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Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of genotoxic environmental contaminants. We
have long been interested in determining the mechanisms by which PAHs induce genotoxicity.
Although the metabolic activation of PAHs leading to biological activities has been well studied, the
photo-induced activation pathway has seldom reported. In this paper, we review the study of
photoirradiation of PAHs with UVA irradiation results in (i) cytotoxicity and DNA damage (ii) DNA
single strand cleavage; (iii) formation of 8-hydroxy -2′-deoxyguanosine adduct (8-OHdG), and (iv)
formation of lipid peroxidation. Evidence has been shown that these photobiological activities are
mediated by reactive oxygen species (ROS).
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Introduction
Polycyclic aromatic hydrocarbons (PAHs) are a class of genotoxic environmental
contaminants [1–6]. PAHs are formed from incomplete combustion of fossil fuels during both
natural events and human activities [3,5,7,8]. Being ubiquitous in the environment, PAHs are
thought to induce tumors, primarily in the lungs, bladder and in the skin [1,3–5,7]. The
International Agency for Research on Cancer, the United States Environmental Protection
Agency, and the National Toxicology Program have classified some PAHs as probable human
carcinogens [9–11]. Study of the mechanisms by which PAHs induce cancers has been the
most intensive in the field of chemical carcinogenesis. The tumorigenicity and the metabolic
activation pathways of PAHs have been well-studied and many books and review articles have
reported on the study of carcinogenesis by PAHs [1,3,6,9,10].
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It is established that PAHs require metabolic activation in order to exert biological activities,
including carcinogenicity [3]. During the last several decades, study of the mechanisms by
which PAHs induce tumors in experimental animals has been one of the most extensive in the
field of chemical carcinogenesis [3,6,12]. To date, three metabolic activation pathways in
vivo have been determined, namely; metabolism into bay-region diol epoxides, radical-cation
intermediates, and quinones [3,13–16] (Figure 1). Among the three activation pathways,
formation of diol epoxide-derived DNA adducts is the principal metabolic activation pathway
leading to cancer initiation (Figure 1). All these pathways result in binding of the ultimate
metabolites with cellular DNA to form exogenous DNA adducts leading to cancer formation.
Penning et al. [16] have also found that the activation pathway that forms quinone also involves
the generation of reactive oxygen species (ROS) and leads to the formation of endogenous
DNA adducts.

Another pathway that activates PAHs to induce various toxicities is light activation. PAHs
generally absorb UV light and some also absorb visible light. Upon light absorption, PAHs are
excited to their upper energy states that can initiate a series of excited state reactions leading
to ROS and other reactive intermediates that can damage DNA, protein, and cell membrane,
leading to acute toxicity and genotoxicity.

Skin is the largest body organ in humans and a principal target organ on cancer induced by
PAHs. Phototoxicity of PAHs has been recognized more than seventy years ago [17–22]. It
has also been reported that upon light irradiation, PAHs exhibit phototoxicity [17]. Thus,
photoirradiation of PAHs can be an activation pathway and may play an important role on skin
cancer [23–26]. However, this pathway has received much less attention. In the present review,
we report that photoirradiation of PAHs can result in cytotoxicity, mutagenicity, DNA damage,
and induction of lipid peroxidation.

PAH Photoirradiaion Leading to Toxicity and Genotoxicity
The photochemical and phototoxic activities of PAHs were reviewed in 2002 [17]. The review
of the effects of near UV radiation on the toxic effects of PAHs in animals and plants was
reported in 1996 [27]. Generally, the resulting reactive species generated due to photo-
excitation can damage a variety of cellular tissues, with DNA as the principal target leading to
genotoxicity [17,27]. The possible DNA damages include: (i) Single strand cleavage, (ii)
Double strand cleavage, (iii) Deletion of a base (depurination/depyrimidation), (iv) Oxidation
of guanine to 8-hydroxy - or 8-oxo -guanine, (v) Thymine-thymine dimer formation, (vi) DNA
covalent adducts, (vii) DNA-DNA cross-links, and (viii) DNA-protein cross-links. To date,
several types of DNA damages caused by photoirradiation of PAHs have been reported,
including the formation of PAH-DNA covalent adducts, DNA single strand cleavage, and
formation of oxidative product 8-hydroxyguanine. When photoirradiation is performed in the
presence of lipid molecules, induction of lipid peroxidation has also been determined.

Theoretical and Mechanistic Consideration
Formation of ROS—The mechanisms leading to phototoxicity by PAHs have been studied
[28–42]. PAHs that contain three or more aromatic rings can absorb UVA (320–400 nm) and
visible (> 400 nm) light. The resulting excited PAHs can act as sensitizers to transfer energy
or one electron to molecular oxygen to form reactive oxygen species (ROS) [17]. It can also
react with other molecules to generate reactive intermediates. Both ROS and the reactive
intermediates can damage cellular constituents such as cell membrane, nucleic acids, or
proteins, resulting in acute toxicity and genotoxicity including carcinogenicity, mutgenicity,
and teratology.
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Reactive PAH Intermediates—It has been found that upon light irradiation, anthracene,
benz[a]anthracene (BA), pyrene, 5 -methylbenz[a]anthracene, 7,12-dimethyl-BA (DMBA),
and benzo[a]pyrene react with oxygen to form endoperoxides as intermediates and the
corresponding quinones as the end products [17,43–50]. These results indicate that quinones
are the stable end photoproducts of PAH light irradiation. It is proposed that the oxy -radical
intermediate is formed and is responsible for DNA damage caused by concomitant exposure
to benzo[a]pyrene and UV light [51]. Consequently, it is highly possible that the radical
intermediates leading to the quinone formation are the species capable of causing DNA damage
as well as inducing lipid peroxidation.

Multiple photoproducts can also be formed in some cases. For example, photoirradiation of
DMBA with UVA light forms a series of photoproducts, including 7,12-endoperoxide, 7-
hydroxymethyl-12-MBA, DMBA-7,12-quinone, 12-hydroxymethyl-7-MBA, 7 -formyl-12-
MBA, and 12-formyl-7-MBA [50].

Photocytotoxicity
PAHs are generally more toxic when exposed to light than without light irradiation. The
phototoxicity can be more than 100-fold higher than their toxicity in the absence of light
irradiation [52,53]. Yan et al. [54] found that benz[a]anthracene, benzo[a]pyrene, anthracene,
benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and pyrene are highly phototoxic in Salmonella
typhimurium TA102 concomitantly irradiated with UVA light.

Photomutagenicity
Azulene is a non-alternate hydrocarbon, consisting of an unsaturated seven member ring fused
with an unsaturated five member ring (Figure 2). It absorbs red light in the visible region (600
nm band) for the first excited state transition and UVA light (330 nm band) for the second
excited state transition and produces a beautiful blue color in aqueous solutions [55]. This is
drastically different from naphthalene, which absorbs light only in the UVB region (<315 nm).

Azulene and its alkyl derivative guaiazulene, 1,4-dimethyl-7-isopropylazulene and its
structural isomer naphthalene (Figure 2) are the simplest PAHs. Azulene and its derivative are
popular ingredients in beauty, cosmetic, skin, and body care products [56]. The
photomutagenicity of azulene and guaiazulene in Salmonella typhimurium TA98, TA100 and
TA102 was determined by irradiation with UVA and visible light. Both azulene and
gauiazulene exhibited photomutagenicity on TA102. Azu lene was photomutagenic when
irradiated by UVA light, visible light, or a combination of UVA and visible light [56]. At the
same time, naphthalene is not photomutagenic or acutely phototoxic. The difference in toxicity
is due primarily to the light absorption. While azulene and guaiazulene absorbs UVA and
visible light, naphthalene does not.

The photomutagenicity of sixteen PAHs, all on the US EPA Priority Pollutant List, was studied
[56]. Concomitant exposing the Salmonella typhimurium bacteria strain TA102 to one of the
PAHs and light (1.15 J/cm2 UVA + 2.1 J/cm2 visible) without the metabolic enzyme mix S9,
strong mutagenic response is observed for anthracene, benz[a]anthracene, benzo[ghi]perylene,
benzo[a]pyrene, indeno[1,2,3-cd]pyrene, and pyrene. Under the same conditions,
acenaphthene, acenaphthylene, benzo[k]fluoranthene, chrysene, and fluorene are weakly
photomutagenic. Benzo[b]fluoranthene, fluoranthene, naphthalene, phenanthrene, and dibenz
[a,h]anthracene are not photomutagenic. These results indicate that PAHs can be activated by
light and become mutagenic in Salmonella TA102 bacteria. It has been found that DMBA is
phototoxic in bacteria as well as in animal or human cells and photomutagenic in Salmonella
typhimurium strain TA102 [49].
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Formation of DNA Adducts
In 1964, Ts’O and Lu first reported that irradiation of benzo[a]pyrene by light (>300 nm or >
340 nm) induced the formation of covalent DNA adducts, and proteins and cell membranes
can be important photo-damage targets for PAH-DNA adducts [57]. Since then, it was found
that irradiation on the mixture of dibenz[a,c]anthracene or dibenz[a,h]anthracene with DNA
in aqueous solutions also formed covalent DNA adducts [17]. Photoirradiation of anthracene
in human skin, human serum albumin, or monkey kidney epithelial cells all generated DNA
adducts [39,58].

Photoirradiation of DMBA in the presence of calf thymus DNA followed by 32P-postlabeling/
TLC indicated that multiple DNA adducts were formed [49]. Comparison of the DNA adduct
profiles indicates that the DNA adducts formed from photo-irradiation are different from the
DNA adducts formed due to the reaction of DMBA metabolites with DNA. These results
suggest that photoirradiation of DMBA can lead to genotoxicity through activation pathways
different from those by microsomal metabolism of DMBA [49].

Light-Induced DNA Single Strand Cleavage by PAHs
It was reported that irradiation of benzo[a]pyrene in the presence of PM2 DNA caused the
cleavage of the supercoiled form to the relaxed circular form [51]. DMBA exposed to near UV
light also caused DNA single strand cleavage [59]. Kagan et al determined that anthracene
[40] can cause pBR322 DNA single strand cleavage.

A systematic light-induced DNA single strand cleavage study has been carried out for various
PAHs using UVA light and ΦX174 plasmid DNA [47,60–64]. The extent of DNA single strand
cleavage was dependent on both light and PAH doses. Therefore, by fixing the light dose at
170 J/cm2 (1 h irradiation), a relative DNA photocleavage efficiency indicator, C25, the
concentration at which 25% of the original supercoiled DNA is converted into relaxed, open
circular DNA upon the combination of a PAH and light irradiation, is determined. The C25 can
be used to compare relative DNA photocleavage efficiency for various PAHs. The smaller the
C25 values, the more efficient is a PAH toward DNA single strand cleavage.

The C25 values depend on both (i) the structure of the PAHs and (ii) the ring size and
arrangement of the rings. A larger ring does not necessarily mean higher DNA photocleavage
efficiency. The three-ring anthrancene is a stronger DNA photocleaver than the four-ring
pyrene, but is similar to the four-ring chrysene and BA and the five ring benzo[a]pyrene [62].
Metabolic products of benzo[a]pyrene are all more efficient in causing DNA photocleavage
[64]. As shown in Table 1, methyl substitution on BA has an interesting effect on their DNA
photocleavage efficiency. Methyl substitution at 4, 5, 6, 8, 9, 10 positions does not affect the
photocleavage efficiency for BA, but methyl substitution at other positions, especially at 7 and
12 positions, decreases the photocleavage efficiency for BA. This structure-photocleavage
efficiency relationship match the gap between the highest occupied molecular orbital and
lowest unoccupied molecular orbital (HOMO-LUMO) for these methyl substituted BAs [47].

Mechanistic studies reveal that singlet oxygen, superoxide and other radicals intermediates,
including possible PAH radicals, are involved in causing DNA single strand photocleavage by
PAHs [47,60,62,64]. Both an oxygen-dependent and an independent pathway cause the DNA
photocleavage. From PAH to PAH, the involvement of one or the other reactive species in
DNA photocleavage can be different. In summary, the efficiency of light-induced DNA
cleavage by PAHs is closely related to the photochemical reaction of the PAHs and the presence
of chemicals or solvents that affect the photochemical reaction or the production of reactive
intermediates.
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Formation of 8-Hydroxyguanine (8-OHdG) Adduct
It was reported that benzo[a]pyrene exposed to fluorescent light in mammalian cells induced
8-OHdG adduct [37]. Liu et al. reported that benzo[a]pyrene enhances the formation of 8-
OHdG formation by UVA radiation in calf thymus DNA and cultured cells [65]. The level of
8-OHdG adduct formed in cultured cells was much higher than that in calf thymus DNA. These
results suggest that the metabolites of benzo[a]pyrene exhibit higher capability in induction of
8-OH-dG [65]. The subsequent study revealed that its metabolite, benzo[a]pyrene bay-region
diolepoxide combined with UVA synergistically induced 8-OHdG in a level about 25-fold
higher than benzo[a]pyrene. The mechanistic study indicated that the formation of 8-OHdG
was mediated by reactive oxygen species [66].

Other DNA Damage
The phototoxicity and photomutagenicity of azulene was studied in human skin Jurkat T-cells
by Comet assay. Azulene exposed to UVA light caused strand cleavage on DNA in the T-cell
nucleus or pure ΦX174 plasmid DNA in solution [67].

Formation of Lipid Peroxidation
The authors are also interested in determining whether or not photoirradiation of PAHs can
lead to induce lipid peroxidation. The approach is to perform the photoirradiation of a series
of chrysene and its isomeric methylchrysenes and ethylchrysenes by UVA light in the presence
of a lipid, methyl linoleate. Upon peroxidation, methyl linoleate is converted into the isomeric
methyl linoleate 9- and 13-hydroperoxides, both in trans- and cis-forms (Figure 3). We have
previously reported the employment of methyl linoleate for study of lipid peroxidation induced
by chrysene, 4-methylchrysene, 5-methylchrysene, 1-ethylchrysene, 2-ethylchrysene, 3-
ethylchrysene, 4-ethylchrysene, and 5-ethylchrysene, concomitantly exposed to UVA light
(unpublished data). The results indicate that all are capable of inducing lipid peroxidation
(Figure 4). The results also indicate while 4- and 5-ethylchryses induce lip id peroxidation at
a level similar to that of chrysene, 1-, 2-, and 3-ethylchrysene are weaker than chrysene in
induction of lipid peroxidation.

Conclusions and Perspectives
Skin is a principal target organ on cancer induced by PAHs. For the Goeckerman therapy of
psoriasis, coal tar is topically applied on the skin followed by UV light irradiation. This
treatment has an increased risk of developing cutaneous cancers [68]. Roofers and highway
asphalt workers also have a high risk to be exposed to both PAHs and light [69]. In the modern
age we humans are in, the automobile exhaust emits PAHs. These PAHs in the air can be
absorbed by skin. Since human skin is exposed to light, it is of particular importance and
significance to investigate human health risks posed by exposure to the combination of PAHs
and light.
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Figure 1.
The three principal metabolic activation pathways of benzo[a]pyrene leading to tumour
initiation.
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Figure 2.
Chemical structures of azulene, guaiazulene and naphthalene
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Figure 3.
Peroxidation of methyl linoleate into the isomeric 9- and 13-hydroperoxides.
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Figure 4.
Induction of lipid peroxidation by photoirration of chrysene and its methylated and ethylated
derivatives by UVA light.
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Table 1
Relative DNA photocleavage efficiency expressed by C25 [47]

Benz[a]anthracenes (BA) C25 (μM) Benzo[a]pyrene (BaP)derivatives C25 (μM)

BA 18 BaP 6.0

1-Methyl-BA 60 1-Hydroxy -B[a]P 0.6

2-Methyl-BA 74 3-Hydroxy -B[a]P 2.5

3-Methyl -BA 34 6-Acetoxy -B[a]P 1.3

4-Methyl-BA 12 7-Hydroxy -B[a]P 0.1

5-Methyl-BA 13 9-Hydroxy -B[a]P 1.3

6-Methyl-BA 20 B[a]P-3,6-quinone 3.9

7-Methyl-BA ~100 B[a]P-1,6-quinone 2.5

7-Hydroxymethyl-BA ~100 B[a]P-7,8-dihydrodiol 1.1

8-Methyl-BA 18

9-Methyl-BA 17 PAHs

10-Methyl-BA 12 Naphtahlene nd

11-Methyl-BA 42 Anthracene 8.3

12-Methyl-BA 93 Chrysene 5.2

12-Hydroxymethyl-BA ~100 Pyrene 51

7,12-Dithemyl-BA ~100 BA 18

BA-7,12-dione 11.8 BaP 6.0
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