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Erythropoietin receptor (EpoR) binding mediates neuroprotection
by endogenous Epo or by exogenous recombinant human (rh)Epo.
The level of EpoR gene expression may determine tissue respon-
siveness to Epo. Thus, harnessing the neuroprotective power of
Epo requires an understanding of the Epo–EpoR system and its
regulation. We tested the hypothesis that neuronal expression of
EpoR is required to achieve optimal neuroprotection by Epo. The
ventral limbic region (VLR) in the rat brain was used because we
determined that its neurons express minimal EpoR under basal
conditions, and they are highly sensitive to excitotoxic damage,
such as occurs with pilocarpine-induced status epilepticus (Pilo-SE).
We report that (i) EpoR expression is significantly elevated in
nearly all VLR neurons when rats are subjected to 3 moderate
hypoxic exposures, with each separated by a 4-day interval; (ii)
synergistic induction of EpoR expression is achieved in the dorsal
hippocampus and neocortex by the combination of hypoxia and
exposure to an enriched environment, with minimal increased
expression by either treatment alone; and (iii) rhEpo administered
after Pilo-SE cannot rescue neurons in the VLR, unless neuronal
induction of EpoR is elicited by hypoxia before Pilo-SE. This study
thus demonstrates using environmental manipulations in normal
rodents, the strict requirement for induction of EpoR expression in
brain neurons to achieve optimal neuroprotection. Our results
indicate that regulation of EpoR gene expression may facilitate the
neuroprotective potential of rhEpo.

hypoxia � environmental enrichment � epilepsy � limbic system �
enviromimetic

Recombinant human erythropoietin (rhEpo) is now recog-
nized as a promising molecule to prevent or protect against

neurodegeneration in a wide variety of experimental neurolog-
ical disorders (1–3). Also, encouraging results on the neuropro-
tective efficacy of rhEpo in humans have been obtained from
clinical trials involving stroke patients (4), patients with chronic
schizophrenia (5), and patients with chronic progressive multiple
sclerosis (6).

The level of Epo receptor (EpoR) expression in brain tissue
has been proposed to determine the cytoprotective effects of
Epo (7). In vivo, all neurons may not be prone to the protective
effects of Epo, based on previous results showing that consti-
tutive EpoR gene expression is heterogeneous in the rat central
nervous system (8). Also, all brain areas do not exhibit the same
neuronal vulnerability to excitotoxic injury; compared with the
dorsal regions of the brain, the ventral limbic region (VLR) is
subjected to intense neuronal death in response to a pilocarpine-
induced status epilepticus (Pilo-SE) (9). Thus, the present study
was aimed at finding physiological conditions making it possible
to increase expression of EpoR in neurons of the VLR, and to
test the hypothesis that increased neuronal expression of EpoR

is required to achieve optimal neuroprotection by rhEpo after
excitotoxicity induced by Pilo-SE.

In vitro studies showed that hypoxic exposure increases EpoR
gene expression in cultured neurons (10–12). However, in the adult
mouse brain, a single hypoxic exposure in vivo failed to increase
EpoR gene expression (13, 14). Thus, we hypothesized that in rats,
EpoR gene induction in neurons may require repetitive hypoxic
challenges. First, we show that 3 hypoxic exposures significantly
increase neuronal expression of EpoR; and second, that EpoR
induction is required for rhEpo to counteract neurodegenerative
processes in the VLR after Pilo-SE.

Results
Constitutive Expression of EpoR Is Low in VLR Neurons. The EpoR
gene is expressed at different levels in the adult rat hippocampus
(Hi), neocortex (NC), and spinal cord (8). Here, we have refined
the analysis of EpoR gene expression by examining the VLR,
which includes the insular agranular cortex (IAC), the amygdala
(AMG), and the piriform cortex (PC). EpoR gene expression has
been analyzed at both the transcript and protein level, by
targeting the full-length-EpoR isoform involved in intracellular
signaling (15–17). Therefore, the PCR primers and the antibody
used in this study are specific for the C-terminal cytoplasmic
domain of EpoR cDNA and protein, respectively. We provide
evidence that (i) EpoR transcript level in the VLR is lower than
that measured in the dorsal Hi (HiD) (Fig. 1A); (ii) EpoR
protein is detected with ease by using colorimetric immunohis-
tochemistry in the pyramidal layer of the PC, whereas it is
expressed at a barely detectable level in the other areas of the
VLR (Fig. 1B); and (iii) EpoR protein is exclusively detected in
neurons when dual immunofluorescent labeling of EpoR with
NeuN is used (Fig. 1B).

Repeated Hypoxic Exposures Activate Neuronal Expression of EpoR in
the VLR. In regard to the faint expression of EpoR in most of the
neurons of the VLR, we explored the possibility of activating
EpoR gene expression above detection threshold in these neu-
rons. Hypoxia had already been shown to induce EpoR gene
expression in cultured neurons (10, 11, 18), but not in vivo. Here,
we show that a single hypoxic exposure (1H) has no effect on the
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EpoR transcript level in HiD or the VLR immediately after
hypoxia (Fig. 1 A) or 1, 2, or 8 days after reoxygenation (Fig. S1
A and B). However, by repeating hypoxic exposure on 3 occa-
sions (3H) with each separated by 4 days, we demonstrated a
significant increase (�85%) in EpoR transcript level in the VLR,
which was observed at the time of reoxygenation after the last
hypoxic exposure (Fig. 1 A); the basal level recovered 1 day later
(Fig. S1D). The increased EpoR transcript level was associated
3 days after 3H with an increased number of cells expressing
EpoR protein above detection threshold in the PC, the AMG,
and the IAC. All EpoR-positive cells appeared to be neurons

(Fig. 1B). Quantitative analysis of EpoR immunofluorescent
labeling over all NeuN-positive neurons revealed that (i) f luo-
rescent labeling was detected in all neurons, with the lowest
values ranging from 25 to 43 arbitrary units (A.U.; this concen-
tration was found in 5% of total neurons both in controls and
after 3H); (ii) neurons with a concentration �250 A.U. repre-
sented 11% of total neurons in controls and 48% after 3H; and
(iii) the average cellular concentration of EpoR increased by
74% in VLR neurons after 3H (Fig. 1C).

Hypoxia-Induced Expression of EpoR in VLR Neurons Is Associated with
Induction of Epo. In vivo, a single hypoxic exposure (1H) is well
known to increase Epo gene expression in the brain of rodents
(19). Here, we show that, after 1H, Epo transcript level was
increased at the time of reoxygenation to the same extent in the
2 brain regions studied (HiD and VLR), and was further
increased after 3H in the VLR only (Fig. 2A). After either 1H
or 3H, the apparent peak of Epo mRNA was observed at the
time of reoxygenation only, basal level being recovered 1 day
later (Fig. S2).

The greater increase in Epo mRNA observed after 3H was, 3
days after reoxygenation, associated with an increased number
of cells expressing Epo protein above detection threshold in the
PC, the AMG, and the IAC, and all Epo� cells appeared to be
neurons (Fig. 2B). Quantitative analysis of Epo immunofluo-
rescent labeling over all NeuN-positive neurons revealed that (i)
100% of VLR neurons expressed an Epo concentration �100
A.U. after 3 H, compared with 26% in controls; and (ii) the
average cellular concentration of Epo increased by 349% in VLR
neurons after 3H (Fig. 2C). Our results demonstrate that re-
peated hypoxic exposures elevate both Epo and EpoR gene
expression in neurons in the VLR.

Hypoxia-Induced Expression of EpoR Is Not Associated with Degen-
erative Processes. Increased EpoR expression within the central
nervous system was reported in pathological conditions in
humans (20–23), and in rodent models of neurodegeneration (8,
24–26). Here, after 3H, we did not detect any degenerating
neurons, either by Fluorojade B staining (Fig. S3), or by using
terminal deoxynucleotidyltransferase-mediated dUTP nick end-
labeling of DNA breaks (Fig. S3). These results indicate that
induced expression of EpoR protein after repeated hypoxic
exposures was unrelated to neurodegenerative events in our
system.

Environmental Enrichment Extends Hypoxia-Induced EpoR Gene Ex-
pression Beyond the VLR. Environmental enrichment refers to
housing conditions with enhanced sensory, cognitive, and motor
stimulation. It has various what are considered beneficial effects
on structural brain plasticity and behavior (27, 28). These effects
in brain are likely sustained by modulation of the expression
patterns of many different genes (29). We report here that rats
housed in MARLAU enriched cages (EC) had greater EpoR
transcript level in HiD and HiV, and the VLR, compared with
rats housed in ‘‘standard’’ cages (SC; Fig. 3A). Maximal EpoR
transcript levels in the NC, the HiD, and the VLR were reached
in rats reared in EC and subjected to 3H (Fig. 3A). In the VLR
of rats raised in EC, the maximal level of EpoR transcript was
associated with an increased number of neurons in which EpoR
was detected at 3 days after 3H (Fig. 3B). In the HiV, the lowest
EpoR transcript level was observed in rats raised in SC, and the
maximal level was attained in rats raised in EC or subjected to
3H, independently of the rearing condition (Fig. 3A). Rats raised
in EC displayed increased Epo transcript level in the Hi (HiD
and HiV) and the VLR (Fig. 3C), compared with rats housed in
SC. However, responsiveness of Epo transcript level to 3H in all
brain areas studied was similar in the 2 housing conditions
(Fig. 3D).
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Fig. 1. Repeated hypoxic exposures activate EpoR gene expression in the
VLR. (A) EpoR transcript level measured by reverse transcription quantitative
PCR (RT-qPCR) in the HiD and the VLR of control rats revealed that EpoR-mRNA
level was lower in the VLR than that measured in the HiD (�, P � 0.05). When
measured at reoxygenation time in rats subjected to either 1 (1H) or 3 (3H)
hypoxic episodes, a significant increase in EpoR-mRNA level was found in the
VLR after 3H only (†, P � 0.05, compared with 1H). All bars represent mean �
SEM (n � 4 in each group). (B) Three days after reoxygenation time in rats
subjected to 3H, the number of cells in which EpoR was detected increased
compared with controls, as shown on representative sections stained for
chromogenic detection of EpoR. In sections processed for dual EpoR and NeuN
immunofluorescent detection, all EpoR-positive cells appeared to be neurons
(NeuN�), as illustrated in the IAC: EpoR is in green and NeuN in red. (C) After
3H, the increased number of cells detected by chromogenic immunohisto-
chemistry in the IAC was associated with an increased EpoR cellular concen-
tration index, which was determined as the intensity of the immunofluores-
cent labeling (n � 132 neurons in controls; n � 130 neurons after 3H). The
illustration represents all neurons measured and the mean � SD for each
group.

Sanchez et al. PNAS � June 16, 2009 � vol. 106 � no. 24 � 9849

N
EU

RO
SC

IE
N

CE

http://www.pnas.org/cgi/data/0901840106/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0901840106/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0901840106/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0901840106/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0901840106/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0901840106/DCSupplemental/Supplemental_PDF#nameddest=SF3


Induced EpoR Gene Expression in the VLR Determines the Neuropro-
tective Effect of rhEpo After Pilo-SE. High dose (5,000 international
units/kg) of rhEpo (administered immediately, 1 and 3 days after
Pilo-SE), which is known to induce neuroprotective effects in the
HiD (Fig. S4) (8), failed to protect neurons in the VLR (Fig. 4
A–C). This lack of rhEpo effect in the VLR cannot be attributed
to weak passage of rhEpo across the brain barrier, because
parenchymal rhEpo concentration was greater in the VLR than
in the HiD (Fig. 4D).

We then tested whether neuroprotective effects of rhEpo
could be achieved in the VLR after 3H-induced neuronal

expression of EpoR. We first verified that the way rats entered
into sustained SE after pilocarpine administration was not
altered by 3H. Continuous convulsions were attained 24.6 � 2.9
and 21.6 � 1.0 min after pilocarpine administration in control
rats and in rats subjected to 3H, respectively. We observed that
rhEpo exerted neuroprotective effects in the VLR of rats
subjected to 3H (Fig. 4 A–C). However, the intense induction in
endogenous Epo measured after 3H alone (Fig. 2 A) was not
sufficient to protect vulnerable neurons in the VLR after Pilo-SE
(Fig. 4 A–C). Interestingly, in the HiD, where 3H did not induce
EpoR gene expression, we observed identical neuroprotective
effects of rhEpo between rats subjected or not to 3H (Fig. S4),
suggesting that lack of EpoR gene induction after 3H prevented
rhEpo from exhibiting optimal neuroprotective effects.

Repeated Hypoxic Exposures Do Not Alter IGF-1 and Tpo/TpoR Tran-
script Levels in the VLR. Endogenous factors can either act in
synergy with Epo, as is the case with IGF-1 (30), or interfere with
Epo, as is the case with thrombopoietin (Tpo) (10). Interestingly,
hypoxia was shown to decrease Tpo and TpoR expression in
cultured neurons at both the transcript and protein level (10).
We expected that 3H would elevate the expression of IGF-1
and/or down-regulate that of Tpo and its receptor TpoR. We
show that Tpo and TpoR transcript levels tended to be decreased
up to 1 day after reoxygenation at the end of 3H, whereas IGF-1
mRNA level remained stable (Fig. 5).

Discussion
Although advances have been made in the understanding of the
mechanisms that contribute to premature brain cell death,
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Fig. 2. Repeated hypoxic exposures induce Epo gene expression in the VLR.
(A) Constitutive level of Epo transcript measured by RT-qPCR was similar in the
HiD and the VLR. At reoxygenation time after 1H, Epo-mRNA level was
significantly increased to the same extent in the 2 brain areas (P � 0.001
between control and 1H). However, at reoxygenation time after 3H, Epo-
mRNA level was superinduced in the VLR only (†, P � 0.05; †††, P � 0.001
between 1H and 3H). All bars represent mean � SEM (n � 4 in each group). (B)
Three days after reoxygenation time in rats subjected to 3H, the number of
cells in which Epo was detected increased compared with controls, as shown
on representative sections stained for chromogenic detection of Epo. In
sections processed for dual EpoR and NeuN immunofluorescent detection, all
Epo-positive cells appeared to be neurons (NeuN�), as illustrated in the IAC:
Epo is in green and NeuN in red. (C) After 3H, the increased number of cells
detected by chromogenic immunohistochemistry in the IAC was associated
with an increased Epo cellular concentration index, which was determined as
the intensity of the immunofluorescent labeling (n � 141 neurons in controls;
n � 153 neurons after 3H). Illustration represents all neurons measured and
the mean � SD for each group.
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expression. (A) Level of EpoR transcript was measured in the NC, the HiD, the
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groups, tissues were collected at reoxygenation time of the last hypoxic
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Three days after reoxygenation time in rats housed in EC and subjected to 3H,
the number of cells in which EpoR was detected increased, compared with rats
raised in SC. (C) Constitutive expression of Epo was increased in the HiD, the
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reactivity of Epo gene expression to 3H, measured at transcript level, was not
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efforts to discover and implement effective neuroprotection
strategies have lagged behind. Our study provides evidence that
EpoR gene expression is up-regulated in the adult rat brain under
physiological conditions in which the brain attempts to decrease
vulnerability. This up-regulation that occurs predominantly in
neurons is required for rhEpo to exert any neuroprotective
effect. Thus, EpoR up-regulation appears to be an effective way
to increase the neuroprotective efficacy of rhEpo.

We have also refined previous findings (8) that not all brain
areas similarly express EpoR gene by showing, for example, that
the level of EpoR is greater in the Hi than in the VLR. Consistent
with the hypothesis that the tissue level of EpoR determines the
tissue response to Epo (31), our data indicate that not all brain
areas respond similarly to rhEpo. Indeed, we show in the Pilo-SE
model that rhEpo significantly protects hippocampal neurons
from degeneration, but is ineffective in protecting neurons of
the VLR. This observation led us to search for physiological

conditions that might enhance EpoR gene expression within
the VLR.

Induction of EpoR has been proposed as a tissue-protective
response to injury (2, 8, 25), and the only physiological response
reported so far to enhance brain EpoR protein has been accli-
mation to ambient heat (32). Sublethal exposures to extreme
environmental conditions, known to increase brain tolerance to
a subsequent damaging event (33, 34), may also increase brain
EpoR gene expression. Here, we show that nondeleterious
repetition of hypoxic exposures dramatically increases EpoR
gene expression at both the transcript and protein level, primar-
ily in neurons of the VLR. We confirmed that EpoR gene
expression remains unchanged in the brain of adult rodents after
a single hypoxic exposure (13, 14). Hypoxia has been shown in
the adult rat spleen to elevate the expression of EpoR (16), and
the reason why repetition of hypoxic exposures induces EpoR in
the VLR is not known. The superinduction of Epo, occurring
exclusively in the VLR after hypoxia repetition, may have a role,
involving the transcription factor GATA-3, previously linked
with induced EpoR transcript level in cultured neurons in an
Epo-dependent fashion (12). Intriguingly, we demonstrate that
extreme environmental manipulations are not the only condition
inducing EpoR gene expression in the brain. Indeed, environ-
mental enrichment significantly elevated EpoR transcript level in
the HiD and the VLR, and rendered dorsal brain areas (HiD and
NCx) sensitive to repeated hypoxia. By contrast, maximal EpoR
gene expression in the ventral brain areas (HiV and VLR) was
attained after repeated hypoxia exposures, independently of
whether rats were raised in standard or enriched housing con-
ditions. There are likely to be other physiological interventions
that will selectively raise EpoR in specific brain areas, but remain
unidentified.

Consistent with the notion that enhanced EpoR gene expres-
sion confers increased tissue response to rhEpo, we ascertained
that rhEpo protects VLR neurons after excitotoxic injury in rats
subjected to repeated hypoxic exposure only. This effect is
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mainly explained by the increased expression of EpoR gene in
VLR neurons, because neither rhEpo nor repeated hypoxic
exposures were sufficient to induce neuroprotective effects.
Also, this effect is very likely independent of other adaptive
mechanisms activated by the repetition of hypoxic exposures
because (i) in the HiD of rats subjected to 3H that showed no
induction of EpoR, rhEpo had no additional protective effects;
and (ii) the expression of IGF-1, known to potentiate rhEpo
effects in vitro (30), was not modified by 3H. Altogether, our
results indicate that induction of EpoR gene expression in
vulnerable brain areas by 3H is a prerequisite to optimize
neuroprotective effects of rhEpo. Unfortunately, this concept
could not be tested in the HiD, where EpoR gene expression is
enhanced in rats raised in EC and subjected to 3H, due to the
inhibitory effect of environmental enrichment on the develop-
ment of brain excitability and SE (35, 36).

Epo, which is a molecule induced by hypoxia, is considered to
have a key role in the enhancement of brain robustness by
hypoxia (19). Thus, rhEpo can be considered as an ‘‘enviromi-
metic,’’ defined as any exogenous molecule that mimics the
beneficial effects of environmental changes (27). Here, we show
that repeated hypoxic exposures rendered rhEpo effective in the
VLR by induced EpoR. These results are in line with the concept
that optimization of the effect of neuroprotective agent may
require the preliminary induction of its targeted receptor (37).
Concerning rhEpo, future studies should elucidate mechanisms
promoting trafficking of EpoR toward the cell surface (38), and
the mechanisms selectively involved in the induction of EpoR
after environmental manipulations, to develop drugs capable of
inducing EpoR.

Materials and Methods
Animals. All animal experiments were in compliance with the guidelines of the
European Union (directive 86/609), taken into the French law (decree 87/848),
regulating animal experimentation. All efforts were made to minimize animal
suffering and to reduce the number of animals used. Sprague–Dawley male
rats were used throughout the study. For more detailed information, see SI
Materials and Methods.

Hypoxic Exposure. Hypoxia was realized by introducing rats within a chamber
(Biospherix), the oxygen (O2) proportion of which decreased progressively
from 21% to 8% in 1 h. Each hypoxia exposure was maintained at 8% O2 for
6 h. O2 proportion was automatically regulated by the Pro-Ox system (Bio-
spherix). The 3 hypoxia exposures were carried out 4 days apart.

Administration of rhEpo. rhEpo (Eprex, generously provided by Janssen-Cilag)
was administered at 5,000 international uunits/kg (i.p.). For more detailed
information, see SI Materials and Methods.

Environmental Enrichment. We engineered a cage (MARLAU cage, patent no.
FR09/00544) promoting standardization of the procedures of enrichment. This
cage (Fig. S5) allows increased social interactions (12 rats per cage), increased

voluntary exercise (large surface area and presence of 3 running wheels),
‘‘diverting’’ activities (red tunnel, ladder, and toboggan slide), and cognitive
stimulations using labyrinths, the configuration of which is changed 3 times a
week. Standard rats were housed in groups of 6 from weaning to adulthood
in type ‘‘E’’ cages (Charles River).

Pilo-SE. Scopolamine methyl nitrate (1 mg/kg, s.c.; Sigma) was administered 30
min before pilocarpine hydrochloride (350 mg/kg, i.p.; Sigma). SE was stopped
2 h after its onset by i.p. injection of 20 mg/kg diazepam (Valium; Roche), as
previously described (8, 39).

Ex Vivo Procedures. All rats were deeply anesthetized with a lethal dose of
pentobarbital (250 mg/kg) before being killed. For biochemical analysis, brain
structures were rapidly microdissected, frozen in liquid nitrogen, and stored
at �80 °C. For immunohistochemistry analysis, animals were transcardially
perfused with chilled 4% paraformaldehyde in 0.1 M phosphate buffer. After
cryoprotection in 25% sucrose, brains were frozen at �40 °C in isopentane
and stored at �80 °C. For ELISA measurement, rats were intracardially per-
fused for 2 min with chilled 0.9% NaCl. After brain removal, the VLR was
dissected, weighed, frozen in liquid nitrogen, and stored at �80 °C.

RT-qPCR. Variations in transcript levels were determined by real-time PCR
amplification of cDNAs of interest after reverse transcription of total mRNAs,
as previously detailed (8). For more detailed information on primers used for
PCR, see SI Materials and Methods.

Quantitative Determination of rhEpo by Using ELISA. rhEpo was measured by
using an ELISA kit (R&D Systems), as previously described (8).

Immunohistochemistry. Free-floating sections of fixed tissue were used for
colorimetric or fluorescent labeling of Epo and EpoR, in combination or not
with labeling of either NeuN or GFAP. Images were captured by a TCS SP2
confocal microscopy system (Leica). For more detailed information about
antibody characterization, see SI Materials and Methods and ref. 40.

Labeling of Neuronal Degeneration. Fluoro-Jade B (Chemicon) was used to
identify degenerating neurons after Pilo-SE in rats (41). Cell death occurring
with DNA breaks was detected by using terminal deoxynucleotidyltrans-
ferase-mediated dUTP nick end-labeling (TUNEL) of DNA breaks (Roche).

Image Analysis. Measurements of neuronal density and fluorescent intensity
were performed by using an image analysis system (Visilog, Noesis). For more
detailed information, see SI Materials and Methods.

Statistical Analysis. Data are expressed as mean � SEM of the different
variables analyzed (mRNA level, neuronal density, and brain uptake of rhEpo),
and were compared among groups by using 1- or 2-way ANOVA followed by
Fisher’s protected least significant difference test.
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