From the static perspective, we wish to understand what the
ground state is (i.e., which configuration minimizes energy) and
what other local minima exist. From the dynamic perspective,
we wish to understand the movement of particles and the basins
of attraction of the local minima for energy. There are several
fundamental questions:

1. Given a configuration C, can one choose an isotropic pair
potential V under which C is the unique ground state for
|C| points?

2. How simple can V be? Can it be decreasing? Convex?
3. How large can the basin of attraction be made?

In this article, we give a complete answer to the first question,
giving necessary and sufficient conditions for such a potential to
exist. The second question is more subtle, but we rigorously answer
it for several important cases. In particular, we show that one can
often use remarkably simple potential functions. The third ques-
tion is the most subtle of all, and there is little hope of providing
rigorous proofs; instead, experimental evidence must suffice.

The second question is particularly relevant for experimental
work, for example with colloids, because only a limited range of
potentials can be manipulated in the laboratory. Inverse statistical
mechanics with simple potential functions was therefore raised as
a challenge for future work in ref. 1.

We will focus on four especially noteworthy structures:

1. The 8 vertices of a cube, with 6 square facets.
2. The 20 vertices of a regular dodecahedron, with 12

pentagonal facets.
3. The 16 vertices of a hypercube in four dimensions, with 8

cubic facets (see Fig. 3).
4. The 600 vertices of a regular 120-cell in four dimensions,

with 120 dodecahedral facets (see Fig. 4).

The latter two configurations exist in four dimensions, but as dis-
cussed above the sphere containing them is a three-dimensional
space, so they are intrinsically three-dimensional.
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Fig. 3. The hypercube, drawn in four-point perspective.

These configurations are important test cases, because they are
elegant and symmetrical yet at the same time not at all easy to
build. The problem is that their facets are too large, which makes
them highly unstable. Under ordinary potential functions, such
as inverse power laws, these configurations are never even local
minima, let alone global minima. In the case of the cube, one can
typically improve it by rotating two opposite facets so they are no
longer aligned. That lowers the energy, and indeed the global min-
imum appears to be the antiprism arrived at via a 45◦ rotation (and
subsequent adjustment of the edge lengths). It might appear that
this process always works, and that the cube can never minimize a
convex, decreasing potential function. However, careful calcula-
tion shows that this argument is mistaken, and we will exhibit an
explicit convex, decreasing potential function for which the cube
is provably the unique global minimum.

One reason why the four configurations mentioned above are
interesting is that they are spherical analogues of the honeycomb

Fig. 4. The Schlegel diagram for the regular 120-cell (with a dodecahedral
facet in red).

and diamond packings from R
2 and R

3, respectively. In each of our
four cases, the nearest neighbors of any point form the vertices of
a regular spherical simplex. They have the smallest possible coor-
dination numbers that can occur in locally jammed packings (see,
for example, ref. 11).

Potential Wells
Suppose C is a configuration in Sn−1. The obvious way to build C is
to use deep potential wells (i.e., local minima in V ) corresponding
to the distances between points in C, so that configurations that
use only those distances are energetically favored. This method
produces complicated potential functions, which may be difficult
to produce in the real world, but it is systematic and straightfor-
ward. In this section we rigorously analyze the limitations of this
method and determine exactly when it works, thereby answering
a question raised toward the end of ref. 2.

The first limitation is obvious. Define the distance distribution
of C to be the function d such that d(r) is the number of pairs of
points in C at distance r. The distance distribution determines the
potential energy via

EV (C) =
∑

r

V (r) d(r). [2]

Thus, C cannot possibly be the unique ground state unless it is the
only configuration with its distance distribution.

The second limitation is more subtle. The formula 2 shows that
EV depends linearly on d. If d is a weighted average of the dis-
tance distributions of some other configurations, then the energy
of C will be the same weighted average of the other configura-
tions’ energies. In that case, one of those configurations must have
energy at least as low as that of C. Call d extremal if it is an extreme
point of the convex hull of the space of all distance distributions
of |C|-point configurations in Sn−1 (i.e., it cannot be written as
a weighted average of other distance distributions). If C is the
unique ground state for some isotropic pair potential, then d must
be extremal.

For an example, consider three-point configurations on the cir-
cle S1, specified by the angles between the points (the shorter
way around the circle). The distance distribution of the configu-
ration with angles 45◦, 90◦, and 135◦ is not extremal, because it
is the average of those for the 45◦, 45◦, 90◦ and 90◦, 135◦, 135◦
configurations.

Theorem 1. If C is the unique configuration in Sn−1 with its distance
distribution d and d is extremal, then there exists a smooth potential
function V : (0, 2] → R under which C is the unique ground state
among configurations of |C| points in Sn−1.

The analogue of Theorem 1 for finite clusters of particles in
Euclidean space is also true, with almost exactly the same proof.

Proof: Because d is extremal, there exists a function � defined on
the support supp(d) of d [i.e., the set of all r such that d(r) �= 0]
such that d is the unique minimum of

t �→
∑

r

�(r) t(r)

among |C|-point distance distributions t with supp(t) ⊆ supp(d).
Such a function corresponds to a supporting hyperplane for the
convex hull of the distance distributions with support contained
in supp(d).

For each ε > 0, choose any smooth potential function Vε such
that Vε(r) = �(r) for r ∈ supp(d) while

Vε(s) >
∑

r

�(r) d(r)
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whenever s is not within ε of a point in supp(d). This is easily
achieved by using deep potential wells, and it guarantees that no
configuration can minimize energy unless every distance occurring
in it is within ε of a distance occurring in C. Furthermore, when ε is
sufficiently small [specifically, less than half the distance between
the closest two points in supp(d)], choose Vε so that for each
r ∈ supp(d), we have V (s) > V (r) whenever |s − r| ≤ ε and s �= r.

For a given ε, there is no immediate guarantee that C will be
the ground state. However, consider what happens to the ground
states under Vε as ε tends to 0. All subsequential limits of their
distance distributions must be distance distributions with support
in supp(d). Because of the choice of �, the only possibility is that
they are all d. In other words, as ε tends to 0 the distance distrib-
utions of all ground states must approach d. Because the number
of points at each given distance is an integer, it follows that when
ε is sufficiently small, for each r ∈ supp(d), there are exactly d(r)
distances in each ground state that are within ε of r. Because Vε

has a strict local minimum at each point in supp(d), it follows that
it is minimized at d (and only at d) when ε is sufficiently small. The
conclusion of the theorem then follows from our assumption that
C is the unique configuration in Sn−1 with distance distribution d.

It would be interesting to have a version of Theorem 1 for infinite
collections of particles in Euclidean space, but there are techni-
cal obstacles. Having infinitely many distances between particles
makes the analysis more complicated, and one particular difficulty
is what happens if the set of distances has an accumulation point
or is even dense (for example, in the case of a disordered packing).
In such a case there seems to be no simple way to use potential
wells, but in fact a continuous function with a fractal structure can
have a dense set of strict local minima, and perhaps it could in
theory serve as a potential function.

Simulation-Guided Optimization
In this section we describe an algorithm for optimizing the poten-
tial function to create a specified ground state. Our algorithm
is similar to, and inspired by, the zero-temperature optimization
procedure introduced in ref. 3; the key difference is that their algo-
rithm is based on a fixed list of competing configurations and uses
simulated annealing, whereas ours dynamically updates that list
and uses linear programming. (We also omit certain conditions
on the phonon spectrum that ensure mechanical stability. In our
algorithm, they appear to be implied automatically once the list
of competitors is sufficiently large.)

Suppose the allowed potential functions are the linear combi-
nations of a finite set V1, . . . , Vk of specified functions. In practice,
this may model a situation in which only certain potential func-
tions are physically realizable, with relative strengths that can be
adjusted within a specified range, but in theory we may choose
the basic potential functions so that their linear combinations
can approximate any reasonable function arbitrarily closely as k
becomes large.

Given a configuration C ⊂ Sn−1, we wish to choose a linear
combination

V = λ1V1 + · · · + λkVk

so that C is the global minimum for EV . We may also wish to
impose other conditions on V , such as monotonicity or convexity.
We assume that all additional conditions are given by finitely many
linear inequalities in the coefficients λ1, . . . , λk. (For conditions
such as monotonicity or convexity, which apply over the entire
interval (0, 2] of distances, we approximate them by imposing these
conditions on a large but finite subset of the interval.)

Given a finite set of competitors C1, . . . , C� to C, we can choose
the coefficients by solving a linear program. Specifically, we add
an additional variable � and impose the constraints

EV (Ci) ≥ EV (C) + �

for 1 ≤ i ≤ �, in addition to any additional constraints (as
in the previous paragraph). We then choose λ1, . . . , λk and �
so as to maximize � subject to these constraints. Because this
maximization problem is a linear program, its solution is easily
found.

If the coefficients can be chosen so that C is the global minimum,
then � will be positive and this procedure will produce a potential
function for which C has energy less than each of C1, . . . , C�. The
difficulty is how to choose these competitors. In some cases, it is
easy to guess the best choices: for example, the natural competitors
to a cube are the square antiprisms. In others, it is far from easy.
Which configurations compete with the regular 120-cell in S3?

Our simulation-guided algorithm iteratively builds a list of com-
petitors and an improved potential function. We start with any
choice of coefficients, say λ1 = 1 and λ2 = . . . = λk = 0, and
the empty list of competitors. We then choose |C| random points
on Sn−1 and minimize energy by gradient descent to produce a
competitor to C, which we add to the list (if it is different from
C) and use to update the choice of coefficients. This alternation
between gradient descent and linear programming continues until
either we are satisfied that C is the global minimum of the potential
function, or we find a list of competitors for which linear program-
ming shows that � must be negative (in which case no choice of
coefficients makes C the ground state).

This procedure is only a heuristic algorithm. When � is neg-
ative, it proves that C cannot be the ground state (using linear
combinations of V1, . . . , Vk satisfying the desired constraints), but
otherwise nothing is proved. As the number of iterations grows
large, the algorithm is almost certain to make C the ground state
if that is possible, because eventually all possible competitors will
be located. However, we have no bounds on the rate at which this
occurs.

We hope that C will not only be the ground state, but will also
have a large basin of attraction under gradient descent. Maximiz-
ing the energy difference � seems to be a reasonable approach, but
other criteria may do even better. In practice, simulation-guided
optimization does not always produce a large basin of attraction,
even when one is theoretically possible. Sometimes it helps to
remove the first handful of competitors from the list once the
algorithm has progressed far enough.

Rigorous Analysis
The numerical method described in the previous section appears
to work well, but it is not supported by rigorous proofs. In this
section we provide such proofs in several important cases. The
key observation is that the conditions for proving a sharp bound
in Proposition 3 below are themselves linear and can be added as
constraints in the simulation-guided optimization. Although this
does not always lead to a solution, when it does, the solution is
provably optimal (and in fact no simulations are then needed).
The prototypical example is the following theorem:

Theorem 2. Let the potential function V : (0, 2] → R be defined by

V (r) = 1
r3 − 1.13

r6 + 0.523
r9 .

Then the cube is the unique global energy minimum among 8-point
configurations on S2. The function V is decreasing and strictly convex.

Theorem 2 is stated in terms of a specific potential function, but
of course many others could be found by using our algorithm.
Furthermore, as discussed in the conclusions below, the proof
techniques are robust and any potential function sufficiently close
to this one works.

The potential function used in Theorem 2 is modeled after the
Lennard–Jones potential. The simplest generalization (namely, a
linear combination of two inverse power laws) cannot work here,
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but three inverse power laws suffice. The potential function in The-
orem 2 is in fact decreasing and convex on the entire right half-line,
although only the values on (0, 2] are relevant to the problem at
hand and the potential function could be extended in an arbitrary
manner beyond that interval.

To prove Theorem 2, we will apply linear programming bounds, in
particular, Yudin’s version for potential energy (12). Let Pi denote
the ith degree Gegenbauer polynomial for Sn−1 [i.e., with parame-
ter (n − 3)/2, which we suppress in our notation for simplicity],
normalized to have Pi(1) = 1. These are a family of orthogonal
polynomials that arise naturally in the study of harmonic analy-
sis on Sn−1. The fundamental property they have is that for every
finite configuration C ⊂ Sn−1,

∑
x,y∈C

Pi(〈x, y〉) ≥ 0.

(Here, 〈x, y〉 denotes the inner product, or dot product, between x
and y.) See section 2.2 of ref. 13 for further background.

The linear programming bound makes use of an auxiliary func-
tion h to produce a lower bound on potential energy. The func-
tion h will be a polynomial h(t) = ∑d

i=0 αiPi(t) with coefficients
α0, . . . , αd ≥ 0. It will also be required to satisfy h(t) ≤ V (

√
2 − 2t)

for all t ∈ [−1, 1). Note that
√

2 − 2t is the Euclidean distance
between two unit vectors with inner product t, because |x − y|2 =
|x|2 + |y|2 − 2〈x, y〉 = 2 − 2〈x, y〉 when |x| = |y| = 1. We view h as a
function of the inner product, and the previous inequality simply
says that it is a lower bound for V .

We say the configuration C is compatible with h if two conditions
hold. The first is that h(t) = V (

√
2 − 2t) whenever t is the inner

product between two distinct points in C. The second is that when-
ever αi > 0 with i > 0, we have

∑
x,y∈C Pi(〈x, y〉) = 0. This equation

holds if and only if for every z ∈ Sn−1,
∑

x∈C Pi(〈x, z〉) = 0. (The
subtle direction follows from Theorem 9.6.3 in ref. 14.)

Proposition 3 (Yudin (12)). Given the hypotheses listed above for h,
every N-point configuration in Sn−1 has V -potential energy at least
(N2α0 − Nh(1))/2. If C is compatible with h, then it is a global mini-
mum for energy among all |C|-point configurations in Sn−1, and every
such global minimum must be compatible with h.

Proof: Let C ⊂ Sn−1 be any finite configuration with N points (not
necessarily compatible with h). Then

EV (C) = 1
2

∑
x,y∈C, x �=y

V
(√

2 − 2〈x, y〉
)

≥ 1
2

∑
x,y∈C, x �=y

h(〈x, y〉)

= −Nh(1)
2

+ 1
2

∑
x,y∈C

h(〈x, y〉)

= −Nh(1)
2

+ 1
2

d∑
i=0

αi

∑
x,y∈C

Pi(〈x, y〉)

≥ −Nh(1)
2

+ α0

2

∑
x,y∈C

P0(〈x, y〉)

= N2α0 − Nh(1)
2

.

The first inequality holds because h is a lower bound for V , and
the second holds because all the Pi-sums are nonnegative (as are
the coefficients αi). The lower bound for energy is attained by C if
and only if both inequalities are tight, which holds if and only if C
is compatible with h, as desired.

Proof of Theorem 2: It is straightforward to check that V is decreas-
ing and strictly convex. To prove that the cube is the unique local
minimum, we will use linear programming bounds.

Let h be the unique polynomial of the form

h(t) = α0 + α1P1(t) + α2P2(t) + α3P3(t) + α5P5(t)

(note that P4 is missing) such that h(t) agrees with V (
√

2 − t) to
order 2 at t = ±1/3 and to order 1 at t = −1. These values of t are
the inner products between distinct points in the cube. One can
easily compute the coefficients of h by solving linear equations and
verify that they are all positive. Furthermore, it is straightforward
to check that h(t) ≤ V (

√
2 − 2t) for all t ∈ [−1, 1), with equality

only for t ∈ {−1, −1/3, 1/3}.
The cube is compatible with h, and to complete the proof all that

remains is to show that it is the only 8-point configuration that is
compatible with h. Every such configuration C can have only −1,
−1/3, and 1/3 as inner products between distinct points. For each
y ∈ C and 1 ≤ i ≤ 3,

∑
x∈C

Pi(〈x, y〉) = 0.

If there are Nt points in C that have inner product t with y, then

Pi(−1)N−1 + Pi(−1/3)N−1/3 + Pi(1/3)N1/3 + Pi(1) = 0

for 1 ≤ i ≤ 3. These linear equations have the unique solution
N−1 = 1, N±1/3 = 3.

In other words, not only is the complete distance distribution of
C determined, but the distances from each point to the others are
independent of which point is chosen. The remainder of the proof
is straightforward. For each point in C, consider its three nearest
neighbors. They must have inner product −1/3 with each other:
no two can be antipodal to each other, and if any two were closer
together than in a cube, then some other pair would be farther
(which is impossible). Thus, the local configuration of neighbors
is completely determined, and in this case, that determines the
entire structure.

Theorem 4. Let the potential function V : (0, 2] → R be defined by

V (r) = (1 + t)5 + (t + 1)2(t − 1/3)2(t + 1/3)2(t2 − 5/9)2

6(1 − t)2 ,

where t = 1 − r2/2. Then the regular dodecahedron is the unique
global energy minimum among 20-point configurations on S2. The
function V is decreasing and strictly convex.

The proof is analogous to that of Theorem 2, except that we
choose h(t) = (1 + t)5. The proof of uniqueness works similarly.
Note that the potential function used in Theorem 4 is physically
unnatural. It does not seem worth carefully optimizing the form of
this potential function when it is already several steps away from
real-world application. Instead, Theorems 4 through 6 should be
viewed as plausibility arguments, which prove that there exists a
convex, decreasing potential while allowing its form to be highly
complicated.

Theorem 5. Let the potential function V : (0, 2] → R be defined by

V (r) = −13 + 73t + 5t2 + 7t3 + t5

120

+ 7(t + 1)(t + 1/2)2t2(t − 1/2)2

120(1 − t)
,

where t = 1 − r2/2. Then the hypercube is the unique global energy
minimum among 16-point configurations on S3. The function V is
decreasing and strictly convex.
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Fig. 5. Gaussian energy on the space of two-dimensional lattices (red means
high energy).

For the 120-cell, let q(t) be the monic polynomial whose roots
are the inner product between distinct points in the 120-cell; in
other words,

q(t) = t(t + 1)(4t + 1)(4t − 1)(4t + 3)(4t − 3)

· (2t + 1)(2t − 1)(16t2 − 5)

· (4t2 + 2t − 1)(4t2 − 2t − 1)

· (16t2 + 4t − 1)(16t2 − 4t − 1)

· (16t2 + 4t − 11)(16t2 − 4t − 11)

· (16t2 + 12t + 1)(16t2 − 12t + 1)

· (16t2 + 20t + 5)(16t2 − 20t + 5)/250.

Let m1, . . . , m29 be the integers 2, 4, 6, 8, 10, 14, 16, 18, 22,
26, 28, 34, 38, 46, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,
27, 29 (in order), and let c1, . . . , c17 be 1, 2/3, 4/9, 1/4, 1/9, 1/20,
1/20, 1/15, 1/15, 9/200, 3/190, 0, 7/900, 1/40, 1/35, 3/190, and
1/285.

Theorem 6. Let the potential function V : (0, 2] → R be defined by

V (r) =
17∑

i=1

ciPi(t) +
29∑

i=1

Pmi (t)
106 + 105 q(t)2

1 − t
,

where t = 1 − r2/2. Then the regular 120-cell is the unique
global energy minimum among 600-point configurations on S3. The
function V is decreasing and strictly convex.

The proofs of Theorems 5 and 6 use the same techniques as
before. The most elaborate case is the 120-cell, specifically the

proof of uniqueness. The calculation of the coefficients Nt, as in
the proof of Theorem 2, proceeds as before, except that the P12
sum does not vanish (note that the coefficient c12 of P12 in V is
zero). Nevertheless, there are enough simultaneous equations to
calculate the numbers Nt. Straightforward case analysis suffices to
show then that the four neighbors of each point form a regular
tetrahedron, and the entire structure is determined by that.

Conclusions and Open Problems
In this article, we have shown that symmetrical configurations can
often be built by using surprisingly simple potential functions, and
we have given an algorithm to search for such potential functions.
However, many open problems remain.

One natural problem is to extend the linear programming bound
analysis to Euclidean space. There is no conceptual barrier to this
(section 9 of ref. 13 develops the necessary theory), but there are
technical difficulties that must be overcome if one is to give a
rigorous proof that a ground state has been achieved.

A second problem is to develop methods of analyzing the basin
of attraction of a given configuration under gradient descent. We
know of no rigorous bounds for the size of the basin.

The review article (1) raises the issue of robustness: Will a small
perturbation in the potential function (due, for example, to exper-
imental error) change the ground state? One can show that the
potential in Theorem 2 is at least somewhat robust. Specifically, it
follows from the same proof techniques that there exists an ε > 0
such that if the values of the potential function and its first two
derivatives are changed by a factor of no more than 1 + ε, then
the ground state remains the same. It would be interesting to see
how robust a potential function one could construct in this case.
The argument breaks down slightly for Theorems 4 through 6, but
they can be slightly modified to make them robust.

It would also be interesting to develop a clearer geometrical
picture of energy minimization problems. For example, for Bra-
vais lattices in the plane, the space of lattices can be naturally
described by using hyperbolic geometry [see, for example, ref. 15,
(pp 124–125)]. Fig. 5 shows a plot of potential energy for a Gauss-
ian potential function, drawn by using the Poincaré disk model of
the hyperbolic plane. Each point corresponds to a lattice, and the
color indicates energy (red is high). The local minima in yellow are
copies of the triangular lattice; the different points correspond to
different bases. The saddle points between them are square lat-
tices, which can deform into triangular lattices in two different
ways by shearing the square along either axis. The red points on
the boundary show how the energy blows up as the lattice becomes
degenerate. In more general energy minimization problems, we
cannot expect to draw such pictures, but one could hope for a
similarly complete analysis, with an exhaustive list of all critical
points as well as a description of how they are related to each
other geometrically.
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